1
|
Steele JFC, Peyret H, Saunders K, Castells‐Graells R, Marsian J, Meshcheriakova Y, Lomonossoff GP. Synthetic plant virology for nanobiotechnology and nanomedicine. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:e1447. [PMID: 28078770 PMCID: PMC5484280 DOI: 10.1002/wnan.1447] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a rapidly expanding field seeking to utilize nano-scale structures for a wide range of applications. Biologically derived nanostructures, such as viruses and virus-like particles (VLPs), provide excellent platforms for functionalization due to their physical and chemical properties. Plant viruses, and VLPs derived from them, have been used extensively in biotechnology. They have been characterized in detail over several decades and have desirable properties including high yields, robustness, and ease of purification. Through modifications to viral surfaces, either interior or exterior, plant-virus-derived nanoparticles have been shown to support a range of functions of potential interest to medicine and nano-technology. In this review we highlight recent and influential achievements in the use of plant virus particles as vehicles for diverse functions: from delivery of anticancer compounds, to targeted bioimaging, vaccine production to nanowire formation. WIREs Nanomed Nanobiotechnol 2017, 9:e1447. doi: 10.1002/wnan.1447 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Hadrien Peyret
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | - Keith Saunders
- Department of Biology ChemistryJohn Innes CentreNorwichUK
| | | | | | | | | |
Collapse
|
2
|
Molecular pharming - VLPs made in plants. Curr Opin Biotechnol 2016; 37:201-206. [PMID: 26773389 DOI: 10.1016/j.copbio.2015.12.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Plant-based expression offers a safe, inexpensive and potentially limitless way to produce therapeutics in a quick and flexible manner. Plants require only simple inorganic nutrients, water, carbon dioxide and sunlight for efficient growth. Virus-like particles (VLPs) are convincing look-alikes of viruses but without carrying infectious genomic material. However, they can still elicit a very potent immune response which makes them ideal vaccine candidates. In this review the different methods of plant expression are described together with the most recent developments in the field of transiently-expressed plant-made VLPs.
Collapse
|
3
|
Peyret H, Lomonossoff GP. When plant virology met Agrobacterium: the rise of the deconstructed clones. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1121-35. [PMID: 26073158 PMCID: PMC4744784 DOI: 10.1111/pbi.12412] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 05/20/2023]
Abstract
In the early days of molecular farming, Agrobacterium-mediated stable genetic transformation and the use of plant virus-based vectors were considered separate and competing technologies with complementary strengths and weaknesses. The demonstration that 'agroinfection' was the most efficient way of delivering virus-based vectors to their target plants blurred the distinction between the two technologies and permitted the development of 'deconstructed' vectors based on a number of plant viruses. The tobamoviruses, potexviruses, tobraviruses, geminiviruses and comoviruses have all been shown to be particularly well suited to the development of such vectors in dicotyledonous plants, while the development of equivalent vectors for use in monocotyledonous plants has lagged behind. Deconstructed viral vectors have proved extremely effective at the rapid, high-level production of a number of pharmaceutical proteins, some of which are currently undergoing clinical evaluation.
Collapse
Affiliation(s)
- Hadrien Peyret
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
4
|
Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 2014:51204. [PMID: 24796351 PMCID: PMC4174718 DOI: 10.3791/51204] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Collapse
Affiliation(s)
| | - Jason Trusa
- Fraunhofer USA Center for Molecular Biotechnology
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology
| | | |
Collapse
|
5
|
Figueiredo JFL, Römer P, Lahaye T, Graham JH, White FF, Jones JB. Agrobacterium-mediated transient expression in citrus leaves: a rapid tool for gene expression and functional gene assay. PLANT CELL REPORTS 2011; 30:1339-45. [PMID: 21424250 DOI: 10.1007/s00299-011-1045-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/11/2011] [Accepted: 02/26/2011] [Indexed: 05/21/2023]
Abstract
In this study, we present a method for transient expression of the type III effector AvrGf1 from Xanthomonas citri subsp. citri strain A(w) in grapefruit leaves (Citrus paradisi) via Agrobacterium tumefaciens. The coding sequence of avrGf1 was placed under the control of the constitutive CaMV 35S promoter in the binary vectors pGWB2 and pGWB5. Infiltration of grapefruit leaves with A. tumefaciens carrying these constructs triggered a hypersensitive response (HR) in grapefruit 4 days after inoculation. When transiently expressed in grapefruit leaves, two mutants, AvrGf1ΔN116 and AvrGf1ΔC83, failed to induce an HR. Moreover, using bioinformatics tools, a chloroplast transit signal was predicted at the N terminus of AvrGf1. We demonstrated chloroplast localization by using an AvrGf1::GFP fusion protein, where confocal images revealed that GFP fluorescence was accumulating in the stomatal cells that are abundant in chloroplasts. Transient expression in citrus has the potential for aiding in the development of new disease defense strategies in citrus.
Collapse
|
6
|
Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R. Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. PLANT PHYSIOLOGY 2010; 152:622-33. [PMID: 20018596 PMCID: PMC2815860 DOI: 10.1104/pp.109.149021] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 12/05/2009] [Indexed: 05/17/2023]
Abstract
Insufficient accumulation levels of recombinant proteins in plants and the lack of efficient purification methods for recovering these valuable proteins have hindered the development of plant biotechnology applications. Hydrophobins are small and surface-active proteins derived from filamentous fungi that can be easily purified by a surfactant-based aqueous two-phase system. In this study, the hydrophobin HFBI sequence from Trichoderma reesei was fused to green fluorescent protein (GFP) and transiently expressed in Nicotiana benthamiana plants by Agrobacterium tumefaciens infiltration. The HFBI fusion significantly enhanced the accumulation of GFP, with the concentration of the fusion protein reaching 51% of total soluble protein, while also delaying necrosis of the infiltrated leaves. Furthermore, the endoplasmic reticulum-targeted GFP-HFBI fusion induced the formation of large novel protein bodies. A simple and scalable surfactant-based aqueous two-phase system was optimized to recover the HFBI fusion proteins from leaf extracts. The single-step phase separation was able to selectively recover up to 91% of the GFP-HFBI up to concentrations of 10 mg mL(-1). HFBI fusions increased the expression levels of plant-made recombinant proteins while also providing a simple means for their subsequent purification. This hydrophobin fusion technology, when combined with the speed and posttranslational modification capabilities of plants, enhances the value of transient plant-based expression systems.
Collapse
Affiliation(s)
- Jussi J Joensuu
- VTT Biotechnology, VTT Technical Research Centre of Finland, Espoo, 02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
7
|
Liu J, Ma P, Sun Y, Yang M, Yang L, Li Y, Wu Y, Zhu X, Wang X. Expression of human acidic fibroblast growth factor in Nicotiana benthamiana with a potato-virus-X-based binary vector. Biotechnol Appl Biochem 2007; 48:143-7. [PMID: 17484724 DOI: 10.1042/ba20070004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aFGF (acidic fibroblast growth factor) plays an important role in morphogenesis, angiogenesis and wound healing and is therefore of potential medical interest. A DNA fragment encoding haFGF (human aFGF) has been cloned into the PVX (potato virus X)-based binary vector (pgR107) and transiently expressed in Nicotiana benthamiana (a wild Australian tobacco) by agroinfection. Approx. 1 week after agroinfection, the recombinant haFGF accumulated in the agroinfected plants reached up to 1% of the total soluble protein. haFGF was then purified on heparin-Sepharose CL-6B. The purified haFGF could stimulate the growth of NIH 3T3 cells, suggesting that the recombinant haFGF expressed via PVX viral vector in N. benthamiana was active biologically.
Collapse
Affiliation(s)
- Jingying Liu
- Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun 130024, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
The small size of plant viral genomes, the ease with which they can be manipulated, and the simplicity of the infection process is making the viral vectors an attractive alternative to the transgenic systems for the expression of foreign proteins in plants. One use of these virus expression systems is for vaccine production. There are two basic types of viral system that have been developed for the production of immunogenic peptides and proteins in plants: epitope presentation and polypeptide expression systems. In this review, we discuss advances made in this field.
Collapse
|
9
|
Mechtcheriakova IA, Eldarov MA, Nicholson L, Shanks M, Skryabin KG, Lomonossoff GP. The use of viral vectors to produce hepatitis B virus core particles in plants. J Virol Methods 2005; 131:10-5. [PMID: 16112207 DOI: 10.1016/j.jviromet.2005.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 06/27/2005] [Accepted: 06/29/2005] [Indexed: 02/02/2023]
Abstract
The expression and assembly of the hepatitis B virus (HBV) nucleocapsid protein (HBcAg) were investigated in plants using viral vectors. Constructs based on either Potato virus X (PVX) or Cowpea mosaic virus (CPMV) containing the sequence of HBcAg were able to infect the appropriate host plants and remained genetically stable during infection. Analysis of HBcAg expression revealed that the protein can self-assemble into core-like particles and that the assembled material could be partially purified by differential centrifugation. Thus, the use of viral vectors can be considered a practical method for rapid production of assembled HBcAg particles in plants. This approach provides a means whereby a variety of chimaeric particles can be assessed quickly and cheaply for various diagnostic and vaccine applications.
Collapse
Affiliation(s)
- I A Mechtcheriakova
- Laboratory of Genetic Engineering, Centre Bioengineering RAS, Prospekt 60-Letya Oktyabrya, 7/1, 117312 Moscow, Russian Federation.
| | | | | | | | | | | |
Collapse
|
10
|
Antigen Delivery Systems III: Use of Recombinant Plant Viruses. Mucosal Immunol 2005. [PMCID: PMC7149764 DOI: 10.1016/b978-012491543-5/50063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
11
|
Wagner B, Fuchs H, Adhami F, Ma Y, Scheiner O, Breiteneder H. Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods 2004; 32:227-34. [PMID: 14962756 DOI: 10.1016/j.ymeth.2003.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2003] [Indexed: 11/15/2022] Open
Abstract
In recent years, several studies have demonstrated the use of autonomously replicating plant viruses as vehicles to express a variety of therapeutic molecules of pharmaceutical interest. Plant virus vectors for expression of heterologous proteins in plants represent an attractive biotechnological tool to complement the conventional production of recombinant proteins in bacterial, fungal, or mammalian cells. Virus vectors are advantageous when high levels of gene expression are desired within a short time, although the instability of the foreign genes in the viral genome may present problems. Similar levels of foreign protein production in transgenic plants often are unattainable, in some cases because of the toxicity of the foreign protein. Now virus-based vectors are for the first time investigated as a means of producing recombinant allergens in plants. Several plant virus vectors have been developed for the expression of foreign proteins. Here, we describe the utilization of tobacco mosaic virus- and potato virus X-based vectors for the transient expression of plant allergens in Nicotiana benthamiana plants. One approach involves the inoculation of tobacco plants with infectious RNA transcribed in vitro from a cDNA copy of the recombinant viral genome. Another approach utilizes the transfection of whole plants from wounds inoculated with Agrobacterium tumefaciens containing cDNA copies of recombinant plus-sense RNA viruses.
Collapse
Affiliation(s)
- Birgit Wagner
- Department of Pathophysiology, University of Vienna, General Hospital Vienna, EBO-3Q, Waehringer Guertel 18-20, 1090 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
12
|
Biotechnology: Production of Proteins for Biopharmaceutical and Industrial Uses in Transgenic Plants. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/978-3-642-18819-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Hefferon KL, Kipp P, Moon YS. Expression and purification of heterologous proteins in plant tissue using a geminivirus vector system. J Mol Microbiol Biotechnol 2004; 7:109-14. [PMID: 15263815 DOI: 10.1159/000078654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the past, plant molecular biologists have relied on Escherichia coli, baculovirus and other expression systems to produce plant proteins to quantities sufficient for biochemical analysis. However, such expression systems often result in the production of proteins which possess improper posttranslational modifications. Here, we present a plant virus-based expression system superior to those currently available. We demonstrate that bean yellow dwarf geminivirus (BeYDV) replicates and expresses foreign proteins at high levels in tobacco, Arabidopsis, and other dicotyledonous plants, making it more universal than plant RNA viruses with restricted host ranges which are currently used as expression systems. The DNA-based nature of the BeYDV genome renders it stable for the incorporation of large plant open reading frames, and gives it an advantage over other plant virus-based expression systems which possess insert size restrictions. Using this expression system, the rapid accumulation of a novel Arabidopsis-derived mitogen-activated protein kinase to levels sufficient for standard biochemical analysis is demonstrated.
Collapse
Affiliation(s)
- K L Hefferon
- Cornell Research Foundation, Plant Sciences Building, Cornell University, Ithaca, NY 14853, USA.
| | | | | |
Collapse
|
14
|
Schillberg S, Fischer R, Emans N. 'Molecular farming' of antibodies in plants. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2003; 90:145-55. [PMID: 12712248 DOI: 10.1007/s00114-002-0400-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
'Molecular farming' is the production of valuable recombinant proteins in transgenic organisms on an agricultural scale. While plants have long been used as a source of medicinal compounds, molecular farming represents a novel source of molecular medicines, such as plasma proteins, enzymes, growth factors, vaccines and recombinant antibodies, whose medical benefits are understood at a molecular level. Until recently, the broad use of molecular medicines was limited because of the difficulty in producing these proteins outside animals or animal cell culture. The application of molecular biology and plant biotechnology in the 1990s showed that many molecular medicines or vaccines could be synthesised in plants and this technology is termed 'molecular farming'. It results in pharmaceuticals that are safer, easier to produce and less expensive than those produced in animals or microbial culture. An advantage of molecular farming lies in the ability to perform protein production on a massive scale using hectares of cultivated plants. These plants can then be harvested and transported using the agricultural infrastructure. Thus, molecular farming allows rapid progress from genetic engineering to crop production, and new cash crops producing recombinant proteins are already being commercially exploited. We speculate that as functional genomics teaches us more about the nature of disease, molecular farming will produce many of the protein therapeutics that can remedy it.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology, IME, Grafschaft, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| | | | | |
Collapse
|
15
|
Schneemann A, Young MJ. Viral Assembly Using Heterologous Expression Systems And Cell Extracts. VIRUS STRUCTURE 2003; 64:1-36. [PMID: 13677044 DOI: 10.1016/s0065-3233(03)01001-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Anette Schneemann
- Department of Molecular Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
16
|
Lim AAL, Tachibana S, Watanabe Y, Wong SM. Expression and purification of a neuropeptide nocistatin using two related plant viral vectors. Gene 2002; 289:69-79. [PMID: 12036585 DOI: 10.1016/s0378-1119(02)00468-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Both odontoglossum ringspot virus (ORSV) and tobacco mosaic virus (TMV) were investigated as expression viral vectors for the expression of a neuropeptide nocistatin. Chimeras of ORSV and TMV were constructed by fusion of 17 amino acids of mouse nocistatin (mNST) to the C-terminal of the coat protein (CP) gene via a Factor Xa cleavage linker to yield ORSV-mNST and TMV-mNST. Expression of the mNST peptide was demonstrated by immuno-transmission electron microscopy, western blot, mass spectrometry and radioimmunoassay. Serial passaging of the chimeric viruses revealed loss of mNST from TMV-mNST by the fifth passage. The mNST was maintained in ORSV-mNST throughout six passages. The mNST peptide could be effectively cleaved and purified from chimeric ORSV CP. To our knowledge, this is the first successful attempt in obtaining a complete peptide with no additional amino acid sequence after expression and purification through the use of either ORSV or TMV as vectors.
Collapse
Affiliation(s)
- Aileen A L Lim
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
17
|
Arazi T, Slutsky SG, Shiboleth YM, Wang Y, Rubinstein M, Barak S, Yang J, Gal-On A. Engineering zucchini yellow mosaic potyvirus as a non-pathogenic vector for expression of heterologous proteins in cucurbits. J Biotechnol 2001; 87:67-82. [PMID: 11267700 DOI: 10.1016/s0168-1656(01)00229-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plant virus vectors provide an attractive biotechnological tool for the transient expression of foreign genes in whole plants. As yet there has been no use of recombinant viruses for the improvement of commercial crops. This is mainly because the viruses used to create vectors usually cause significant yield loss and can be transmitted in the field. A novel attenuated zucchini yellow mosaic potyvirus (AG) was used for the development of an environmentally safe non-pathogenic virus vector. The suitability of AG as an expression vector in plants was tested by analysis of two infectious viral constructs, each containing a distinct gene insertion site. Introduction of a foreign viral coat protein gene into AG genome between the P1 and HC-Pro genes, resulted in no expression in planta. In contrast, the same gene was stably expressed when inserted between NIb and CP genes, suggesting that this site is more suitable for a gene vector. Virus-mediated expression of reporter genes was observed in squash and cucumber leaves, stems, roots and edible fruit. Furthermore, AG stably expressed human interferon-alpha 2, an important human anti-viral drug, without affecting plant development and yield. Interferon biological activity was measured in cucumber and squash fruit. Together, these data corroborate a biotechnological utility of AG as a non-pathogenic vector for the expression of a foreign gene, as a benefit trait, in cucurbits and their edible fruit.
Collapse
Affiliation(s)
- T Arazi
- ViroGene Limited, Har-Hotzvim, P.O. Box 45010, 91045, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Molecular farming is the production of pharmaceutically important and commercially valuable proteins in plants. Its purpose is to provide a safe and inexpensive means for the mass production of recombinant pharmaceutical proteins. Complex mammalian proteins can be produced in transformed plants or transformed plant suspension cells. Plants are suitable for the production of pharmaceutical proteins on a field scale because the expressed proteins are functional and almost indistinguishable from their mammalian counterparts. The breadth of therapeutic proteins produced by plants range from interleukins to recombinant antibodies. Molecular farming in plants has the potential to provide virtually unlimited quantities of recombinant proteins for use as diagnostic and therapeutic tools in health care and the life sciences. Plants produce a large amount of biomass and protein production can be increased using plant suspension cell culture in fermenters, or by the propagation of stably transformed plant lines in the field. Transgenic plants can also produce organs rich in a recombinant protein for its long-term storage. This demonstrates the promise of using transgenic plants as bioreactors for the molecular farming of recombinant therapeutics, including vaccines, diagnostics, such as recombinant antibodies, plasma proteins, cytokines and growth factors.
Collapse
Affiliation(s)
- R Fischer
- Institut für Biologie I (Botanik/Molekulargenetik), RWTH Aachen, Germany.
| | | |
Collapse
|
19
|
Viaplana R, Turner DS, Covey SN. Transient expression of a GUS reporter gene from cauliflower mosaic virus replacement vectors in the presence and absence of helper virus. J Gen Virol 2001; 82:59-65. [PMID: 11125159 DOI: 10.1099/0022-1317-82-1-59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vectors based upon the genome of cauliflower mosaic virus (CaMV) have only a limited capacity for replicating foreign DNA in plants. A helper virus system has been developed to complement CaMV constructs capable of carrying a large foreign gene (glucuronidase; GUS). GUS replaced part or all of the non-essential CaMV gene II and the essential genes III, IV and V. This construct was co-inoculated mechanically with wild-type CaMV helper virus onto Brassica rapa leaves to promote GUS vector complementation. After 1 week, blue foci of GUS activity were observed in the centres of the local lesions. Leaves inoculated with the GUS construct in the absence of helper virus showed randomly distributed foci of GUS activity that were generally smaller than the lesion-associated GUS foci. Inoculation with a simple non-replicating CaMV 35S promoter-GUS construct also produced small GUS foci. Co-inoculation of helper virus with CaMV gene replacement vectors in which replication was prevented by moving the primer-binding site or by deletion of an essential splice acceptor produced only small, randomly distributed GUS activity foci, demonstrating that the lesion-associated foci were produced by gene expression from replicating constructs. These experiments show that CaMV genes III-V can be complemented by wild-type virus and replacement gene vectors can be used for transient gene expression studies with CaMV constructs that distinguish gene expression associated with a replicating vector from that associated with a non-replicating vector.
Collapse
Affiliation(s)
- Rita Viaplana
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| | - David S Turner
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| | - Simon N Covey
- John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK1
| |
Collapse
|
20
|
Brennan FR, Jones TD, Hamilton WD. Cowpea mosaic virus as a vaccine carrier of heterologous antigens. Mol Biotechnol 2001; 17:15-26. [PMID: 11280928 DOI: 10.1385/mb:17:1:15] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The plant virus, cowpea mosaic virus (CPMV), has been developed as an expression and presentation system to display antigenic epitopes derived from a number of vaccine targets including infectious disease agents and tumors. These chimeric virus particles (CVPs) could represent a cost-effective and safe alternative to live replicating virus and bacterial vaccines. A number of CVPs have now been generated and their immunogenicity examined in a number of animal species. This review details the humoral and cellular immune responses generated by these CVPs following both parenteral and mucosal delivery and highlights the potential of CVPs to elicit protective immunity from both viral and bacterial infection.
Collapse
Affiliation(s)
- F R Brennan
- Proteom Ltd., Babraham Hall, Babrahm, Cambridge, CB2 4AT
| | | | | |
Collapse
|
21
|
Gopinath K, Wellink J, Porta C, Taylor KM, Lomonossoff GP, van Kammen A. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 2000; 267:159-73. [PMID: 10662612 DOI: 10.1006/viro.1999.0126] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of new cowpea mosaic virus (CPMV) RNA-2-based expression vectors were designed. The jellyfish green fluorescent protein (GFP) was introduced between the movement protein (MP) and the large (L) coat protein or downstream of the small (S) coat protein. Release of the GFP inserted between the MP and L proteins was achieved by creating artificial processing sites each side of the insert, either by duplicating the MP-L cleavage site or by introducing a sequence encoding the foot-and-mouth disease virus (FMDV) 2A catalytic peptide. Eight amino acids derived from the C-terminus of the MP and 14-19 amino acids from the N-terminus of the L coat protein were necessary for efficient processing of the artificial Gln/Met sites. Insertion of the FMDV 2A sequence at the C-terminus of the GFP resulted in a genetically stable construct, which produced particles containing about 10 GFP-2A-L fusion proteins. Immunocapture experiments indicated that some of the GFP is present on the virion surface. Direct fusion of GFP to the C-terminus of the S coat protein resulted in a virus which was barely viable. However, when the sequence of GFP was linked to the C-terminus by an active FMDV 2A sequence, a highly infectious construct was obtained.
Collapse
Affiliation(s)
- K Gopinath
- Laboratory of Molecular Biology, Agricultural University, Dreijenlaan 3, Wageningen, 6703 HA, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- G P Lomonossoff
- Department of Virus Research, John Innes Centre, Norwich, UK
| | | |
Collapse
|
23
|
Affiliation(s)
- J K Ma
- Department of Oral Medicine and Pathology, UMDS Guy's Hospital, London Bridge, London, UK
| | | |
Collapse
|
24
|
Guo HS, López-Moya JJ, García JA. Susceptibility to recombination rearrangements of a chimeric plum pox potyvirus genome after insertion of a foreign gene. Virus Res 1998; 57:183-95. [PMID: 9870586 DOI: 10.1016/s0168-1702(98)00100-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Infectious RNA transcripts were generated from a chimeric cDNA clone of the plum pox potyvirus (PPV) genome containing the bacterial beta-glucuronidase (GUS) gene inserted between the sequences coding for the P1 and HC proteins. An artificial cleavage site specific for the NIa viral proteinase was engineered between the GUS and HC sequences to produce free GUS and HC proteins. The resulting virus PPVGus/ was stably maintained during the first round of infection, although plants remained symptomless and virus accumulation was delayed with respect to wild-type infection. PPVGus/ deleted variants, missing between 645 and 1779 nt, were detected in a subsequent plant passage. PPVGus/ deletions were confined inside the GUS gene, never affecting the P1 and HC coding regions, in contrast with previous reports of deletions in other potyvirus-based vector, in which deletions frequently reached the HC gene. These results suggest that the N-terminus of the PPV HC protein may be essential for virus viability. Analysis of the deletion endpoints showed short stretches of similarity in donor and acceptor RNAs, as well as oligo A tracts conserved in most junction sites, suggesting that deletions in PPVGus/ might take place by similarity-assisted recombination events.
Collapse
Affiliation(s)
- H S Guo
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
25
|
Fernández-Fernández MR, Martínez-Torrecuadrada JL, Casal JI, García JA. Development of an antigen presentation system based on plum pox potyvirus. FEBS Lett 1998; 427:229-35. [PMID: 9607317 DOI: 10.1016/s0014-5793(98)00429-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of an antigen presentation system based on the plum pox potyvirus (PPV) is here described. The amino-terminal part of PPV capsid protein was chosen as the site for expression of foreign antigenic peptides. Modifications in this site were engineered to avoid the capability of natural transmission by aphids of this PPV vector. As a first practical attempt, different forms of an antigenic peptide (single and tandem repetition) from the VP2 capsid protein of canine parvovirus (CPV) were expressed. Both chimeras are able to infect Nicotiana clevelandii plants with similar characteristics to wild-type virus and remain genetically stable after several plant passages. The antigenicity of purified chimeric virions was demonstrated, proving the suitability of this system for diagnostic purposes. Moreover, mice and rabbits immunized with chimeric virions developed CPV-specific antibodies, which showed neutralizing activity.
Collapse
Affiliation(s)
- M R Fernández-Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Campus de la Universidad Autónoma de Madrid, Spain.
| | | | | | | |
Collapse
|
26
|
Abstract
Epitope presentation to the immune system for vaccination purposes can be achieved either via an inactivated or attenuated form of a pathogen or via its isolated antigenic sequences. When free, these peptides can adopt a variety of conformations, most of which will not exist in their native environment. Conjugation to carrier proteins restricts mobility of the peptides and increases their immunogenicity. A high local concentration of epitopes boosts the immune response further and can be generated by the use of self-aggregating carriers, such as the capsid proteins of viruses. In this regard plant viruses have in recent years started to make an impact as safer alternatives to the use of bacterial and attenuated animal viruses: the latter both require propagation in costly cell-culture systems where they can undergo reversion towards a virulent form and/or become contaminated by other pathogens. Plant virus-based vectors can be multiplied cheaply and to high yields (exceeding 1 mg/g plant tissue) in host plants. Both helical (tobacco mosaic virus, potato virus X, alfalfa mosaic virus) and icosahedral (cowpea mosaic virus, tomato bushy stunt virus) particles have been used to express a number of animal B-cell epitopes, whose immunogenic properties have been explored to varying degrees. Copyright 1998 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C Porta
- Department of Virus Research, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | |
Collapse
|
27
|
Noad RJ, Turner DS, Covey SN. Expression of functional elements inserted into the 35S promoter region of infectious cauliflower mosaic virus replicons. Nucleic Acids Res 1997; 25:1123-9. [PMID: 9092619 PMCID: PMC146586 DOI: 10.1093/nar/25.6.1123] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We describe experiments directed towards development of cauliflower mosaic virus (CaMV) replicons for propagation of functional elements during infection of plants. Modifications and inserts were introduced into replaceable domains associated with the 35S promoter. The 35S enhancer (-208 to -56) was found to potentiate promoter activity when in reverse orientation sufficient to establish systemic infection. However, replacement of the 35S enhancer with that from the nos promoter caused loss of infectivity. A 31 bp oligonucleotide containing a polypurine tract specifying initiation of CaMV plus strand DNA synthesis was inserted into a 35S enhancer deletion mutant and propagated in plants. Analysis of progeny DNA showed the presence of an additional discontinuity at its new location in the 35S enhancer, indicating that the artificial primer had functioned correctly in an ectopic site. An intron and flanking sequences from the RNA leader of the Arabidopsis phytoene desaturase (pds) gene, when inserted into the 35S enhancer in forward orientation was very efficiently spliced during infection. The CaMV replicon carrying the pds gene fragment produced unusual infection characteristics, with plants showing early symptoms and then recovering. We conclude that infectious CaMV replicons can be used to carry a variety of elements that target both viral and host functions.
Collapse
Affiliation(s)
- R J Noad
- Department of Virus Research, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | | | | |
Collapse
|