1
|
Wittmann D, Geigenberger P, Grimm B. NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner. Cells 2023; 12:1670. [PMID: 37371140 DOI: 10.3390/cells12121670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins.
Collapse
Affiliation(s)
- Daniel Wittmann
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| |
Collapse
|
2
|
Wang Q, Zhu B, Chen C, Yuan Z, Guo J, Yang X, Wang S, Lv Y, Liu Q, Yang B, Sun C, Wang P, Deng X. A Single Nucleotide Substitution of GSAM Gene Causes Massive Accumulation of Glutamate 1-Semialdehyde and Yellow Leaf Phenotype in Rice. RICE (NEW YORK, N.Y.) 2021; 14:50. [PMID: 34089406 PMCID: PMC8179877 DOI: 10.1186/s12284-021-00492-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/12/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Tetrapyrroles play indispensable roles in various biological processes. In higher plants, glutamate 1-semialdehyde 2,1-aminomutase (GSAM) converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA), which is the rate-limiting step of tetrapyrrole biosynthesis. Up to now, GSAM genes have been successively identified from many species. Besides, it was found that GSAM could form a dimeric protein with itself by x-ray crystallography. However, no mutant of GSAM has been identified in monocotyledonous plants, and no experiment on interaction of GSAM protein with itself has been reported so far. RESULT We isolated a yellow leaf mutant, ys53, in rice (Oryza sativa). The mutant showed decreased photosynthetic pigment contents, suppressed chloroplast development, and reduced photosynthetic capacity. In consequence, its major agronomic traits were significantly affected. Map-based cloning revealed that the candidate gene was LOC_Os08g41990 encoding GSAM protein. In ys53 mutant, a single nucleotide substitution in this gene caused an amino acid change in the encoded protein, so its ALA-synthesis ability was significantly reduced and GSA was massively accumulated. Complementation assays suggested the mutant phenotype of ys53 could be rescued by introducing wild-type OsGSAM gene, confirming that the point mutation in OsGSAM is the cause of the mutant phenotype. OsGSAM is mainly expressed in green tissues, and its encoded protein is localized to chloroplast. qRT-PCR analysis indicated that the mutation of OsGSAM not only affected the expressions of tetrapyrrole biosynthetic genes, but also influenced those of photosynthetic genes in rice. In addition, the yeast two-hybrid experiment showed that OsGSAM protein could interact with itself, which could largely depend on the two specific regions containing the 81th-160th and the 321th-400th amino acid residues at its N- and C-terminals, respectively. CONCLUSIONS We successfully characterized rice GSAM gene by a yellow leaf mutant and map-based cloning approach. Meanwhile, we verified that OsGSAM protein could interact with itself mainly by means of the two specific regions of amino acid residues at its N- and C-terminals, respectively.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Baiyang Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congping Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhaodi Yuan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaorong Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - San Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yan Lv
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qingsong Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
3
|
Abstract
The aminoacylation reaction is one of most extensively studied cellular processes. The so-called "canonical" reaction is carried out by direct charging of an amino acid (aa) onto its corresponding transfer RNA (tRNA) by the cognate aminoacyl-tRNA synthetase (aaRS), and the canonical usage of the aminoacylated tRNA (aa-tRNA) is to translate a messenger RNA codon in a translating ribosome. However, four out of the 22 genetically-encoded aa are made "noncanonically" through a two-step or indirect route that usually compensate for a missing aaRS. Additionally, from the 22 proteinogenic aa, 13 are noncanonically used, by serving as substrates for the tRNA- or aa-tRNA-dependent synthesis of other cellular components. These nontranslational processes range from lipid aminoacylation, and heme, aa, antibiotic and peptidoglycan synthesis to protein degradation. This chapter focuses on these noncanonical usages of aa-tRNAs and the ways of generating them, and also highlights the strategies that cells have evolved to balance the use of aa-tRNAs between protein synthesis and synthesis of other cellular components.
Collapse
|
4
|
Nardella C, Boi D, di Salvo ML, Barile A, Stetefeld J, Tramonti A, Contestabile R. Isolation of a Complex Formed Between Acinetobacter baumannii HemA and HemL, Key Enzymes of Tetrapyrroles Biosynthesis. Front Mol Biosci 2019; 6:6. [PMID: 30863751 PMCID: PMC6399207 DOI: 10.3389/fmolb.2019.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/06/2019] [Indexed: 01/19/2023] Open
Abstract
Plants, algae and most bacteria synthesize 5-aminolevulinic acid (ALA), the universal precursor of tetrapyrroles such as heme, chlorophyll and coenzyme B12, by a two-step transformation involving the NADPH-dependent glutamyl-tRNA reductase (HemA), which reduces tRNA-bound glutamate to glutamate-1-semialdehyde (GSA), and the pyridoxamine 5′-phosphate-dependent glutamate-1-semialdehyde-2,1-aminomutase (HemL), responsible for the isomerization of GSA into ALA. Since GSA is a very unstable compound at pH values around neutrality, the formation of a HemA-HemL complex has been proposed to occur, allowing for direct channeling of this intermediate from HemA to HemL. Experimental evidence of the formation of this complex has been obtained with the enzymes from Escherichia coli and Chlamydomonas reinhardtii. However, its isolation has never been attained, probably because HemA is degraded when intracellular heme accumulates. In this work, we devised a co-expression and co-purification strategy of HemA and HemL from Acinetobacter baumannii, which allowed the isolation of the HemA-HemL complex. Our results indicate that HemA is stabilized when co-expressed with HemL. The addition of citrate throughout the expression and purification procedure further promotes the formation of the HemA-HemL complex, which can be isolated in fair amount for functional and structural studies. This work lays the bases for a rational design of HemA-HemA inhibitors to be developed as antibacterial agents against A. baumannii, a multidrug resistant opportunistic pathogen responsible for a broad range of severe nosocomial infections.
Collapse
Affiliation(s)
- Caterina Nardella
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Dalila Boi
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Martino L di Salvo
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Anna Barile
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Angela Tramonti
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Roberto Contestabile
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
5
|
Orriss GL, Patel TR, Sorensen J, Stetefeld J. Absence of a catalytic water confers resistance to the neurotoxin gabaculine. FASEB J 2009; 24:404-14. [DOI: 10.1096/fj.09-138297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- George L. Orriss
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Trushar R. Patel
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - John Sorensen
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| | - Jörg Stetefeld
- Department of ChemistryUniversity of ManitobaWinnipegManitobaCanada
| |
Collapse
|
6
|
Nirmala J, Dahl S, Steffenson BJ, Kannangara CG, von Wettstein D, Chen X, Kleinhofs A. Proteolysis of the barley receptor-like protein kinase RPG1 by a proteasome pathway is correlated with Rpg1-mediated stem rust resistance. Proc Natl Acad Sci U S A 2007; 104:10276-81. [PMID: 17548826 PMCID: PMC1891204 DOI: 10.1073/pnas.0703758104] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In plants, disease resistance mediated by the gene-for-gene mechanism involves the recognition of specific effector molecules produced by the pathogen either directly or indirectly by the resistance-gene products. This recognition triggers a series of signals, thereby serving as a molecular switch in regulating defense mechanisms by the plants. To understand the mechanism of action of the barley stem rust resistance gene Rpg1, we investigated the fate of the RPG1 protein in response to infection with the stem rust fungus, Puccinia graminis f. sp. tritici. The investigations revealed that RPG1 disappears to undetectable limits only in the infected tissues in response to avirulent, but not virulent pathotypes. The RPG1 protein disappearance is rapid and appears to be due to specific protein degradation via the proteasome-mediated pathway as indicated by inhibition with the proteasomal inhibitor MG132, but not by other protease inhibitors.
Collapse
Affiliation(s)
| | - Stephanie Dahl
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | | | | | - Diter von Wettstein
- Departments of *Crop and Soil Sciences and
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164; and
- To whom correspondence should be addressed. E-mail:
| | - Xianming Chen
- Plant Pathology, U.S. Department of Agriculture–Agricultural Research Service and
| | - Andris Kleinhofs
- Departments of *Crop and Soil Sciences and
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164; and
| |
Collapse
|
7
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
8
|
Tsang EWT, Hu Z, Chang Q, McGregor DI, Keller WA. Expression of a Brassic napus glutamate 1-semialdehyde aminotransferase in Escherichia coli and characterization of the recombinant protein. Protein Expr Purif 2003; 29:193-201. [PMID: 12767809 DOI: 10.1016/s1046-5928(03)00010-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate 1-semialdehyde aminotransferase (GSA-AT) is a key regulatory enzyme, which converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA) in chlorophyll biosynthesis. ALA is the universal precursor for the synthesis of chlorophyll, heme, and other tetrapyrroles. To study the regulation of chlorophyll biosynthesis in Brassica napus, two cDNA clones of GSA-AT were isolated for genetic manipulation. A SalI-XbaI fragment from one of the two cDNA clones of GSA-AT was used for recombinant protein expression by inserting it at the 3' end of a calmodulin-binding-peptide (CBP) tag of the pCaln vector. The CBP tagged recombinant protein, expressed in Escherichia coli, was purified to apparent homogeneity in a one step purification process using a calmodulin affinity column. The purified CBP tagged GSA-AT is biologically active and has a specific activity of 16.6 nmol/min/mg. Cleavage of the CBP tag from the recombinant protein with thrombin resulted in 9.2% loss of specific activity. However, removal of the cleaved CBP tag from the recombinant protein solution resulted in 60% loss of specific activity, suggesting possible interactions between the recombinant protein and the CBP tag. The enzyme activity of the CBP tagless recombinant protein, referred as TR-GSA-AT hereafter, was not affected by the addition of pyridoxamine 5' phosphate (PMP). Addition of glutamate and pyridoxal 5' phosphate (PLP) to the TR-GSA-AT enhanced the enzyme activity by 3-fold and 3.6-fold, respectively. Addition of both glutamate and PLP increased the enzyme activity by 4.6-fold. Similar to the GSA-AT of B. napus, the active TR-GSA-AT is a dimeric protein of 88 kDa with 45.5 kDa subunits. As the SalI-XbaI fragment encodes a biologically active GSA-AT that has the same molecular mass as the native GSA-AT, it is concluded that the SalI-XbaI fragment is the coding sequence of GSA-AT. The highly active polyclonal antibodies generated from TR-GSA-AT were used for the detection of GSA-AT of B. napus.
Collapse
Affiliation(s)
- Edward W T Tsang
- Plant Biotechnology Institute, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9.
| | | | | | | | | |
Collapse
|
9
|
Kafala B, Sasarman A. Isolation of the Staphylococcus aureus hemCDBL gene cluster coding for early steps in heme biosynthesis. Gene X 1997; 199:231-9. [PMID: 9358061 DOI: 10.1016/s0378-1119(97)00372-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have recently reported [Kafala, B., Sasarman, A., 1994. Can. J. Microbiol. 40, 651 657] the cloning and sequencing of the Staphylococcus aureus hemB gene. This gene purportedly encodes the delta-aminolevulinic acid dehydratase of the heme pathway. In this present communication, we report the sequences and identities of three putative hem genes. Two of these genes are located immediately upstream from hemB. Complementation analysis of Escherichia coli and Salmonella typhimurium hemC and hemD mutants and the comparison of the Sa nucleotide sequences with those of Bacillus subtilis and Ec showed that these two open reading frames, ORF1 and ORF2, are likely to be the hemC gene coding for porphobilinogen deaminase and the hemD gene coding for uroporphyrinogen III synthase, respectively. The third hem gene, hemL, is located immediately downstream of hemB, and encodes glutamate 1-semialdehyde 2,1-aminotransferase. Sequencing of the region which extends past hemL indicates that no further hem genes are located downstream of hemL. In Sa, hemC, hemD, hemB and hemL are proposed to constitute a hem cluster encoding enzymes required for the synthesis of uroporphyrinogen III from glutamate 1-semialdehyde (GSA).
Collapse
Affiliation(s)
- B Kafala
- Department of Microbiology and Immunology, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
10
|
Palmieri G, Di Palo M, Scaloni A, Orru S, Marino G, Sannia G. Glutamate-1-semialdehyde aminotransferase from Sulfolobus solfataricus. Biochem J 1996; 320 ( Pt 2):541-5. [PMID: 8973563 PMCID: PMC1217962 DOI: 10.1042/bj3200541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glutamate-1-semialdehyde aminotransferase (GSA-AT) from the extremely thermophilic bacterium Sulfolobus solfataricus has been purified to homogeneity and characterized. GSA-AT is the last enzyme in the C5 pathway for the conversion of glutamate into the tetrapyrrole precursor delta-aminolaevulinate (ALA) in plants, algae and several bacteria. The active form of GSA-AT from S. solfataricus seems to be a homodimer with a molecular mass of 87 kDa. The absorption spectrum of the purified aminotransferase is indicative of the presence of pyridoxamine 5'-phosphate (PMP) cofactor, and the catalytic activity of the enzyme is further stimulated by addition of PMP. 3-Amino-2,3-dihydrobenzoic acid is an inhibitor of the aminotransferase activity. The N-terminal amino acid sequence of GSA-AT from S. solfataricus was found to share significant similarity with the eukaryotic and eubacterial enzymes. Evidence is provided that ALA synthesis in S. solfataricus follows the C5 pathway characteristic of plants, algae, cyanobacteria and many other bacteria.
Collapse
Affiliation(s)
- G Palmieri
- Dipartimento di Chimica Organica e Biologica, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Jahn D, Hungerer C, Troup B. Ungew�hnliche Wege und umweltregulierte Gene der bakteriellen H�mbiosynthese. Naturwissenschaften 1996. [DOI: 10.1007/bf01142065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Reinbothe S, Reinbothe C. The regulation of enzymes involved in chlorophyll biosynthesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:323-43. [PMID: 8647070 DOI: 10.1111/j.1432-1033.1996.00323.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
All living organisms contain tetrapyrroles. In plants, chlorophyll (chlorophyll a plus chlorophyll b) is the most abundant and probably most important tetrapyrrole. It is involved in light absorption and energy transduction during photosynthesis. Chlorophyll is synthesized from the intact carbon skeleton of glutamate via the C5 pathway. This pathway takes place in the chloroplast. It is the aim of this review to summarize the current knowledge on the biochemistry and molecular biology of the C5-pathway enzymes, their regulated expression in response to light, and the impact of chlorophyll biosynthesis on chloroplast development. Particular emphasis will be placed on the key regulatory steps of chlorophyll biosynthesis in higher plants, such as 5-aminolevulinic acid formation, the production of Mg(2+)-protoporphyrin IX, and light-dependent protochlorophyllide reduction.
Collapse
Affiliation(s)
- S Reinbothe
- Department of Genetics, Swiss Federal Institute of Technology Zurich (ETH), Switzerland
| | | |
Collapse
|
13
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
14
|
Matters GL, Beale SI. Structure and light-regulated expression of the gsa gene encoding the chlorophyll biosynthetic enzyme, glutamate 1-semialdehyde aminotransferase, in Chlamydomonas reinhardtii. PLANT MOLECULAR BIOLOGY 1994; 24:617-629. [PMID: 8155881 DOI: 10.1007/bf00023558] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The gsa gene, which encodes glutamate 1-semialdehyde (GSA) aminotransferase (GSAT), an enzyme in the chlorophyll and heme biosynthetic pathway, has been cloned from Chlamydomonas reinhardtii by complementation of an Escherichia coli hemL mutant. The deduced C. reinhardtii GSAT amino acid sequence has a high degree of similarity to GSAT sequences from barley, tobacco, soybean and various prokaryotic sources. In vitro enzyme activity assays from E. coli transformed with the C. reinhardtii GSAT cDNA showed that higher levels of GSAT activity are associated with the expression of the cDNA insert. Analysis of changes in mRNA levels in light:dark synchronized C. reinhardtii cultures was done by northern blotting. The level of GSAT mRNA nearly doubled during the first 0.5 h in the light and increased over 26-fold after 2 h in the light. This increase is comparable to previously reported increases in GSAT activity in dark-grown cultures transferred to the light, and is the first report of induction by light of a gene encoding an ALA biosynthetic enzyme in plant or algal cells. The accumulation of GSAT mRNA follows the pattern of chlorophyll accumulation and the pattern of chlorophyll a/b-binding protein (cabII-1) mRNA accumulation in these cells, suggesting that the two genes may be regulated by light through a common mechanism. Additional evidence that the GSAT mRNA may be transcriptionally regulated by light is found in the genomic sequence of the gsa gene.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G L Matters
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | |
Collapse
|
15
|
Tyacke RJ, Harwood JL, John RA. Properties of the pyridoxaldimine form of glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1-aminomutase) and analysis of its role as an intermediate in the formation of aminolaevulinate. Biochem J 1993; 293 ( Pt 3):697-701. [PMID: 8352736 PMCID: PMC1134422 DOI: 10.1042/bj2930697] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glutamate semialdehyde aminotransferase (glutamate-1-semialdehyde 2,1-aminomutase; EC 5.4.3.8) was converted into its pyridoxaldimine form by exhaustive replacement of endogenous pyridoxamine phosphate with pyridoxal phosphate. The isomerization of glutamate 1-semialdehyde to 5-aminolaevulinate by this form of the enzyme followed an accelerating time course which indicated that the enzyme initially had no activity but was converted into the active pyridoxamine phosphate form in an exponential process characterized by a rate constant (k) of 0.027 s-1. The pyridoxaldimine form of the enzyme was converted rapidly into the pyridoxamine form by (S)-4-aminohex-5-enoate and much more slowly by 4-aminobutyrate. The steady-state velocity of the enzyme increased in a markedly non-linear fashion with increasing enzyme concentration, indicating that the extent of dissociation of an intermediate in the reaction to free diaminovalerate and the pyridoxaldimine form of the enzyme depends upon the concentration of the enzyme.
Collapse
Affiliation(s)
- R J Tyacke
- Department of Biochemistry, University of Wales College of Cardiff, U.K
| | | | | |
Collapse
|
16
|
|
17
|
Grimm B, Smith MA, von Wettstein D. The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:579-85. [PMID: 1597195 DOI: 10.1111/j.1432-1033.1992.tb16962.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate-1-semialdehyde (GSA) aminotransferase catalyzes transfer of the C2 amino group of glutamate 1-semialdehyde to the C1 position to yield the tetrapyrrole precursor 5-aminolevulinate. Based on spectrophotometric and steady-state data, GSA aminotransferase is a B6-containing enzyme which uses a ping-pong bi-bi mechanism described for other aminotransferases. A putative active-site lysine at position 272 of Synechococcus GSA aminotransferase was replaced by Arg, Ile or Glu, and genes encoding the corresponding three site directed mutants were expressed in Escherichia coli. The catalytic competence of the resulting enzymes was determined. The similarity of the absorbance spectra of pyridoxal-P-treated forms of Lys272----Arg, Lys272----Ile, Lys272----Glu with free pyridoxal-P indicates that enzyme-bound pyridoxal-P does not form an internal aldimine in in these three site-directed mutants. Whereas Lys----Ile and Lys----Glu form only stable ketimines and aldimines with GSA and its analogues, addition of these compounds to the pyridoxamine-P and pyridoxal-P forms of Lys----Arg induces slow spectral changes, indicating the catalysis of a half-reaction with GSA, 4,5-dioxovalerate and 4,5-diaminovalerate. 5-Aminolevulinate apparently binds with both coenzyme forms of Lys272----Arg, however significant tautomeric rearrangement is only observed with the pyridoxal-P form. It is suggested that Lys272 is the covalent pyridoxal-P-binding site and that this catalytically active lysine residue channels the overall transamination reaction towards 5-aminolevulinate. The second-half reaction (4,5-diaminovalerate in equilibrium with 5-aminolevulinate) is possibly supported by the formation of an internal aldimine which correctly positions the C4 amino group of 4,5-diaminovalerate relative to the enzyme-bound pyridoxal-P.
Collapse
Affiliation(s)
- B Grimm
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby, Denmark
| | | | | |
Collapse
|
18
|
Friedmann HC, Duban ME, Valasinas A, Frydman B. The enantioselective participation of (S)- and (R)-diaminovaleric acids in the formation of delta-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 1992; 185:60-8. [PMID: 1599490 DOI: 10.1016/s0006-291x(05)80955-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although it is recognized that 4,5-diaminovaleric acid, formed from glutamate 1-semialdehyde, functions as the intermediate in the last step of delta-aminolevulinic acid formation from glutamate, the enantioselectivity of the participating glutamate 1-semialdehyde aminotransferase for 4,5-diaminovaleric acid has remained unknown. In the present work the involvement of (S)- and (R)-4,5-diaminovaleric acids, newly available by organic synthesis, was investigated, using glutamate 1-semialdehyde aminotransferase from Synechococcus. The preferred enantiomer was (S)-4,5-diaminovalerate. In experiments on the transformation of (S)-4,5-diaminovalerate to delta-aminolevulinate it was found that glutamate 1-semialdehyde aminotransferase was unusual among aminotransferases in that the common amino acceptors pyruvate, oxaloacetate, alpha-ketoglutarate were inactive, while 4,5-dioxovaleric acid could be utilized as a sluggish amino acceptor in place of glutamate 1-semialdehyde. In conclusion, glutamate 1-semialdehyde aminotransferase is highly but not absolutely enantioselective for (S)-4,5-diaminovaleric acid, and 4,5-dioxovaleric acid can function as amino acceptor not because of a physiological role in the C5 pathway of delta-aminolevulinic acid formation, but because of its structural resemblance to glutamate 1-semialdehyde.
Collapse
Affiliation(s)
- H C Friedmann
- Department of Biochemistry and Molecular Biology, University of Chicago, IL 60637
| | | | | | | |
Collapse
|
19
|
Pugh CE, Harwood JL, John RA. Mechanism of glutamate semialdehyde aminotransferase. Roles of diamino- and dioxo-intermediates in the synthesis of aminolevulinate. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)45985-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Smith MA, Kannangara CG, Grimm B, von Wettstein D. Characterization of glutamate-1-semialdehyde aminotransferase of Synechococcus. Steady-state kinetic analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:749-57. [PMID: 1765090 DOI: 10.1111/j.1432-1033.1991.tb16429.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Synechococcus glutamate-1-semialdehyde aminotransferase was expressed in large amounts in transformed cells of Escherichia coli. The resulting purified enzyme has an absorption spectrum characteristic of B6-containing enzymes and could be converted to the pyridoxal-phosphate form with excess dioxovalerate (O2Val), and back to the pyridoxamine-phosphate form with diaminovalerate (A2Val). Both enzyme forms are similarly active in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALev), suggesting that A2Val and O2Val are intermediates. Initial rates of ALev synthesis at various fixed concentrations of GSA followed typical Michaelis-Menten kinetics (Km of GSA for the pyridoxamine-phosphate form of GSA aminotransferase = 12 microM, kcat = 0.23 s-1). In submicromolar amounts A2Val stimulates ALev synthesis, and in a series of concentrations with various fixed concentrations of GSA, gives a family of parallel lines in Lineweaver-Burk plots (Km for A2Val = 1.0 microM). On the other hand, O2Val gives competitive inhibition of the pyridoxamine-phosphate form of GSA-aminotransferase and mixed-type inhibition of the pyridoxal-phosphate form (Ki for O2Val = 1.4 mM). In general the kinetics were typical of ping-pong bi-bi mechanisms in which A2Val is the second substrate (intermediate) and O2Val is an alternative first substrate. There is no compelling evidence that O2Val accepts an amino group at its C5 position resulting in the direct formation of ALev, or the reverse involving the apparent formation of O2Val from ALev. These results are consistent with the hypothesis that the mechanism of GSA aminotransferase mimics that of other aminotransferases and that A2Val is the intermediate.
Collapse
Affiliation(s)
- M A Smith
- Graduate School of Biochemistry, Brigham Young University, Provo, Utah
| | | | | | | |
Collapse
|
21
|
Smith MA, Grimm B, Kannangara CG, von Wettstein D. Spectral kinetics of glutamate-1-semialdehyde aminomutase of Synechococcus. Proc Natl Acad Sci U S A 1991; 88:9775-9. [PMID: 11607231 PMCID: PMC52803 DOI: 10.1073/pnas.88.21.9775] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Purified Synechococcus glutamate-1-semialdehyde aminotransferase (GSA-AT; EC 5.4.3.8) has absorption maxima characteristic of vitamin B6-containing enzymes and can be converted to the pyridoxamine 5'-phosphate or pyridoxal 5'-phosphate form by reaction with diaminovalerate or dioxovalerate, respectively, suggesting that these two analogues are intermediates in the conversion of glutamate 1-semialdehyde (GSA) to 5-aminolevulinate (ALA). Values for Km and kmax were calculated for GSA, diaminovalerate, ALA, and gabaculine from absorption change rates during conversion of one coenzyme form of GSA-AT to the other, upon addition of one of these compounds. The substrate specificity (kmax/Km) of diaminovalerate is about 3 orders of magnitude larger than that of dioxovalerate, making the latter an unlikely intermediate in the enzymic conversion of GSA to ALA. GSA reacts with both coenzyme forms, whereas ALA only reacts with the pyridoxamine 5'-phosphate form of the enzyme. However, ALA does form a complex with the pyridoxal 5'-phosphate form of GSA-AT and inhibits reactions between gabaculine and GSA-AT. This relatively stable complex (Ki = 8 M) may have significance in enzyme inhibition. Both L and D enantiomers of GSA react with GSA-AT. Spectral changes observed upon addition of DL-GSA are apparently due to reaction with the less reactive D-isomer. L-GSA is converted to ALA prior to major spectral changes induced by the racemic mixture.
Collapse
Affiliation(s)
- M A Smith
- Department of Physiology, Carlsberg Laboratory, Copenhagen, Denmark
| | | | | | | |
Collapse
|
22
|
Rieble S, Beale SI. Separation and partial characterization of enzymes catalyzing delta-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 1991; 289:289-97. [PMID: 1910318 DOI: 10.1016/0003-9861(91)90474-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Formation of the universal tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate via the five-carbon pathway requires three enzymes: glutamyl-tRNA synthetase, glutamyl-tRNA reductase, and glutamate-1-semialdehyde (GSA) aminotransferase. All three enzymes were separated from extracts of the unicellular cyanobacterium Synechocystis sp. PCC 6803, and two of them, glutamyl-tRNA synthetase and GSA aminotransferase, were partially characterized. After an initial high speed centrifugation and differentiatial ammonium sulfate fractionation of cell extract, the enzymes were separated by successive affinity chromatography on Reactive Blue 2-Sepharose and 2',5'-ADP-agarose. All three enzyme fractions were required to reconstitute ALA formation from glutamate. The apparent native molecular masses of glutamyl-tRNA synthetase and GSA aminotransferase were determined by gel filtration chromatography to be 63 and 98 kDa, respectively. Neither glutamyl-tRNA synthetase nor GSA aminotransferase activity was affected by hemin concentrations up to 10 and 30 microM, respectively, and neither activity was affected by protochlorophyllide concentrations up to 2 microM. GSA aminotransferase was inhibited 50% by 0.5 microM gabaculine. The gabaculine inhibition was reversible for up to 1 h after its addition, if the gabaculine was removed by gel filtration before the enzyme was incubated with substrate. However, irreversible inactivation was obtained by preincubating the enzyme at 30 degrees C either for several hours with gabaculine alone or for a few minutes with both gabaculine and GSA. Neither pyridoxal phosphate nor pyridoxamine phosphate significantly affected the activity of GSA aminotransferase at physiologically relevant concentrations, and neither of these compounds reactivated the gabaculine-inactivated enzyme. It was noted that the presence of pyridoxamine phosphate in the ALA assay mixture produced a false positive color reaction even in the absence of enzyme.
Collapse
Affiliation(s)
- S Rieble
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | | |
Collapse
|
23
|
Gabaculine-resistant glutamate 1-semialdehyde aminotransferase of Synechococcus. Deletion of a tripeptide close to the NH2 terminus and internal amino acid substitution. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98926-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
24
|
Ilag LL, Jahn D, Eggertsson G, Söll D. The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 1991; 173:3408-13. [PMID: 2045363 PMCID: PMC207952 DOI: 10.1128/jb.173.11.3408-3413.1991] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
delta-Aminolevulinic acid (ALA), the first committed precursor of porphyrin biosynthesis, is formed in Escherichia coli by the C5 pathway in a three-step, tRNA-dependent transformation from glutamate. The first two enzymes of this pathway, glutamyl-tRNA synthetase and Glu-tRNA reductase, are known in E. coli (J. Lapointe and D. Söll, J. Biol. Chem. 247:4966-4974, 1972; D. Jahn, U. Michelsen, and D. Söll, J. Biol. Chem. 266:2542-2548, 1991). Here we present the mapping and cloning of the gene for the third enzyme, glutamate 1-semialdehyde (GSA) aminotransferase, and an initial characterization of the purified enzyme. Ethylmethane sulfonate-induced mutants of E. coli AB354 which required ALA for growth were isolated by selection for respiration-defective strains resistant to the aminoglycoside antibiotic kanamycin. Two mutations were mapped to min 4 at a locus named hemL. Map positions and resulting phenotypes suggest that hemL may be identical with the earlier described porphyrin biosynthesis mutation popC. Complementation of the auxotrophic phenotype by wild-type DNA from the corresponding clone pLC4-43 of the Clarke-Carbon bank (L. Clarke and J. Carbon, Cell 9:91-99, 1976) allowed the isolation of the gene. Physical mapping showed that hemL mapped clockwise next to fhuB. The hemL gene product was overexpressed and purified to apparent homogeneity. The pure protein efficiently converted GSA to ALA. The reaction was stimulated by the addition of pyridoxal 5' -phosphate or pyridoxamine 5' -phosphate and inhibited by gabaculine or aminooxyacetic acid. The molecular mass of the purified GSA aminotransferase under denaturing conditions was 40,000 Da, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has apparent native molecular mass of approximately 80,000 Da, as determined by rate zonal sedimentation on glycerol gradients and molecular sieving through Superose 12, which indicates a homodimeric alpha2, structure of the protein.
Collapse
Affiliation(s)
- L L Ilag
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | | | |
Collapse
|
25
|
Nair SP, Harwood JL, John RA. Direct identification and quantification of the cofactor in glutamate semialdehyde aminotransferase from pea leaves. FEBS Lett 1991; 283:4-6. [PMID: 2037071 DOI: 10.1016/0014-5793(91)80540-j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutamate semialdehyde aminotransferase, a key enzyme in the synthetic pathway leading to chlorophyll was purified from pea (Pisum sativum) leaves. Although the preparation contained a single contaminant the enzyme could be unambiguously identified as a dimer of subunit molar mass 45 kDa having an absorption spectrum consistent with the presence of pyridoxamine phosphate as cofactor. The cofactor was released by treatment with strong phosphate at low pH and was identified and quantified fluorimetrically. The specific activity of the enzyme (1.4 mumol.min-1.mg-1; 23 nkatal.mg-1) is very much higher than previously reported.
Collapse
Affiliation(s)
- S P Nair
- Department of Biochemistry, University of Wales, Cardiff, UK
| | | | | |
Collapse
|
26
|
Hansson M, Rutberg L, Schröder I, Hederstedt L. The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 1991; 173:2590-9. [PMID: 1672867 PMCID: PMC207825 DOI: 10.1128/jb.173.8.2590-2599.1991] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have recently reported (M. Petricek, L. Rutberg, I. Schröder, and L. Hederstedt, J. Bacteriol. 172: 2250-2258, 1990) the cloning and sequence of a Bacillus subtilis chromosomal DNA fragment containing hemA proposed to encode the NAD(P)H-dependent glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid (ALA) synthesis, hemX encoding a hydrophobic protein of unknown function, and hemC encoding hydroxymethylbilane synthase. In the present communication, we report the sequences and identities of three additional hem genes located immediately downstreatm of hemC, namely, hemD encoding uroporphyrinogen III synthase, hemB encoding porphobilinogen synthase, and hemL encoding glutamate-1-semialdehyde 2,1-aminotransferase. The six genes are proposed to constitute a hem operon encoding enzymes required for the synthesis of uroporphyrinogen III from glutamyl-tRNA. hemA, hemB, hemC, and hemD have all been shown to be essential for heme synthesis. However, deletion of an internal 427-bp fragment of hemL did not create a growth requirement for ALA or heme, indicating that formation of ALA from glutamate-1-semialdehyde can occur spontaneously in vivo or that this reaction may also be catalyzed by other enzymes. An analysis of B. subtilis carrying integrated plasmids or deletions-substitutions in or downstream of hemL indicates that no further genes in heme synthesis are part of the proposed hem operon.
Collapse
Affiliation(s)
- M Hansson
- Department of Microbiology, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
27
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Grimm B, Bull A, Breu V. Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1991; 225:1-10. [PMID: 1900346 DOI: 10.1007/bf00282635] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In bacteria 5-aminolevulinate, the universal precursor in the biosynthesis of the porphyrin nucleus of hemes, chlorophylls and bilins is synthesised by two different pathways: in non-sulphur purple bacteria (Rhodobacter) or Rhizobium 5-aminolevulinate synthase condenses glycine and succinyl-CoA into 5-aminolevulinate as is the case in mammalian cells and yeast. In cyanobacteria, green and purple sulphur bacteria, as in chloroplasts of higher plants and algae a three step pathway converts glutamate into 5-aminolevulinate. The last step is the conversion of glutamate 1-semialdehyde into 5-aminolevulinate. Using a cDNA clone encoding glutamate 1-semialdehyde aminotransferase from barley, genes for this enzyme were cloned from Synechococcus PCC6301 and Escherichia coli and sequenced. The popC gene of E. coli, previously considered to encode 5-aminolevulinate synthase, appears to be a structural gene for glutamate 1-semialdehyde aminotransferase. Domains with identical amino acid sequences comprise 48% of the primary structure of the barley, cyanobacterial and putative E. coli glutamate 1-semialdehyde aminotransferases. The cyanobacterial and barley enzymes share 72% identical residues. The peptide containing a likely pyridoxamine phosphate binding lysine is conserved in all three protein sequences.
Collapse
Affiliation(s)
- B Grimm
- Department of Physiology, Carlsberg Laboratory, Copenhagen-Valby, Denmark
| | | | | |
Collapse
|
29
|
Affiliation(s)
- G P O'Neill
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
30
|
Jahn D, Chen MW, Söll D. Purification and functional characterization of glutamate-1-semialdehyde aminotransferase from Chlamydomonas reinhardtii. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52416-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Elliott T, Avissar YJ, Rhie GE, Beale SI. Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 1990; 172:7071-84. [PMID: 2254275 PMCID: PMC210830 DOI: 10.1128/jb.172.12.7071-7084.1990] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Salmonella typhimurium forms the heme precursor delta-aminolevulinic acid (ALA) exclusively from glutamate via the five-carbon pathway, which also occurs in plants and some bacteria including Escherichia coli, rather than by ALA synthase-catalyzed condensation of glycine and succinyl-coenzyme A, which occurs in yeasts, fungi, animal cells, and some bacteria including Bradyrhizobium japonicum and Rhodobacter capsulatus. ALA-auxotrophic hemL mutant S. typhimurium cells are deficient in glutamate-1-semialdehyde (GSA) aminotransferase, the enzyme that catalyzes the last step of ALA synthesis via the five-carbon pathway. hemL cells transformed with a plasmid containing the S. typhimurium hemL gene did not require ALA for growth and had GSA aminotransferase activity. Growth in the presence of ALA did not appreciably affect the level of extractable GSA aminotransferase activity in wild-type cells or in hemL cells transformed with the hemL plasmid. These results indicate that GSA aminotransferase activity is required for in vivo ALA biosynthesis from glutamate. In contrast, extracts of both wild-type and hemL cells had gamma,delta-dioxovalerate aminotransferase activity, which indicates that this reaction is not catalyzed by GSA aminotransferase and that the enzyme is not encoded by the hemL gene. The S. typhimurium hemL gene was sequenced and determined to contain an open reading frame of 426 codons encoding a 45.3-kDa polypeptide. The sequence of the hemL gene bears no recognizable similarity to the hemA gene of S. typhimurium or E. coli, which encodes glutamyl-tRNA reductase, or to the hemA genes of B. japonicum or R. capsulatus, which encode ALA synthase. The predicted hemL gene product does show greater than 50% identity to barley GSA aminotransferase over its entire length. Sequence similarity to other aminotransferases was also detected.
Collapse
Affiliation(s)
- T Elliott
- Department of Microbiology, University of Alabama, Birmingham 35294
| | | | | | | |
Collapse
|
32
|
Grimm B. Primary structure of a key enzyme in plant tetrapyrrole synthesis: glutamate 1-semialdehyde aminotransferase. Proc Natl Acad Sci U S A 1990; 87:4169-73. [PMID: 2349227 PMCID: PMC54069 DOI: 10.1073/pnas.87.11.4169] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The formation of delta-aminolevulinate from glutamate 1-semialdehyde (GSA) is catalyzed by glutamate 1-semialdehyde aminotransferase (EC 5.4.3.8). The active form of the barley enzyme appears to be a dimer of identical subunits with a molecular mass of 46 kDa. From the purified enzyme, amino acid sequences of the N-terminal ends of the mature protein as well as an internal peptide were determined. DNA primers deduced from these peptide sequences were used to amplify with the polymerase chain reaction a cDNA sequence encoding part of the enzyme. Screening a cDNA library with this DNA fragment identified a full-length clone encoding the 49,540-Da precursor of the GSA aminotransferase. The transit peptide for chloroplast import consists of 34 amino acids. GSA aminotransferase and a precursor form were expressed on a multicopy plasmid in Escherichia coli. Both recombinant gene products reacted with an antibody against the barley GSA aminotransferase. Active barley GSA aminotransferase expressed in E. coli was shown to be active in assays of bacterial cell extracts. As a gene symbol for barley GSA aminotransferase, Gsa is proposed.
Collapse
Affiliation(s)
- B Grimm
- Department of Physiology, Carlsberg Laboratory, Copenhagen Valby, Denmark
| |
Collapse
|
33
|
Petricek M, Rutberg L, Schröder I, Hederstedt L. Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol 1990; 172:2250-8. [PMID: 2110138 PMCID: PMC208856 DOI: 10.1128/jb.172.5.2250-2258.1990] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon.
Collapse
Affiliation(s)
- M Petricek
- Department of Microbiology, University of Lund, Sweden
| | | | | | | |
Collapse
|
34
|
Brown SB, Houghton JD, Vernon DI. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1990; 5:3-23. [PMID: 2111391 DOI: 10.1016/1011-1344(90)85002-e] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Phycobiliproteins play important roles in photomorphogenesis and photosynthesis. The light-absorbing chromophores of the phycobiliproteins are linear tetrapyrroles (bilins) very similar in structure to the mammalian bile pigments. 5-Aminolaevulinate (5-ALA) is the first committed intermediate in phycobilin synthesis. The biosynthesis of 5-ALA, destined for phycobilins, occurs via the five-carbon pathway, now well established for tetrapyrrole synthesis in plants and distinct from the mammalian pathway. The phycobilins are formed by reduction of biliverdin which results from the synthesis and degradation of haem. This haem is an essential intermediate in the biosynthesis of phycobilins. Phycocyanobilin, the blue-green pigment found in certain algae and cyanobacteria, is formed from biliverdin via phytochromobilin, the chromophore of phytochrome. This leads to the likelihood that phytochromobilin is formed as an end product, or intermediate, in the synthesis of all phycobilins.
Collapse
Affiliation(s)
- S B Brown
- Department of Biochemistry, University of Leeds, U.K
| | | | | |
Collapse
|
35
|
Houghton JD, Brown SB, Gough SP, Kannangara CG. Biosynthesis of Δ-aminolevulinate in Cyanidium caldarium: Characterization of tRNAGlu, ligase, dehydrogenase and glutamate 1-semialdehyde aminotransferase. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf02907183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Gough SP, Kannangara CG, Bock K. A new method for the synthesis of glutamate 1-semialdehyde. Characterization of its structure in solution by NMR spectroscopy. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf02908302] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|