1
|
Maroilley T, Flibotte S, Jean F, Rodrigues Alves Barbosa V, Galbraith A, Chida AR, Cotra F, Li X, Oncea L, Edgley M, Moerman D, Tarailo-Graovac M. Genome sequencing of C. elegans balancer strains reveals previously unappreciated complex genomic rearrangements. Genome Res 2023; 33:154-167. [PMID: 36617680 PMCID: PMC9977149 DOI: 10.1101/gr.276988.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Francesca Jean
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Victoria Rodrigues Alves Barbosa
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Andrew Galbraith
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Afiya Razia Chida
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Filip Cotra
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiao Li
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Larisa Oncea
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mark Edgley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
2
|
Dejima K, Hori S, Iwata S, Suehiro Y, Yoshina S, Motohashi T, Mitani S. An Aneuploidy-Free and Structurally Defined Balancer Chromosome Toolkit for Caenorhabditis elegans. Cell Rep 2019; 22:232-241. [PMID: 29298424 DOI: 10.1016/j.celrep.2017.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/30/2017] [Accepted: 12/06/2017] [Indexed: 12/31/2022] Open
Abstract
Balancer chromosomes are critical tools for genetic research. In C. elegans, reciprocal translocations that lead to aneuploidy have been widely used to maintain lethal and sterile mutations in stable stocks. Here, we generated a set of aneuploidy-free and structurally defined crossover suppressors that contain two overlapping inversions using the CRISPR/Cas9 system. The toolkit includes 13 crossover suppressors and covers approximately 63% of all C. elegans coding genes. Together with the classical intrachromosomal crossover suppressors, the system now covers 89% of the coding genes. We also labeled the created balancers with fluorescent and phenotypic markers. We show that the crossover suppressors are better for embryonic analysis compared with translocational balancers. Additionally, we demonstrate an efficient method to generate lethal alleles by targeting essential genes on a chromosome balanced with a crossover suppressor. The toolkit will allow more efficient experiments in which lethal and sterile mutants can be analyzed.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sayaka Hori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Satoru Iwata
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Tomoko Motohashi
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan; Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
| |
Collapse
|
3
|
Iwata S, Yoshina S, Suehiro Y, Hori S, Mitani S. Engineering new balancer chromosomes in C. elegans via CRISPR/Cas9. Sci Rep 2016; 6:33840. [PMID: 27650892 PMCID: PMC5030659 DOI: 10.1038/srep33840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/02/2016] [Indexed: 02/06/2023] Open
Abstract
Balancer chromosomes are convenient tools used to maintain lethal mutations in heterozygotes. We established a method for engineering new balancers in C. elegans by using the CRISPR/Cas9 system in a non-homologous end-joining mutant. Our studies will make it easier for researchers to maintain lethal mutations and should provide a path for the development of a system that generates rearrangements at specific sites of interest to model and analyse the mechanisms of action of genes.
Collapse
Affiliation(s)
- Satoru Iwata
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Sayaka Hori
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
4
|
Jones MR, Lohn Z, Rose AM. Specialized chromosomes and their uses in Caenorhabditis elegans. Methods Cell Biol 2011; 106:23-64. [PMID: 22118273 DOI: 10.1016/b978-0-12-544172-8.00002-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on Caenorhabditis elegans involves the use of a wide range of genetic and molecular tools consisting of chromosomal material captured and modified for specific purposes. These "specialized chromosomes" come in many forms ranging from relatively simple gene deletions to complex rearrangements involving endogenous chromosomes as well as transgenic constructs. In this chapter, we describe the specialized chromosomes that are available in C. elegans, their origins, practical considerations, and methods for generation and evaluation. We will summarize their uses for biological studies, and their contribution to our knowledge about chromosome biology.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
5
|
Genetic analysis of a large autosomal region inCaenorhabditis elegansby the use of a free duplication. Genet Res (Camb) 2009. [DOI: 10.1017/s0016672300027099] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SummaryIn this paper we describe the use of a free duplication,sDp2(I;f), for the recovery, maintenance, and analysis of mutations defining essential genes in the left third of Linkage GroupIofCaenorhabditis elegans. The lethals were induced in a strain of genotype (sDp2) + /dpy-5+unc-13/dpy-5 unc-15+, using either 12 mM ethylmethane sulphonate or 1500 r of gamma radiation. Lethal mutations linked to thedpy-5 unc-13chromosome were recognized by the absence of Dpy-5 Unc-13 individuals amongst the self progeny and were maintained by isolating Unc-13 hermaphrodites. These strains – which have two mutant alleles of the essential gene and a wild-type allele on the duplication – are balanced, since crossing-over does not occur betweensDp2and the normal homologues. Using this sytem we have recovered 58 EMS-induced mutations. These have been characterized with regard to map position and complementation. Twenty-nine of the EMS-induced mutations lie to the left ofdpy-5and define 20 complementation groups; 3 were inseparable fromdpy-5and define 3 complementation groups; 21 were to the right and define 17 complementation groups. Among a set of 29 gamma radiation-induced lethal mutations, 17 appear to be single gene mutations or are very small deletions. We estimate that we have identified from one-sixth to one-half of the essential genes in thesDp2region.
Collapse
|
6
|
Bui YK, Sternberg PW. Caenorhabditis elegans inositol 5-phosphatase homolog negatively regulates inositol 1,4,5-triphosphate signaling in ovulation. Mol Biol Cell 2002; 13:1641-51. [PMID: 12006659 PMCID: PMC111133 DOI: 10.1091/mbc.02-01-0008] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ovulation in Caenorhabditis elegans requires inositol 1,4,5-triphosphate (IP(3)) signaling activated by the epidermal growth factor (EGF)-receptor homolog LET-23. We generated a deletion mutant of a type I 5-phosphatase, ipp-5, and found a novel ovulation phenotype whereby the spermatheca hyperextends to engulf two oocytes per ovulation cycle. The temporal and spatial expression of IPP-5 is consistent with its proposed inhibition of IP(3) signaling in the adult spermatheca. ipp-5 acts downstream of let-23, and interacts with let-23-mediated IP(3) signaling pathway genes. We infer that IPP-5 negatively regulates IP(3) signaling to ensure proper spermathecal contraction.
Collapse
Affiliation(s)
- Yen Kim Bui
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
7
|
Jin SW, Kimble J, Ellis RE. Regulation of cell fate in Caenorhabditis elegans by a novel cytoplasmic polyadenylation element binding protein. Dev Biol 2001; 229:537-53. [PMID: 11150246 DOI: 10.1006/dbio.2000.9993] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fog-1 gene of Caenorhabditis elegans specifies that germ cells differentiate as sperm rather than as oocytes. We cloned fog-1 through a combination of transformation rescue experiments, RNA-mediated inactivation, and mutant analyses. Our results show that fog-1 produces two transcripts, both of which are found in germ cells but not in the soma. Furthermore, two deletion mutants alter these transcripts and are likely to eliminate fog-1 activity. The larger transcript is expressed under the control of sex-determination genes, is necessary for fog-1 activity, and is sufficient to rescue a fog-1 mutant. This transcript encodes a novel member of the CPEB family of RNA-binding proteins. Because CPEB proteins in Xenopus and Drosophila regulate gene expression at the level of translation, we propose that FOG-1 controls germ cell fates by regulating the translation of specific messenger RNAs.
Collapse
Affiliation(s)
- S W Jin
- Department of Biology, University of Michigan, Ann Arbor, Michigan, 48109
| | | | | |
Collapse
|
8
|
Yoon CH, Chang C, Hopper NA, Lesa GM, Sternberg PW. Requirements of multiple domains of SLI-1, a Caenorhabditis elegans homologue of c-Cbl, and an inhibitory tyrosine in LET-23 in regulating vulval differentiation. Mol Biol Cell 2000; 11:4019-31. [PMID: 11071924 PMCID: PMC15054 DOI: 10.1091/mbc.11.11.4019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
SLI-1, a Caenorhabditis elegans homologue of the proto-oncogene product c-Cbl, is a negative regulator of LET-23-mediated vulval differentiation. Lack of SLI-1 activity can compensate for decreased function of the LET-23 epidermal growth factor receptor, the SEM-5 adaptor, but not the LET-60 RAS, suggesting that SLI-1 acts before RAS activation. SLI-1 and c-Cbl comprise an N-terminal region (termed SLI-1:N/Cbl-N, containing a four-helix bundle, an EF hand calcium-binding domain, and a divergent SH2 domain) followed by a RING finger domain and a proline-rich C-terminus. In a transgenic functional assay, the proline-rich C-terminal domain is not essential for sli-1(+) function. A protein lacking the SH2 and RING finger domains has no activity, but a chimeric protein with the SH2 and RING finger domains of SLI-1 replaced by the equivalent domains of c-Cbl has activity. The RING finger domain of c-Cbl has been shown recently to enhance ubiquitination of active RTKs by acting as an E3 ubiquitin-protein ligase. We find that the RING finger domain of SLI-1 is partially dispensable. Further, we identify an inhibitory tyrosine of LET-23 requiring sli-1(+) for its effects: removal of this tyrosine closely mimics the loss of sli-1 but not of another negative regulator, ark-1. Thus, we suggest that this inhibitory tyrosine mediates its effects through SLI-1, which in turn inhibits signaling upstream of LET-60 RAS in a manner not wholly dependent on the ubiquitin-ligase domain.
Collapse
Affiliation(s)
- C H Yoon
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
9
|
Yochem J, Tuck S, Greenwald I, Han M. A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting. Development 1999; 126:597-606. [PMID: 9876188 DOI: 10.1242/dev.126.3.597] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A genetic analysis of a gp330/megalin-related protein, LRP-1, has been undertaken in Caenorhabditis elegans. Consistent with megalin's being essential for development of mice, likely null mutations reveal that this large member of the low density lipoprotein receptor family is also essential for growth and development of this nematode. The mutations confer a striking defect, an inability to shed and degrade all of the old cuticle at each of the larval molts. The mutations also cause an arrest of growth usually at the molt from the third to the fourth larval stage. Genetic mosaic analysis suggests that the lrp-1 gene functions in the major epidermal syncytium hyp7, a polarized epithelium that secretes cuticle from its apical surface. Staining of whole mounts with specific monoclonal antibodies reveals that the protein is expressed on the apical surface of hyp7. Sterol starvation can phenocopy the lrp-1 mutations, suggesting that LRP-1 is a receptor for sterols that must be endocytosed by hyp7. These observations indicate that LRP-1 is related to megalin not only structurally but also functionally.
Collapse
Affiliation(s)
- J Yochem
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Colorado, Boulder, CO 80309 USA.
| | | | | | | |
Collapse
|
10
|
Cali BM, Kuchma SL, Latham J, Anderson P. smg-7 is required for mRNA surveillance in Caenorhabditis elegans. Genetics 1999; 151:605-16. [PMID: 9927455 PMCID: PMC1460488 DOI: 10.1093/genetics/151.2.605] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic mRNAs that contain premature stop codons are degraded more rapidly than their wild-type counterparts, a phenomenon termed "nonsense-mediated mRNA decay" (NMD) or "mRNA surveillance." Functions of six previously described Caenorhabditis elegans genes, smg-1 through smg-6, are required for NMD. Whereas nonsense mutant mRNAs are unstable in smg(+) genetic backgrounds, such mRNAs have normal stability in smg(-) backgrounds. Previous screens for smg mutations have likely not identified all genes involved in NMD, but efforts to identify additional smg genes are limited by the fact that almost 90% of smg mutations identified in genome-wide screens are alleles of smg-1, smg-2, or smg-5. We describe a modified screen for smg mutations that precludes isolating alleles of smg-1, smg-2, and smg-5. Using this screen, we have identified and cloned smg-7, a previously uncharacterized gene that we show is required for NMD. smg-7 is predicted to encode a novel protein that contains an acidic carboxyl terminus and two probable tetratricopeptide repeats. We provide evidence that smg-7 is cotranscribed with the previously characterized gene lin-45 and show that null alleles of smg-7 confer a temperature-sensitive defect in NMD.
Collapse
Affiliation(s)
- B M Cali
- Program in Cell and Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
11
|
Arduengo PM, Appleberry OK, Chuang P, L'Hernault SW. The presenilin protein family member SPE-4 localizes to an ER/Golgi derived organelle and is required for proper cytoplasmic partitioning during Caenorhabditis elegans spermatogenesis. J Cell Sci 1998; 111 ( Pt 24):3645-54. [PMID: 9819355 DOI: 10.1242/jcs.111.24.3645] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Caenorhabditis elegans spermatogenesis, asymmetric partitioning of cellular components principally occurs via ER/Golgi-derived organelles, named fibrous body-membranous organelles. In C. elegans spe-4 mutants, morphogenesis of fibrous body-membranous organelle complexes is defective and spermatogenesis arrests at an unusual cellular stage with four haploid nuclei within a common cytoplasm. The spe-4 encoded integral membrane protein is a diverged member of the presenilin family implicated in early onset Alzheimer's disease. Specific antisera were used to show that SPE-4 resides within the fibrous body-membranous organelles membranes during wild-type spermatogenesis. Several spe-4 recessive mutants were examined for SPE-4 immunoreactivity and a deletion mutant lacks detectable SPE-4 while either of two missense mutants synthesize and localize immunoreactive SPE-4 within their fibrous body-membranous organelles. One of these missense mutations is located within a motif that is common to all presenilins. spe-4 mutants were also examined for other partitioning defects and tubulin was found to accumulate in unusual deposits close to the plasma membrane. These results suggest that wild-type SPE-4 is required for proper localization of macromolecules that are subject to asymmetric partitioning during spermatogenesis.
Collapse
Affiliation(s)
- P M Arduengo
- Graduate Program in Biochemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
12
|
DeVore DL, Horvitz HR, Stern MJ. An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell 1995; 83:611-20. [PMID: 7585964 DOI: 10.1016/0092-8674(95)90101-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sex myoblasts (SMs) in C. elegans hermaphrodites undergo anteriorly directed cell migrations that allow for the proper localization of the egg-laying muscles. These migrations are controlled in part by a signal emanating from gonadal cells that allows the SMs to be attracted to their precise final positions flanking the center of the gonad. Mutations in egl-15 alter the nature of the interaction between the gonad and the SMs, resulting in the posterior displacement of the SMs. Here we show that egl-15 encodes a receptor tyrosine kinase of the fibroblast growth factor receptor (FGFR) subfamily with multiple roles in development. Three genes were identified that behave genetically as activators or mediators of egl-15 activity. One of these genes, sem-5, encodes an adaptor molecule that transduces signals from a variety of receptor tyrosine kinases. Like egl-15 and sem-5, the other two genes may similarly act in FGFR signaling pathways in C. elegans.
Collapse
Affiliation(s)
- D L DeVore
- Yale University School of Medicine, Department of Genetics, New Haven, Connecticut 06520-8005, USA
| | | | | |
Collapse
|
13
|
Strome S, Martin P, Schierenberg E, Paulsen J. Transformation of the germ line into muscle in mes-1 mutant embryos of C. elegans. Development 1995; 121:2961-72. [PMID: 7555722 DOI: 10.1242/dev.121.9.2961] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the maternal-effect sterile gene mes-1 cause the offspring of homozygous mutant mothers to develop into sterile adults. Lineage analysis revealed that mutant offspring are sterile because they fail to form primordial germ cells during embryogenesis. In wild-type embryos, the primordial germ cell P4 is generated via a series of four unequal stem-cell divisions of the zygote. mes-1 embryos display a premature and progressive loss of polarity in these divisions: P0 and P1 undergo apparently normal unequal divisions and cytoplasmic partitioning, but P2 (in some embryos) and P3 (in most embryos) display defects in cleavage asymmetry and fail to partition lineage-specific components to only one daughter cell. As an apparent consequence of these defects, P4 is transformed into a muscle precursor, like its somatic sister cell D, and generates up to 20 body muscle cells instead of germ cells. Our results show that the wild-type mes-1 gene participates in promoting unequal germ-line divisions and asymmetric partitioning events and thus the determination of cell fate in early C. elegans embryos.
Collapse
Affiliation(s)
- S Strome
- Department of Biology, Indiana University, Bloomington 47405, USA
| | | | | | | |
Collapse
|
14
|
Thacker C, Peters K, Srayko M, Rose AM. The bli-4 locus of Caenorhabditis elegans encodes structurally distinct kex2/subtilisin-like endoproteases essential for early development and adult morphology. Genes Dev 1995; 9:956-71. [PMID: 7774813 DOI: 10.1101/gad.9.8.956] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Many secreted proteins are excised from inactive proproteins by cleavage at pairs of basic residues. Recent studies have identified several serine endoproteases that catalyze this cleavage in the secretory pathways of yeast and metazoans. These enzymes belong to the kex2/subtilisin-like family of proprotein convertases. In this paper we describe the molecular characterization of the bli-4 gene from Caenorhabditis elegans, which was shown previously by genetic analysis of lethal mutants to be essential for the normal development of this organism. Sequencing of cDNA and genomic clones has revealed that bli-4 encodes gene products related to the kex2/subtilisin-like family of proprotein convertases. Analysis of bli-4 cDNAs has predicted four protein products, which we have designated blisterases A, B, C, and D. These protein products share a common amino terminus, but differ at the carboxyl termini, and are most likely produced from alternatively spliced transcripts. We have determined the molecular lesions for three bli-4 alleles (h199, h1010, and q508) that result in developmental arrest during late embryogenesis. In each case, the molecular lesions are within exons common to all of the BLI-4 isoforms. The original defining allele of bli-4, e937, is completely viable yet exhibits blistering of the adult cuticle. Molecular analysis of this allele revealed a deletion that removes exon 13, which is unique to blisterase A. No RNA transcript corresponding to exon 13 is detectable in the blistered mutants. These findings suggest that blisterase A is required for the normal function of the adult cuticle.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Thacker
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
15
|
Chapter 7 Genetic Balancers. Methods Cell Biol 1995. [DOI: 10.1016/s0091-679x(08)61387-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
McKim KS, Starr T, Rose AM. Genetic and molecular analysis of the dpy-14 region in Caenorhabditis elegans. MOLECULAR & GENERAL GENETICS : MGG 1992; 233:241-51. [PMID: 1603066 DOI: 10.1007/bf00587585] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Essential genes have been identified in the 1.5 map unit (m.u.) dpy-14-unc-29 region of chromosome 1 in Caenorhabditis elegans. Previous work defined nine genes with visible mutant phenotypes and nine genes with lethal mutant phenotypes. In this study, we have identified an additional 28 essential genes with 97 lethal mutations. The mutations were mapped using eleven duplication breakpoints, eight deficiencies and three-factor recombination experiments. Genes required for the early stages of development were common, with 24 of the 37 essential genes having mutant phenotypes arresting at an early larval stage. Most mutants of a gene have the same time of arrest; only four of the 20 essential genes with multiple alleles have alleles with different phenotypes. From the analysis of complementing alleles of let-389, alleles with the same time-of-arrest phenotype were classified as either hypomorphic or amorphic. Mutants of let-605, let-534 and unc-37 have both uncoordinated and lethal phenotypes, suggesting that these genes are required for the coordination of movement and for viability. The physical and genetic maps in the dpy-14 region were linked by positioning two N2/BO polymorphisms with respect to duplications in the region, and by localizing the right breakpoint of the deficiency hDf8 on the physical map. Using cross-species hybridization to C. briggsae, ten regions of homology have been identified, eight of which are known to be coding regions, based on Northern analysis and/or the isolation of cDNA clones.
Collapse
Affiliation(s)
- K S McKim
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
17
|
Ambros V, Horvitz HR. The lin-14 locus of Caenorhabditis elegans controls the time of expression of specific postembryonic developmental events. Genes Dev 1987; 1:398-414. [PMID: 3678829 DOI: 10.1101/gad.1.4.398] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The lin-14 locus of Caenorhabditis elegans plays an important role in specifying the normal timing and sequence of developmental events in the lateral hypodermal cell lineages. The results of gene dosage, complementation, and temperature-shift experiments indicate that the fates expressed by cells at successive stages of these cell lineages are specified by the level of lin-14 activity and that lin-14 acts at multiple times during development to control stage-specific choices of cell fate. Our observations suggest that during normal development a reduction in the level of lin-14 gene function causes the sequential expression of stage-specific cell fates.
Collapse
Affiliation(s)
- V Ambros
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|