1
|
Choi SY, Lee Y, Yu HE, Cho IJ, Kang M, Lee SY. Sustainable production and degradation of plastics using microbes. Nat Microbiol 2023; 8:2253-2276. [PMID: 38030909 DOI: 10.1038/s41564-023-01529-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Plastics are indispensable in everyday life and industry, but the environmental impact of plastic waste on ecosystems and human health is a huge concern. Microbial biotechnology offers sustainable routes to plastic production and waste management. Bacteria and fungi can produce plastics, as well as their constituent monomers, from renewable biomass, such as crops, agricultural residues, wood and organic waste. Bacteria and fungi can also degrade plastics. We review state-of-the-art microbial technologies for sustainable production and degradation of bio-based plastics and highlight the potential contributions of microorganisms to a circular economy for plastics.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Hye Eun Yu
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea
| | - Minju Kang
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- KAIST Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
- BioProcess Engineering Research Center, KAIST, Daejeon, Republic of Korea.
- BioInformatics Research Center, KAIST, Daejeon, Republic of Korea.
- Graduate School of Engineering Biology, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (mcl-PHAs). Bioengineering (Basel) 2022; 9:bioengineering9050225. [PMID: 35621503 PMCID: PMC9137849 DOI: 10.3390/bioengineering9050225] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/30/2022] Open
Abstract
Synthetic plastics derived from fossil fuels—such as polyethylene, polypropylene, polyvinyl chloride, and polystyrene—are non-degradable. A large amount of plastic waste enters landfills and pollutes the environment. Hence, there is an urgent need to produce biodegradable plastics such as polyhydroxyalkanoates (PHAs). PHAs have garnered increasing interest as replaceable materials to conventional plastics due to their broad applicability in various purposes such as food packaging, agriculture, tissue-engineering scaffolds, and drug delivery. Based on the chain length of 3-hydroxyalkanoate repeat units, there are three types PHAs, i.e., short-chain-length (scl-PHAs, 4 to 5 carbon atoms), medium-chain-length (mcl-PHAs, 6 to 14 carbon atoms), and long-chain-length (lcl-PHAs, more than 14 carbon atoms). Previous reviews discussed the recent developments in scl-PHAs, but there are limited reviews specifically focused on the developments of mcl-PHAs. Hence, this review focused on the mcl-PHA production, using various carbon (organic/inorganic) sources and at different operation modes (continuous, batch, fed-batch, and high-cell density). This review also focused on recent developments on extraction methods of mcl-PHAs (solvent, non-solvent, enzymatic, ultrasound); physical/thermal properties (Mw, Mn, PDI, Tm, Tg, and crystallinity); applications in various fields; and their production at pilot and industrial scales in Asia, Europe, North America, and South America.
Collapse
|
3
|
Muthuraj R, Valerio O, Mekonnen TH. Recent developments in short- and medium-chain- length Polyhydroxyalkanoates: Production, properties, and applications. Int J Biol Macromol 2021; 187:422-440. [PMID: 34324901 DOI: 10.1016/j.ijbiomac.2021.07.143] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Developing renewable resource-based plastics with complete biodegradability and a minimal carbon footprint can open new opportunities to effectively manage the end-of-life plastics waste and achieve a low carbon society. Polyhydroxyalkanoates (PHAs) are biobased and biodegradable thermoplastic polyesters that accumulate in microorganisms (e.g., bacterial, microalgal, and fungal species) as insoluble and inert intracellular inclusion. The PHAs recovery from microorganisms, which typically involves cell lysis, extraction, and purification, provides high molecular weight and purified polyesters that can be compounded and processed using conventional plastics converting equipment. The physio-chemical, thermal, and mechanical properties of the PHAs are comparable to traditional synthetic polymers such as polypropylene and polyethylene. As a result, it has attracted substantial applications interest in packaging, personal care, coatings, agricultural and biomedical uses. However, PHAs have certain performance limitations (e.g. slow crystallization), and substantially more expensive than many other polymers. As such, more research and development is required to enable them for extensive use. This review provides a critical review of the recent progress achieved in PHAs production using different microorganisms, downstream processing, material properties, processing avenues, recycling, aerobic and anaerobic biodegradation, and applications.
Collapse
Affiliation(s)
- Rajendran Muthuraj
- Worn Again Technologies Ltd, Bio City, Pennyfoot St, NG1 1GF Nottingham, Nottinghamshire, United Kingdom
| | - Oscar Valerio
- Departamento de Ingeniería Química, Universidad de Concepción, Concepción, Chile
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, Institute of Polymer Research, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Boontip T, Waditee-Sirisattha R, Honda K, Napathorn SC. Strategies for Poly(3-hydroxybutyrate) Production Using a Cold-Shock Promoter in Escherichia coli. Front Bioeng Biotechnol 2021; 9:666036. [PMID: 34150730 PMCID: PMC8211017 DOI: 10.3389/fbioe.2021.666036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
The present study attempted to increase poly(3-hydroxybutyrate) (PHB) production by improving expression of PHB biosynthesis operon derived from Cupriavidus necator strain A-04 using various types of promoters. The intact PHB biosynthesis operon of C. necator A-04, an alkaline tolerant strain isolated in Thailand with a high degree of 16S rRNA sequence similarity with C. necator H16, was subcloned into pGEX-6P-1, pColdI, pColdTF, pBAD/Thio-TOPO, and pUC19 (native promoter) and transformed into Escherichia coli JM109. While the phaCA–04 gene was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that the cold-shock cspA promoter enhanced phaCA–04 protein expression and the chaperone function of TF play critical roles in increasing soluble phaCA–04 protein. Induction strategies and parameters in flask experiments were optimized to obtain high expression of soluble PhaCA–04 protein with high YP/S and PHB productivity. Soluble phaCA–04 was purified through immobilized metal affinity chromatography (IMAC). The results demonstrated that the soluble phaCA–04 from pColdTF-phaCABA–04 was expressed at a level of as high as 47.4 ± 2.4% of total protein and pColdTF-phaCABA–04 enhanced soluble protein formation to approximately 3.09−4.1 times higher than that from pColdI-phaCABA–04 by both conventional method and short induction method developed in this study. Cultivation in a 5-L fermenter led to PHB production of 89.8 ± 2.3% PHB content, a YP/S value of 0.38 g PHB/g glucose and a productivity of 0.43 g PHB/(L.h) using pColdTF-phaCABA–04. The PHB film exhibited high optical transparency and possessed Mw 5.79 × 105 Da, Mn 1.86 × 105 Da, and PDI 3.11 with normal melting temperature and mechanical properties.
Collapse
Affiliation(s)
- Thanawat Boontip
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, Suita, Japan
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,International Center for Biotechnology, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
6
|
Liu LY, Xie GJ, Xing DF, Liu BF, Ding J, Ren NQ. Biological conversion of methane to polyhydroxyalkanoates: Current advances, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100029. [PMID: 36160923 PMCID: PMC9487992 DOI: 10.1016/j.ese.2020.100029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 05/13/2023]
Abstract
Methane emissions and plastic pollution are critical global challenges. The biological conversion of methane to poly-β-hydroxybutyrate (PHB) not only mitigates methane emissions but also provides biodegradable polymer substitutes for petroleum-based materials used in plastics production. This work provides an early overview of the methane-based PHB advances and discusses challenges and related strategies. Recent advances of PHB, including PHB biosynthetic pathways, methanotrophs, bioreactors, and the performances of PHB materials are introduced. Major challenges of methane-based PHB production are discussed in detail; these include low efficiency of methanotrophs, low gas-liquid mass transfer efficiency, and poor material properties. To overcome these limitations, various approaches are also explored, such as feast-famine regimes, engineered microorganisms, gas-permeable membrane bioreactors, two-phase partitioning bioreactors, poly-β-hydroxybutyrate-co-hydroxyvalerate synthesis, and molecular weight manipulation.
Collapse
|
7
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
8
|
Engineering bacteria for enhanced polyhydroxyalkanoates (PHA) biosynthesis. Synth Syst Biotechnol 2017; 2:192-197. [PMID: 29318199 PMCID: PMC5655382 DOI: 10.1016/j.synbio.2017.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 09/16/2017] [Accepted: 09/16/2017] [Indexed: 11/24/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) have been produced by some bacteria as bioplastics for many years. Yet their commercialization is still on the way. A few issues are related to the difficulty of PHA commercialization: namely, high cost and instabilities on molecular weights (Mw) and structures, thus instability on thermo-mechanical properties. The high cost is the result of complicated bioprocessing associated with sterilization, low conversion of carbon substrates to PHA products, and slow growth of microorganisms as well as difficulty of downstream separation. Future engineering on PHA producing microorganisms should be focused on contamination resistant bacteria especially extremophiles, developments of engineering approaches for the extremophiles, increase on carbon substrates to PHA conversion and controlling Mw of PHA. The concept proof studies could still be conducted on E. coli or Pseudomonas spp. that are easily used for molecular manipulations. In this review, we will use E. coli and halophiles as examples to show how to engineer bacteria for enhanced PHA biosynthesis and for increasing PHA competitiveness.
Collapse
|
9
|
Li D, Lv L, Chen JC, Chen GQ. Controlling microbial PHB synthesis via CRISPRi. Appl Microbiol Biotechnol 2017; 101:5861-5867. [PMID: 28620688 DOI: 10.1007/s00253-017-8374-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/25/2017] [Accepted: 05/28/2017] [Indexed: 12/20/2022]
Abstract
Microbial polyhydroxyalkanoates (PHA) are a family of biopolyesters with properties similar to petroleum plastics such as polyethylene (PE) or polypropylene (PP). Polyhydroxybutyrate (PHB) is the most common PHA known so far. Clustered regularly interspaced short palindromic repeats interference (CRISPRi), a technology recently developed to control gene expression levels in eukaryotic and prokaryotic genomes, was employed to regulate PHB synthase activity influencing PHB synthesis. Recombinant Escherichia coli harboring an operon of three PHB synthesis genes phaCAB cloned from Ralstonia eutropha, was transformed with various single guided RNA (sgRNA with its guide sequence of 20-23 bases) able to bind to various locations of the PHB synthase PhaC, respectively. Depending on the binding location and the number of sgRNA on phaC, CRISPRi was able to control the phaC transcription and thus PhaC activity. It was found that PHB content, molecular weight, and polydispersity were approximately in direct and reverse proportion to the PhaC activity, respectively. The higher the PhaC activity, the more the intracellular PHB accumulation, yet the less the PHB molecular weights and the wider the polydispersity. This study allowed the PHB contents to be controlled in the ranges of 1.47-75.21% cell dry weights, molecular weights from 2 to 6 millions Dalton and polydispersity of 1.2 to 1.43 in 48 h shake flask studies. This result will be very important for future development of ultrahigh molecular weight PHA useful to meet high strength application requirements.
Collapse
Affiliation(s)
- Dan Li
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jin-Chun Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Center for Synthetic and Systems Biology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Center for Nano and Micro-Mechanics, Tsinghua University, Beijing, 100084, China.
- MOE Key Lab for Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Kim YJ, Choi SY, Kim J, Jin KS, Lee SY, Kim KJ. Structure and function of the N-terminal domain of Ralstonia eutropha
polyhydroxyalkanoate synthase, and the proposed structure and mechanisms of the whole enzyme. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600649] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Yeo-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group; Kyungpook National University; Daegu Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Jieun Kim
- School of Life Sciences, KNU Creative BioResearch Group; Kyungpook National University; Daegu Republic of Korea
| | - Kyeong Sik Jin
- Pohang Accelerator Laboratory; Pohang University of Science and Technology; Pohang Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences, KNU Creative BioResearch Group; Kyungpook National University; Daegu Republic of Korea
| |
Collapse
|
11
|
Li T, Ye J, Shen R, Zong Y, Zhao X, Lou C, Chen GQ. Semirational Approach for Ultrahigh Poly(3-hydroxybutyrate) Accumulation in Escherichia coli by Combining One-Step Library Construction and High-Throughput Screening. ACS Synth Biol 2016; 5:1308-1317. [PMID: 27133230 DOI: 10.1021/acssynbio.6b00083] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
As a product of a multistep enzymatic reaction, accumulation of poly(3-hydroxybutyrate) (PHB) in Escherichia coli (E. coli) can be achieved by overexpression of the PHB synthesis pathway from a native producer involving three genes phbC, phbA, and phbB. Pathway optimization by adjusting expression levels of the three genes can influence properties of the final product. Here, we reported a semirational approach for highly efficient PHB pathway optimization in E. coli based on a phbCAB operon cloned from the native producer Ralstonia entropha (R. entropha). Rationally designed ribosomal binding site (RBS) libraries with defined strengths for each of the three genes were constructed based on high or low copy number plasmids in a one-pot reaction by an oligo-linker mediated assembly (OLMA) method. Strains with desired properties were evaluated and selected by three different methodologies, including visual selection, high-throughput screening, and detailed in-depth analysis. Applying this approach, strains accumulating 0%-92% PHB contents in cell dry weight (CDW) were achieved. PHB with various weight-average molecular weights (Mw) of 2.7-6.8 × 106 were also efficiently produced in relatively high contents. These results suggest that the semirational approach combining library design, construction, and proper screening is an efficient way to optimize PHB and other multienzyme pathways.
Collapse
Affiliation(s)
- Teng Li
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianwen Ye
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Shen
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yeqing Zong
- Key
Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuejin Zhao
- Key
Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chunbo Lou
- Key
Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Qiang Chen
- MOE
Key Lab of Bioinformatics, Department of Biological Science and Biotechnology,
School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Center
for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Tsuge T. Fundamental factors determining the molecular weight of polyhydroxyalkanoate during biosynthesis. Polym J 2016. [DOI: 10.1038/pj.2016.78] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Hiroe A, Shiraishi M, Mizuno K, Tsuge T. Behavior of different polyhydroxyalkanoate synthases in response to the ethanol level in Escherichia coli cultures. Polym J 2015. [DOI: 10.1038/pj.2015.53] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J Biotechnol 2014; 180:52-65. [DOI: 10.1016/j.jbiotec.2014.03.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/03/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
|
15
|
Abstract
Environmental concerns have led to the development of biorenewable polymers with the ambition to utilize them at an industrial scale. Poly(lactic acid) and poly(hydroxyalkanoates) are semicrystalline, biorenewable polymers that have been identified as the most promising alternatives to conventional plastics. However, both are inherently susceptible to brittleness and degradation during thermal processing; we discuss several approaches to overcome these problems to create a balance between durability and biodegradability. For example, copolymers and blends can increase ductility and the thermal-processing window. Furthermore, chain modifications (e.g., branching/crosslinking), processing techniques (fiber drawing/annealing), or additives (plasticizers/nucleating agents) can improve mechanical properties and prevent thermal degradation during processing. Finally, we examine the impacts of morphology on end-of-life degradation to complete the picture for the most common renewable polymers.
Collapse
Affiliation(s)
- Amy Tsui
- Department of Chemical Engineering, Stanford University, Stanford, California 94305;, ,
| | - Zachary C. Wright
- Department of Chemical Engineering, Stanford University, Stanford, California 94305;, ,
| | - Curtis W. Frank
- Department of Chemical Engineering, Stanford University, Stanford, California 94305;, ,
| |
Collapse
|
16
|
Influence of pH on the molecular weight of poly-3-hydroxybutyric acid (P3HB) produced by recombinant Escherichia coli. Appl Biochem Biotechnol 2013; 170:1336-47. [PMID: 23666612 DOI: 10.1007/s12010-013-0257-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/21/2013] [Indexed: 10/26/2022]
Abstract
The production of ultrahigh molecular weight poly-3-hydroxybutyric acid (P3HB) from carbohydrates by recombinant Escherichia coli harboring genes from Ralstonia eutropha was evaluated. In shaken-flask experiments, E. coli XL1 Blue harboring plasmid pSK::phaCAB produced P3HB corresponding to 40 and 27% of cell dry weight from glucose and xylose, respectively. Cultures in bioreactor using glucose as the sole carbon source at variable pH values (6.0, 6.5, or 7.0) allowed the production of P3HB with molecular weight varying between 2.0 and 2.5 MDa. These figures are significantly higher than the values often obtained by natural bacterial strains (0.5-1.0 MDa). Contrary to reports of other authors, no influence of pH was observed on the molecular weight of the polymer produced. Using xylose, P3HB with high molecular weight was also produced, indicating the possibility to produce these polymers from lignocellulosic materials.
Collapse
|
17
|
Rearrangement of gene order in the phaCAB operon leads to effective production of ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 2012; 78:3177-84. [PMID: 22344649 DOI: 10.1128/aem.07715-11] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production.
Collapse
|
18
|
Tomizawa S, Hyakutake M, Saito Y, Agus J, Mizuno K, Abe H, Tsuge T. Molecular Weight Change of Polyhydroxyalkanoate (PHA) Caused by the PhaC Subunit of PHA Synthase from Bacillus cereus YB-4 in Recombinant Escherichia coli. Biomacromolecules 2011; 12:2660-6. [DOI: 10.1021/bm2004687] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satoshi Tomizawa
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Manami Hyakutake
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Yuta Saito
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Jumiarti Agus
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Kouhei Mizuno
- Division of Biochemical Engineering, Department of Materials Science and Chemical Engineering, Kitakyushu National College of Technology, 5-20-1 Shii, Kokuraminami-ku, Kitakyushu 802-0985, Japan
| | - Hideki Abe
- Bioplastic Research Team, RIKEN Biomass Engineering Program, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Takeharu Tsuge
- Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
19
|
Penloglou G, Roussos A, Chatzidoukas C, Kiparissides C. A combined metabolic/polymerization kinetic model on the microbial production of poly(3-hydroxybutyrate). N Biotechnol 2010; 27:358-67. [DOI: 10.1016/j.nbt.2010.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/07/2009] [Accepted: 02/02/2010] [Indexed: 11/27/2022]
|
20
|
Enhancement of bacteriophage λ stability using a λQ-S- mutant in the continuous culture of Escherichia coli. Bioprocess Biosyst Eng 2010; 33:1103-7. [PMID: 20499104 DOI: 10.1007/s00449-010-0436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
Abstract
In this study, we used a bacteriophage λQ⁻S⁻ mutant that increased the stability of recombinant Escherichia coli during continuous culture. The operation was conducted in two stages: the first stage was carried out to promote cell growth, and the second stage was performed for product formation. The productivity of recombinant proteins depends on the substrate concentration of the fresh medium supplied to the second stage (S₃) and dilution rate of the second stage (D₂). With the optimal value of S₃ and D₂, the first and second stages were stably maintained for 170 and 80 h, respectively. To further improve this process, a three-stage continuous process was conducted with an additional induction stage between the growth and production stages. Compared with the two-stage operation, the stable production period was extended by 1.7 fold, and the recombinant protein production increased by 1.3 fold.
Collapse
|
21
|
Tomizawa S, Saito Y, Hyakutake M, Nakamura Y, Abe H, Tsuge T. Chain transfer reaction catalyzed by various polyhydroxyalkanoate synthases with poly(ethylene glycol) as an exogenous chain transfer agent. Appl Microbiol Biotechnol 2010; 87:1427-35. [DOI: 10.1007/s00253-010-2601-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/31/2010] [Accepted: 04/04/2010] [Indexed: 11/29/2022]
|
22
|
Nikel PI, de Almeida A, Giordano AM, Pettinari MJ. Redox driven metabolic tuning: carbon source and aeration affect synthesis of poly(3-hydroxybutyrate) in Escherichia coli. Bioeng Bugs 2010; 1:291-5. [PMID: 21327064 DOI: 10.4161/bbug.1.4.12103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 11/19/2022] Open
Abstract
Growth and polymer synthesis were studied in a recombinant E. coli strain carrying phaBAC and phaP of Azotobacter sp. strain FA8 using different carbon sources and oxygen availability conditions. The results obtained with glucose or glycerol were completely different, demonstrating that the metabolic routes leading to the synthesis of the polymer when using glycerol do not respond to environmental conditions such as oxygen availability in the same way as they do when other substrates, such as glucose, are used. When cells were grown in a bioreactor using glucose the amount of polymer accumulated at low aeration was reduced by half when compared to high aeration, while glycerol cultures produced at low aeration almost twice the amount of polymer synthesized at the higher aeration condition. The synthesis of other metabolic products, such as ethanol, lactate, formate and acetate, were also affected by both the carbon source used and aeration conditions. In glucose cultures, lactate and formate production increased in low agitation compared to high agitation, while poly(3-hydroxybutyrate) synthesis decreased. In glycerol cultures, the amount of acids produced also increased when agitation was lowered, but carbon flow was mostly redirected towards ethanol and poly(3-hydroxybutyrate). These results indicated that carbon partitioning differed depending on both carbon source and oxygen availability, and that aeration conditions had different effects on the synthesis of the polymer and other metabolic products when glucose or glycerol were used.
Collapse
Affiliation(s)
- Pablo I Nikel
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
23
|
Wei XX, Shi ZY, Yuan MQ, Chen GQ. Effect of anaerobic promoters on the microaerobic production of polyhydroxybutyrate (PHB) in recombinant Escherichia coli. Appl Microbiol Biotechnol 2009; 82:703-12. [DOI: 10.1007/s00253-008-1816-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/05/2008] [Accepted: 12/07/2008] [Indexed: 11/30/2022]
|
24
|
Ryu HW, Cho KS, Goodrich PR, Park CH. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD using swine wastewater: Effect of supplementing glucose, yeast extract, and inorganic salts. BIOTECHNOL BIOPROC E 2009. [DOI: 10.1007/s12257-008-0072-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Seo JH, Kim CS, Lee SP. Physicochemical Properties of Poly-γ-glutamic Acid Produced by a Novel Bacillus subtilis HA Isolated from Cheonggukjang. Prev Nutr Food Sci 2008. [DOI: 10.3746/jfn.2008.13.4.354] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Helm J, Wendlandt KD, Jechorek M, Stottmeister U. Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture. J Appl Microbiol 2008; 105:1054-61. [DOI: 10.1111/j.1365-2672.2008.03831.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Oh JS, Park HH, Park TH. Temperature management strategy for efficient gene expression in a thermally inducible Escherichia coli/bacteriophage system. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0147-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Biosynthesis of poly-3-hydroxybutyrate with a high molecular weight by methanotroph from methane and methanol. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1003-9953(08)60034-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Oh JS, Choi SS, Yeo JK, Park TH. Construction of various bacteriophage λ mutants for stable and efficient production of recombinant protein in Escherichia coli. Process Biochem 2007. [DOI: 10.1016/j.procbio.2006.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Eicosapentaenoic acid (EPA) biosynthetic gene cluster ofShewanella oneidensis MR-1: Cloning, heterologous expression, and effects of temperature and glucose on the production of EPA inEscherichia coli. BIOTECHNOL BIOPROC E 2006. [DOI: 10.1007/bf02932075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Agus J, Kahar P, Abe H, Doi Y, Tsuge T. Altered expression of polyhydroxyalkanoate synthase gene and its effect on poly[(R)-3-hydroxybutyrate] synthesis in recombinant Escherichia coli. Polym Degrad Stab 2006. [DOI: 10.1016/j.polymdegradstab.2005.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
|
33
|
Song JY, Kim BS. Characteristics of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) production byRalstonia eutropha NCIMB 11599 and ATCC 17699. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Choi GG, Kim HW, Kim YB, Rhee YH. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolyesters produced byAlcaligenes sp. MT-16. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02932291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Oh JS, Cho D, Park TH. Two-stage continuous operation of recombinant Escherichia coli using the bacteriophage λ Q − vector. Bioprocess Biosyst Eng 2005; 28:1-7. [PMID: 16096763 DOI: 10.1007/s00449-005-0418-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Accepted: 03/10/2005] [Indexed: 10/25/2022]
Abstract
A two-stage continuous culture of Escherichia coli in combination with a bacteriophage lambda system was performed in order to overcome the intrinsic plasmid instability that is frequently observed in recombinant fermentation. A phage lambda vector with a Q(-) mutation was used to enhance the expression of the lambda system. The optimal values of the important operational variables such as the substrate concentration, the dilution rate, and the mean residence time on the expression of the cloned gene were determined in both batch and continuous cultures. For all culturing modes, the full induction of the cloned gene was observed 4 h after the temperature shift. In the two stage continuous culture, the overproduction reached their maxima at D=0.25 h(-1) with 1.5 S(0) of the medium supply. The maximum productivity of the total beta-galactosidase was 16.3x10(6) U l(-1) h(-1), which was approximately seven times higher than that in the single-copy lysogenic stage. The recombinant cells were stable in the lysogenic state for more than 260 h, while they were stable for 40 h in the lytic state. The instability that developed rapidly in the second tank is believed to be due to the accumulation of lysis proteins as a result of vector leakage during the operation.
Collapse
Affiliation(s)
- Jeong Seok Oh
- School of Chemical and Biological Engineering, Seoul National University, 56-1, Shilim-Dong, Gwanak-Gu, Seoul, Korea
| | | | | |
Collapse
|
36
|
Enhanced production of recombinant protein inEscherichia coli using silkworm hemolymph. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02931854] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Jung DY, Jung S, Yun JS, Kim JN, Wee YJ, Jang HG, Ryu HW. Influences of cultural medium component on the production of poly(γ-glutamic acid) byBacillus sp. RKY3. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02931844] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Yoon SH, Li C, Lee YM, Lee SH, Kim SH, Choi MS, Seo WT, Yang JK, Kim JY, Kim SW. Production of vanillin from ferulic acid using recombinant strains ofEscherichia coli. BIOTECHNOL BIOPROC E 2005. [DOI: 10.1007/bf02931859] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Effective production and kinetic characterization of ultra-high-molecular-weight poly[(R)-3-hydroxybutyrate] in recombinant Escherichia coli. Polym Degrad Stab 2005. [DOI: 10.1016/j.polymdegradstab.2004.08.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|