1
|
Zhang X, Li Z. Co-PBK: a computational biomonitoring tool for assessing chronic internal exposure to chemicals and metabolites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2167-2180. [PMID: 37982278 DOI: 10.1039/d3em00396e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Toxic chemicals are released into the environment through diverse human activities. An increasing number of chronic diseases are associated with ambient pollution, thus posing a threat to people. Given the high consumption of resources for human biomonitoring, this study proposed coupled physiologically-based kinetic (co-PBK) modeling matrices as a biomonitoring tool for simplifying chronic internal exposure estimates of environmental chemicals and their metabolites using naphthalene (NAP) and its metabolites (i.e., 1-OHN and 2-OHN) as simulation examples. According to the simulation of the steady-state mass among various organs/tissues via the co-PBK modeling matrices, fat had the highest potential bioaccumulation of NAP and its metabolites. With respect to body fluids, 1-OHN and 2-OHN tended to bioaccumulate more in the bile than in the urine. According to the sensitivity analysis, the calculated sensitivity factors for the first-order kinetics-based rate constants imply that due to the biotransformation process, target organs/tissues (e.g., liver and kidneys) would be continuously exposed to more NAP metabolites under chronic exposure. Meanwhile, 1-OHN may be more stably transported to the urine than 2-OHN for further human biomonitoring during long-term internal exposure. According to the case study of simulating population chronic exposure to NAP in Shenzhen, the co-PBK modeling estimated the population exposure to NAP with an intake rate of 8.77 × 10-2 mg d-1 and the aggregated urinary concentration of NAP metabolites of 2.60 μg L-1. Furthermore, the accuracy of the urinary levels between the real-world data and the values simulated by the co-PBK modeling was assessed and the root-mean-square error of c1-OHN,urine was found to be lower than that of c2-OHN,urine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
2
|
Owsianiak M, Hauschild MZ, Posthuma L, Saouter E, Vijver MG, Backhaus T, Douziech M, Schlekat T, Fantke P. Ecotoxicity characterization of chemicals: Global recommendations and implementation in USEtox. CHEMOSPHERE 2023; 310:136807. [PMID: 36228725 DOI: 10.1016/j.chemosphere.2022.136807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Chemicals emitted to the environment affect ecosystem health from local to global scale, and reducing chemical impacts has become an important element of European and global sustainability efforts. The present work advances ecotoxicity characterization of chemicals in life cycle impact assessment by proposing recommendations resulting from international expert workshops and work conducted under the umbrella of the UNEP-SETAC Life Cycle Initiative in the GLAM project (Global guidance on environmental life cycle impact assessment indicators). We include specific recommendations for broadening the assessment scope through proposing to introduce additional environmental compartments beyond freshwater and related ecotoxicity indicators, as well as for adapting the ecotoxicity effect modelling approach to better reflect environmentally relevant exposure levels and including to a larger extent chronic test data. As result, we (1) propose a consistent mathematical framework for calculating freshwater ecotoxicity characterization factors and their underlying fate, exposure and effect parameters; (2) implement the framework into the USEtox scientific consensus model; (3) calculate characterization factors for chemicals reported in an inventory of a life cycle assessment case study on rice production and consumption; and (4) investigate the influence of effect data selection criteria on resulting indicator scores. Our results highlight the need for careful interpretation of life cycle assessment impact scores in light of robustness of underlying species sensitivity distributions. Next steps are to apply the recommended characterization framework in additional case studies, and to adapt it to soil, sediment and the marine environment. Our framework is applicable for evaluating chemicals in life cycle assessment, chemical and environmental footprinting, chemical substitution, risk screening, chemical prioritization, and comparison with environmental sustainability targets.
Collapse
Affiliation(s)
- Mikołaj Owsianiak
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark
| | - Michael Z Hauschild
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| | - Leo Posthuma
- National Institute for Public Health and the Environment, 3720 BA Bilthoven, Netherlands; Department of Environmental Science, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Erwan Saouter
- European Commission, Joint Research Centre, Directorate D - Sustainable Resources, 21027 Ispra, Italy
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, Leiden, Netherlands
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Mélanie Douziech
- Centre of Observations, Impacts, Energy, MINES Paris Tech, PSL University, Sophia Antipolis, France; LCA Research Group, Agroscope, Reckenholzstrasse 191, Zurich, 8046, Switzerland
| | - Tamar Schlekat
- Society of Environmental Toxicology and Chemistry, Pensacola, FL, United States
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Produktionstorvet 424, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Weidner T, Galán-Martín Á, Ryberg MW, Guillén-Gosálbez G. Energy systems modeling and optimization for absolute environmental sustainability: current landscape and opportunities. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Bratec T, Kirchhübel N, Baranovskaya N, Laratte B, Jolliet O, Rikhvanov L, Fantke P. Towards integrating toxicity characterization into environmental studies: case study of bromine in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:19814-19827. [PMID: 31093912 DOI: 10.1007/s11356-019-05244-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Abstract
AbstractPollution from bromine and some of its related compounds is currently unregulated in soil from Russia and other countries, and tools for sound assessment of environmental impacts of bromine contamination are largely missing. Hence, assessing potential implications for humans and ecosystems of bromine soil contamination is urgently needed, which requires the combination of measured soil concentrations from environmental studies and quantified potential toxicity impacts. To address this need, we used data from an experimental study assessing bromine in soils (384 samples) of Tomsk oblast, Russia, starting from measured concentrations obtained by Instrumental Neutron Activation Analysis in an earlier study. From these data, we calculated the bromine mass in soils and used these as starting point to characterize related cumulative impacts on human health and ecosystems in the Tomsk region, using a global scientific consensus model for screening-level comparative toxicity characterization of chemical emissions. Results show that the combination of sampling methodology with toxicity characterization techniques presents a new approach to be used in environmental studies aimed at environmental assessment and analysis of a territory. Our results indicate that it is important to account for substance-specific chemical reaction pathways and transfer processes, as well as to consider region-specific environmental characteristics. Our approach will help complement environmental assessment results with environmental sustainability elements, to consider potential tradeoffs in impacts, related to soil pollution, in support of improved emission and pollution reduction strategies.
Collapse
Affiliation(s)
- Tatiana Bratec
- Research Centre for Environmental Studies and Sustainability, University of Technology of Troyes, CNRS, ICD, 12 Rue Marie Curie CS 42060, F-10004, Troyes Cedex, France.
- Division for Geology, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia.
| | - Nienke Kirchhübel
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Natalia Baranovskaya
- Division for Geology, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia
| | - Bertrand Laratte
- Research Centre for Environmental Studies and Sustainability, University of Technology of Troyes, CNRS, ICD, 12 Rue Marie Curie CS 42060, F-10004, Troyes Cedex, France
- Arts et Métiers ParisTech, I2M, UMR 5295, F-33400, Talence, France
- APESA-Innovation, Pôle Territorial de coopération économique social et environnemental, 23 Rue Hélène Boucher, 40220, Tarnos, France
| | - Olivier Jolliet
- Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48109-2029, USA
| | - Leonid Rikhvanov
- Division for Geology, School of Earth Sciences and Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050, Tomsk, Russia
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
5
|
Terrestrial Ecotoxic Impacts Stemming from Emissions of Cd, Cu, Ni, Pb and Zn from Manure: A Spatially Differentiated Assessment in Europe. SUSTAINABILITY 2018. [DOI: 10.3390/su10114094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Metallic elements present in livestock manure as co-contaminants have the potential to cause terrestrial ecotoxic impacts when the manure is used as fertilizer on agricultural soils. The magnitude of this impact at country scale in Europe has, to date, not been quantified. Here, we address this knowledge gap by combining recently developed national emission inventories of Cd, Cu, Ni, Pb and Zn releases from manure with metal- and soil-specific comparative toxicity potentials (CTP) calculated for cropland grid cells at 1 × 1 km resolution for 33 European countries. The CTPs account for speciation in environmental fate, exposure and effects, including reduction in the solid-phase reactivity of a metal when it is associated with organic carbon present in the manure. Given the scarcity of inventory data at sub-national level, it was assumed that each unit area of cropland within a given country has the same probability to receive manure. The resulting CTPs span a range of several orders of magnitude reflecting the influence of soil type and properties on the speciation patterns and resulting CTP values. However, when combined with the use of manure in each European country, the resulting national impact scores were mainly explained by the total mass input of metal released to soil rather than by geographic variability in the CTP values. Simple linear regression is then sufficient to predict terrestrial ecotoxic impacts from input mass. Although some changes in ranking of metals and countries were observed, both mass- and impact-based comparisons between metals agreed that Zn and Cu are dominant contributors to total impacts, and that top contributing countries were those emitting the largest amounts of metals. Our findings show that spatially differentiated impact assessment is important for ranking of countries when differences in national emission inventories between countries are smaller than a factor of two (Ni), a factor of three (Cd, Cu, Zn) or a factor of four (Pb). In other cases, ranking of countries can be based on national emission inventories.
Collapse
|
6
|
Wannaz C, Fantke P, Jolliet O. Multiscale Spatial Modeling of Human Exposure from Local Sources to Global Intake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:701-711. [PMID: 29249158 DOI: 10.1021/acs.est.7b05099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Exposure studies, used in human health risk and impact assessments of chemicals, are largely performed locally or regionally. It is usually not known how global impacts resulting from exposure to point source emissions compare to local impacts. To address this problem, we introduce Pangea, an innovative multiscale, spatial multimedia fate and exposure assessment model. We study local to global population exposure associated with emissions from 126 point sources matching locations of waste-to-energy plants across France. Results for three chemicals with distinct physicochemical properties are expressed as the evolution of the population intake fraction through inhalation and ingestion as a function of the distance from sources. For substances with atmospheric half-lives longer than a week, less than 20% of the global population intake through inhalation (median of 126 emission scenarios) can occur within a 100 km radius from the source. This suggests that, by neglecting distant low-level exposure, local assessments might only account for fractions of global cumulative intakes. We also study ∼10 000 emission locations covering France more densely to determine per chemical and exposure route which locations minimize global intakes. Maps of global intake fractions associated with each emission location show clear patterns associated with population and agriculture production densities.
Collapse
Affiliation(s)
- Cedric Wannaz
- Department of Environmental Health Sciences, School of Public Health (SPH), University of Michigan , 6622 SPH Tower, 1415 Washington Heights, Ann Arbor, Michigan 48109-2029, United States
| | - Peter Fantke
- Quantitative Sustainability Assessment Division, Department of Management Engineering, Technical University of Denmark , Bygningstorvet 116, 2800 Kongens Lyngby, Denmark
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health (SPH), University of Michigan , 6622 SPH Tower, 1415 Washington Heights, Ann Arbor, Michigan 48109-2029, United States
| |
Collapse
|
7
|
Guinée JB, Heijungs R, Vijver MG, Peijnenburg WJGM. Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. NATURE NANOTECHNOLOGY 2017; 12:727-733. [PMID: 28775351 DOI: 10.1038/nnano.2017.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/09/2017] [Indexed: 05/23/2023]
Abstract
Although technological and environmental benefits are important stimuli for nanotechnology development, these technologies have been contested from an environmental point of view. The steady growth of applications of engineered nanomaterials has heated up the debate on quantifying the environmental repercussions. The two main scientific methods to address these environmental repercussions are risk assessment and life-cycle assessment. The strengths and weaknesses of each of these methods, and the relation between them, have been a topic of debate in the world of traditional chemistry for over two decades. Here we review recent developments in this debate in general and for the emerging field of nanomaterials specifically. We discuss the pros and cons of four schools of thought for combining and integrating risk assessment and life-cycle assessment and conclude with a plea for action.
Collapse
Affiliation(s)
- Jeroen B Guinée
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
| | - Reinout Heijungs
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
- Department of Econometrics and Operations Research, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Martina G Vijver
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
8
|
Mitterpach J, Hroncová E, Ladomerský J, Balco K. Environmental analysis of waste foundry sand via life cycle assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3153-3162. [PMID: 27864735 DOI: 10.1007/s11356-016-8085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
The aim of this manuscript is to provide an environmental assessment of the creation and use of waste foundry sand (WFS) via an LCA in a foundry for grey cast iron. A life cycle impact assessment was carried out using SimaPro 8. This environmental analysis assessed the impact of creating waste foundry sand (WFS) in a foundry, Hronec (Slovakia, Central Europe). According to BREF, this foundry is classified as an iron foundry with a production capacity greater than 20 t/day with processes typical for grey cast iron foundries. Molten metal is poured into single-use sand moulds. We identified those factors influencing the creation and use of WFS which significantly affect the quality of the environment. The use of WFS from the production of cores in regenerated moulding mixtures with installed circuits brings marked minimisation of material and energy inputs in the processes of creating WFS and it positively influences the consumption of resources and the quality of the ecosystem. Space for lessening the impact of WFS processes upon the consumption of resources and ecosystem quality is mainly found in recycling WFS in the building sector. In the next step, it is necessary to thoroughly verify the eco-toxicological properties of not only the created WFS and other foundry waste, but mainly the building products for which this waste is used. In terms of transportation, it is important that waste is recycled at local level. The processes of creating WFS have a marked influence upon all the selected waste categories (consumption of resources, ecosystem quality, human health). By minimising material inputs into processes and the effective adjustment of production technology, a foundry can significantly lessen the impacts of processes for creating WFS upon the environment.
Collapse
Affiliation(s)
- Jozef Mitterpach
- Department of Environmental Engineering, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, T. G. Masaryka 24, 960 53, Zvolen, Slovakia
| | - Emília Hroncová
- Department of Environmental Management, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia.
| | - Juraj Ladomerský
- Department of Environmental Management, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Karol Balco
- ZLH Plus a.s, Zlievarenská 533, 976 45, Hronec, Slovakia
| |
Collapse
|
9
|
Wegener Sleeswijk A, Heijungs R. GLOBOX: A spatially differentiated global fate, intake and effect model for toxicity assessment in LCA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:2817-32. [PMID: 20394965 DOI: 10.1016/j.scitotenv.2010.02.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 01/09/2010] [Accepted: 02/26/2010] [Indexed: 05/17/2023]
Abstract
GLOBOX is a model for the calculation of spatially differentiated LCA toxicity characterisation factors on a global scale. It can also be used for human and environmental risk assessment. The GLOBOX model contains equations for the calculation of fate, intake and effect factors, and equations for the calculation of LCA characterisation factors for human toxicity and ecotoxicity. The model is differentiated on the level of 239 countries/territories and 50 seas/oceans. Each region has its own set of homogeneous compartments, and the regions are interconnected by atmospheric and aquatic flows. Multimedia transport and degradation calculations are largely based on the EUSES 2.0 multimedia model, and are supplemented by specific equations to account for the advective air and water transport between different countries and/or seas. Metal-specific equations are added to account for speciation in fresh and marine surface water. Distribution parameters for multimedia transport equations are differentiated per country or sea with respect to geographic features, hydrology, and climate. The model has been tested with nitrobenzene as a test chemical, for emissions to all countries in the world. Spatially differentiated characterisation factors turn out to show wide ranges of variation between countries, especially for releases to inland water and soil compartments. Geographic position, distribution of lakes and rivers and variations in environmental temperature and rain rate are decisive parameters for a number of different characterisation factors. Population density and dietary intake play central roles in the variation of characterisation factors for human toxicity. Among the countries that show substantial deviations from average values of the characterisation factors are not only small and remote islands, but also countries with a significant economic production rate, as indicated by their GDPs. It is concluded that spatial differentiation between countries is an important step forward with respect to the improvement of LCA toxicity characterisation factors.
Collapse
Affiliation(s)
- Anneke Wegener Sleeswijk
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| | | |
Collapse
|
10
|
Levasseur A, Lesage P, Margni M, Deschênes L, Samson R. Considering time in LCA: dynamic LCA and its application to global warming impact assessments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:3169-3174. [PMID: 20302334 DOI: 10.1021/es9030003] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The lack of temporal information is an important limitation of life cycle assessment (LCA). A dynamic LCA approach is proposed to improve the accuracy of LCA by addressing the inconsistency of temporal assessment. This approach consists of first computing a dynamic life cycle inventory (LCI), considering the temporal profile of emissions. Then, time-dependent characterization factors are calculated to assess the dynamic LCI in real-time impact scores for any given time horizon. Although generally applicable to any impact category, this approach is developed here for global warming, based on the radiative forcing concept. This case study demonstrates that the use of global warming potentials for a given time horizon to characterize greenhouse gas emissions leads to an inconsistency between the time frame chosen for the analysis and the time period covered by the LCA results. Dynamic LCA is applied to the US EPA LCA on renewable fuels, which compares the life cycle greenhouse gas emissions of different biofuels with fossil fuels including land-use change emissions. The comparison of the results obtained with both traditional and dynamic LCA approaches shows that the difference can be important enough to change the conclusions on whether or not a biofuel meets some given global warming reduction targets.
Collapse
Affiliation(s)
- Annie Levasseur
- CIRAIG, Department of Chemical Engineering, Ecole Polytechnique de Montreal, P.O. Box 6079, Succ. Centre-ville, Montreal, Quebec H3C3A7, Canada.
| | | | | | | | | |
Collapse
|
11
|
von Waldow H, Scheringer M, Hungerbühler K. Modelled environmental exposure to persistent organic chemicals is independent of the time course of emissions: Proof and significance for chemical exposure assessments. Ecol Modell 2008. [DOI: 10.1016/j.ecolmodel.2008.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Rosenbaum RK, Margni M, Jolliet O. A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. ENVIRONMENT INTERNATIONAL 2007; 33:624-34. [PMID: 17350097 DOI: 10.1016/j.envint.2007.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2006] [Revised: 12/14/2006] [Accepted: 01/11/2007] [Indexed: 05/14/2023]
Abstract
When assessing human health or ecosystem impacts of chemicals several calculation steps need to be addressed. Matrix algebra solving techniques are a useful approach to structure and solve the system of mass balance equations assessing chemical fate in environmental multimedia models. We suggest expanding this matrix approach towards a framework which includes the exposure, effect, and damage assessment for human health and ecosystems, also applicable to spatial modeling. Special emphasis is laid upon interpretation of the physical meaning of different elements within the matrices. The proposed framework provides several advantages such as simplified updating or extending of models to new impact pathways, possibility of covering various models within the same framework and transparency. Interpretation of intermediate and final results is facilitated, e.g., allowing for direct identification of dominating exposure pathways. Model comparability and evaluation is well supported, as the four matrices contain all intermediate results in a clear and interpretable way, independent from parameters, such as amount and place of emission. Multidisciplinary work is strongly facilitated enabling the linkage of different models from various disciplines together, since each of its modules defines a clear interface of intermediate results. This framework was reviewed by an independent expert panel within a UNEP/SETAC workshop, and adopted as starting-point for new advances in modeling environmental toxic releases within the UNEP/SETAC Life Cycle Initiative.
Collapse
Affiliation(s)
- Ralph K Rosenbaum
- Institute of Environmental Science and Technology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | | | | |
Collapse
|
13
|
Gunasekera M, Edwards D. Assessing the inherent atmospheric environmental friendliness of chemical process routes: An unsteady state distribution approach for a catastrophic release. Comput Chem Eng 2006. [DOI: 10.1016/j.compchemeng.2005.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Sleeswijk AW. General prevention and risk minimization in LCA: a combined approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2003; 10:69-77. [PMID: 12635961 DOI: 10.1065/espr2001.09.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Methods for life cycle assessment of products (LCA) are most often based on the general prevention principle, as opposed to the risk minimization principle. Here, the desirability and feasibility of a combined approach are discussed, along with the conditions for elaboration in the framework of LCA methodology, and the consequences for LCA practice. A combined approach provides a separate assessment of above and below threshold pollution, offering the possibility to combat above threshold impacts with priority. Spatial differentiation in fate, exposure, and effect modelling is identified to play a central role in the implementation. The collection of region-specific data turns out to be the most elaborate requirement for the implementation in both methodology and practice. A methodological framework for the construction of characterization factors is provided. Along with spatial differentiation of existing parameters, two newly introduced spatial parameters play a key role: the sensitivity factor and the threshold factor. The practicability of the proposed procedure is illustrated by an example of its application. Providing a reasonable data availability, the development of separate LCA characterization factors for the respective assessment of pollution levels above and below environmental threshold values seems to be a feasible task that may add to LCA credibility.
Collapse
Affiliation(s)
- Anneke Wegener Sleeswijk
- Centre of Environmental Science, Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
15
|
Seager TP, Theis TL. Exergetic pollution potential: Estimating the revocability of chemical pollution. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1164-0235(02)00066-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Abstract
A chemical's ability to persist in the environment is an important criterion in determining whether concern is warranted. Screening is commonly conducted based on the maximum degradation half-life of the chemical in any given medium (air, water, soil and sediment), or in terms of model-based estimates of the chemical's overall persistence (half-life or residence time) in the environment. In practice, however, both approaches are hindered by the limited availability of degradation data. Straightforward guidelines are therefore proposed in this paper to help predetermine which half-lives are likely to be pertinent, irrespective of the screening approach adopted. The guidelines are based on partitioning coefficients (Henry's Law constant and the octanol-water partitioning coefficient). The values selected for use in the guidelines result in a quantifiable trade-off between data acquisition requirements and uncertainty. Initial screening can be performed with whatever data is readily available. Overall persistence predictions will be conservative. False-negatives are not generated. The guideline values can then be adjusted iteratively to facilitate step-wise or tiered screening. Using this iterative approach in national and international screening initiatives will result in significant time and money savings.
Collapse
Affiliation(s)
- D W Pennington
- ORISE, Systems Analysis Branch, NRMRL, US EPA Cincinnati, OH 45220, USA.
| |
Collapse
|
17
|
Hertwich EG. Fugacity superposition: a new approach to dynamic multimedia fate modeling. CHEMOSPHERE 2001; 44:843-853. [PMID: 11482677 DOI: 10.1016/s0045-6535(00)00517-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fugacities, concentrations, or inventories of pollutants in environmental compartments as determined by multimedia environmental fate models of the Mackay type can be superimposed on each other. This is true for both steady-state (level III) and dynamic (level IV) models. Any problem in multimedia fate models with linear, time-invariant transfer and transformation coefficients can be solved through a superposition of a set of n independent solutions to a set of coupled, homogeneous first-order differential equations, where n is the number of compartments in the model. For initial condition problems in dynamic models, the initial inventories can be separated, e.g. by a compartment. The solution is obtained by adding the single-compartment solutions. For time-varying emissions, a convolution integral is used to superimpose solutions. The advantage of this approach is that the differential equations have to be solved only once. No numeric integration is required. Alternatively, the dynamic model can be simplified to algebraic equations using the Laplace transform. For time-varying emissions, the Laplace transform of the model equations is simply multiplied with the Laplace transform of the emission profile. It is also shown that the time-integrated inventories of the initial conditions problems are the same as the inventories in the steady-state problem. This implies that important properties of pollutants such as potential dose, persistence, and characteristic travel distance can be derived from the steady state.
Collapse
Affiliation(s)
- E G Hertwich
- Industrial Ecology Programme and Institute for Product Design, Norwegian University of Science and Technology, Trondheim.
| |
Collapse
|
18
|
Huijbregts MA, Guinée JB, Reijnders L. Priority assessment of toxic substances in life cycle assessment. III: Export of potential impact over time and space. CHEMOSPHERE 2001; 44:59-65. [PMID: 11419760 DOI: 10.1016/s0045-6535(00)00349-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Toxicity potentials are scaling factors used in life cycle assessment (LCA) indicating their relative importance in terms of potential toxic impacts. This paper presents the results of an uncertainty assessment of toxicity potentials for 181 substances that were calculated with the global nested multi-media fate, exposure and effects model USES-LCA. The variance in toxicity potentials resulting from choices in the modelling procedure was quantified by means of scenario analysis. A first scenario analysis showed to what extent potential impacts in the relatively short term are obscured by the inclusion of impacts on the very long term. Toxicity potentials representing potential impacts over time horizons of 20, 100 and 500 years were compared with toxicity potentials representing potential impacts over an infinite time horizon. Time horizon dependent differences up to 6.5 orders of magnitude were found for metal toxicity potentials, while for toxicity potentials of organic substances under study, differences remain within 0.5 orders of magnitude. The second scenario analysis addressed to what extent potential impacts on the continental scale are obscured by the inclusion of impacts on the global scale. Exclusion of potential impacts on the global scale changed the toxicity potentials of metals and volatile persistent halogenated organics up to 2.3 orders of magnitude. These scenario analyses also provide the basis for determining exports to future generations and outside the emission area.
Collapse
Affiliation(s)
- M A Huijbregts
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
19
|
|