1
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Salafutdinov II, Gatina DZ, Markelova MI, Garanina EE, Malanin SY, Gazizov IM, Izmailov AA, Rizvanov AA, Islamov RR, Palotás A, Safiullov ZZ. A Biosafety Study of Human Umbilical Cord Blood Mononuclear Cells Transduced with Adenoviral Vector Carrying Human Vascular Endothelial Growth Factor cDNA In Vitro. Biomedicines 2023; 11:2020. [PMID: 37509661 PMCID: PMC10377014 DOI: 10.3390/biomedicines11072020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The biosafety of gene therapy remains a crucial issue for both the direct and cell-mediated delivery of recombinant cDNA encoding biologically active molecules for the pathogenetic correction of congenital or acquired disorders. The diversity of vector systems and cell carriers for the delivery of therapeutic genes revealed the difficulty of developing and implementing a safe and effective drug containing artificial genetic material for the treatment of human diseases in practical medicine. Therefore, in this study we assessed changes in the transcriptome and secretome of umbilical cord blood mononuclear cells (UCB-MCs) genetically modified using adenoviral vector (Ad5) carrying cDNA encoding human vascular endothelial growth factor (VEGF165) or reporter green fluorescent protein (GFP). A preliminary analysis of UCB-MCs transduced with Ad5-VEGF165 and Ad5-GFP with MOI of 10 showed efficient transgene expression in gene-modified UCB-MCs at mRNA and protein levels. The whole transcriptome sequencing of native UCB-MCs, UCB-MC+Ad5-VEGF165, and UCB-MC+Ad5-GFP demonstrated individual sample variability rather than the effect of Ad5 or the expression of recombinant vegf165 on UCB-MC transcriptomes. A multiplex secretome analysis indicated that neither the transduction of UCB-MCs with Ad5-GFP nor with Ad5-VEGF165 affects the secretion of the studied cytokines, chemokines, and growth factors by gene-modified cells. Here, we show that UCB-MCs transduced with Ad5 carrying cDNA encoding human VEGF165 efficiently express transgenes and preserve transcriptome and secretome patterns. This data demonstrates the biosafety of using UCB-MCs as cell carriers of therapeutic genes.
Collapse
Affiliation(s)
- Ilnur I Salafutdinov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Dilara Z Gatina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Maria I Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Sergey Yu Malanin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Ilnaz M Gazizov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Andrei A Izmailov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Rustem R Islamov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| | - András Palotás
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Asklepios-Med (Private Medical Practice and Research Center), H-6722 Szeged, Hungary
- Tokaj-Hegyalja University, H-3910 Tokaj, Hungary
| | - Zufar Z Safiullov
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan 420012, Russia
| |
Collapse
|
3
|
Smirnov VA, Radaev SM, Morozova YV, Ryabov SI, Yadgarov MY, Bazanovich SA, Lvov IS, Talypov AE, Grin' AA. Systemic Administration of Allogeneic Cord Blood Mononuclear Cells in Adults with Severe Acute Contusion Spinal Cord Injury: Phase I/IIa Pilot Clinical Study - Safety and Primary Efficacy Evaluation. World Neurosurg 2022; 161:e319-e338. [PMID: 35134580 DOI: 10.1016/j.wneu.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Current Phase I part of SUBSCI I/IIa study was focused on safety and primary efficacy of multiple systemic infusions of allogeneic unrelated human umbilical cord blood mononuclear cells in patients with severe acute spinal cord contusion having severe neurological deficit. The primary endpoint was safety. The secondary endpoint was the fact of restoration of motor and sensory function in lower limbs within 1-year period. METHODS Ten subjects with acute contusion SCI and ASIA A/B deficit were enrolled into Phase I part. Subjects were treated with 4 infusions of group- and rhesus-matched cord blood samples following primary surgery within 3 days post-SCI. All patients were followed-up for 12 months post-SCI. Safety was assessed using adverse events classification depending on severity and relation to cell therapy. Primary efficacy was assessed using dynamics of deficit (ASIA scale). RESULTS The overall number of AEs reached 419 in 10 subjects. Only 2 of them were estimated as possibly related to cell therapy, other 417 were definitely unrelated. Both AEs were mild and clinically insignificant. No signs of immunization were found in participants. Analysis of clinical outcomes also demonstrated that cell therapy promotes significant functional restoration of motor function. CONCLUSIONS Obtained data suggest that systemic administration of allogenic, non-HLA matched HUCB cells is safe and demonstrates primary efficacy in adults with severe acute contusion SCI and ASIA A/B deficit.
Collapse
Affiliation(s)
- Vladimir A Smirnov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation.
| | - Sergey M Radaev
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Yana V Morozova
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation; Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Sergey I Ryabov
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Mikhail Ya Yadgarov
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Sergey A Bazanovich
- Laboratory of Stem Cells, National Medical Institute of Cardiology, Moscow, Russian Federation
| | - Ivan S Lvov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Alexander E Talypov
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| | - Andrew A Grin'
- Department of Neurosurgery, N.V. Sklifosovsky Research Institute of Emergency Care, Moscow, Russian Federation
| |
Collapse
|
4
|
Srivastava AK, Prabhakara KS, Kota DJ, Bedi SS, Triolo F, Brown KS, Skiles ML, Brown HL, Cox CS, Olson SD. Human umbilical cord blood cells restore vascular integrity in injured rat brain and modulate inflammation in vitro. Regen Med 2019; 14:295-307. [PMID: 31074319 DOI: 10.2217/rme-2018-0106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Traumatic brain injury is a complex condition consisting of a mechanical injury with neurovascular disruption and inflammation with limited clinical interventions available. A growing number of studies report systemic delivery of human umbilical cord blood (HUCB) as a therapy for neural injuries. Materials & methods: HUCB cells from five donors were tested to improve blood-brain barrier integrity in a traumatic brain injury rat model at a dose of 2.5 × 107 cells/kg at 24 or 72 h postinjury and for immunomodulatory activity in vitro. Results & Conclusion: We observed that cells delivered 72 h postinjury significantly restored blood-brain barrier integrity. HUCB cells reduced the amount of TNF-α and IFN-γ released by activated primary rat splenocytes, which correlated with the expression of COX2 and IDO1.
Collapse
Affiliation(s)
- Amit K Srivastava
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Karthik S Prabhakara
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Daniel J Kota
- Emory Personalized Immunotherapy Core Labs, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Supinder S Bedi
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Fabio Triolo
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | | | | | | | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Sciences Center at Houston, Houston, TX, 77030, USA
| |
Collapse
|
5
|
Liska MG, Dela Peña I. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury. Brain Circ 2017; 3:143-151. [PMID: 30276316 PMCID: PMC6057694 DOI: 10.4103/bc.bc_19_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB) cells with granulocyte-colony stimulating factor (G-CSF) in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors’ experiences.
Collapse
Affiliation(s)
- Michael G Liska
- Center of Excellence for Aging and Brain Repair, Tampa, FL 33612, USA
| | - Ike Dela Peña
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, College of Pharmacy, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
6
|
Ehrhart J, Darlington D, Kuzmin-Nichols N, Sanberg CD, Sawmiller DR, Sanberg PR, Tan J. Biodistribution of Infused Human Umbilical Cord Blood Cells in Alzheimer's Disease-Like Murine Model. Cell Transplant 2015; 25:195-9. [PMID: 26414627 PMCID: PMC5822723 DOI: 10.3727/096368915x689604] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human umbilical cord blood cells (HUCBCs), a prolific source of non-embryonic or adult stem cells, have emerged as effective and relatively safe immunomodulators and neuroprotectors, reducing behavioral impairment in animal models of Alzheimer's disease (AD), Parkinson's disease, amyotrophic lateral sclerosis, traumatic brain injury, spinal cord injury, and stroke. In this report, we followed the bioavailability of HUCBCs in AD-like transgenic PSAPP mice and nontransgenic Sprague-Dawley rats. HUCBCs were injected into tail veins of mice or rats at a single dose of 1 × 10(6) or 2.2 × 10(6) cells, respectively, prior to harvesting of tissues at 24 h, 7 days, and 30 days after injection. For determination of HUCBC distribution, tissues from both species were subjected to total DNA isolation and polymerase chain reaction (PCR) amplification of the gene for human glycerol-3-phosphate dehydrogenase. Our results show a relatively similar biodistribution and retention of HUCBCs in both mouse and rat organs. HUCBCs were broadly detected both in the brain and several peripheral organs, including the liver, kidney, and bone marrow, of both species, starting within 7 days and continuing up to 30 days posttransplantation. No HUCBCs were recovered in the peripheral circulation, even at 24 h posttransplantation. Therefore, HUCBCs reach several tissues including the brain following a single intravenous treatment, suggesting that this route can be a viable method of administration of these cells for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Donna Darlington
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | | | - Darrell R. Sawmiller
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Paul R. Sanberg
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jun Tan
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Department of Psychiatry and Behavioral Neurosciences, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
De La Peña I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV. G-CSF as an adjunctive therapy with umbilical cord blood cell transplantation for traumatic brain injury. Cell Transplant 2015; 24:447-57. [PMID: 25646620 DOI: 10.3727/096368915x686913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI), a major contributor to deaths and permanent disability worldwide, has been recently described as a progressive cell death process rather than an acute event. TBI pathophysiology is complicated and can be distinguished by the initial primary injury and the subsequent secondary injury that ensues days after the trauma. Therapeutic opportunities for TBI remain very limited with patients subjected to surgery or rehabilitation therapy. The efficacy of stem cell-based interventions, as well as neuroprotective agents in other neurological disorders of which pathologies overlap with TBI, indicates their potential as alternative TBI treatments. Furthermore, their therapeutic limitations may be augmented when combination therapy is pursued instead of using a single agent. Indeed, we demonstrated remarkable combined efficacy of human umbilical cord blood (hUCB) cell therapy and granulocyte-colony-stimulating factor (G-CSF) treatment in TBI models, providing essential evidence for the translation of this approach to treat TBI. Further studies are warranted to determine the mechanisms underlying therapeutic benefits exerted by hUCB + G-CSF in order to enhance its safety and efficacy in the clinic.
Collapse
Affiliation(s)
- Ike De La Peña
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | |
Collapse
|
8
|
Ning G, Tang L, Wu Q, Li Y, Li Y, Zhang C, Feng S. Human umbilical cord blood stem cells for spinal cord injury: early transplantation results in better local angiogenesis. Regen Med 2014; 8:271-81. [PMID: 23627822 DOI: 10.2217/rme.13.26] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM We aim to explore the repair mechanism after the transplantation of CD34(+) human umbilical cord blood cells (HUCBCs) in traumatic spinal cord injury (SCI) in rats. MATERIALS & METHODS Wistar rats with SCI were randomly divided into three groups: DMEM injection (group A); CD34(+) HUCBC transplantation on the first day after injury (group B); and CD34(+) HUCBC transplantation on the sixth day after injury (group C). The Basso, Beattie and Bresnahan scores were used to evaluate motor behavior. At the injured site, the infarct size, blood vessel density, and survival and neural differentiation of transplanted cells were analyzed. RESULTS It was found that the Basso, Beattie and Bresnahan score in group B was significantly higher than other groups (p < 0.05), and the infarct size and blood vessel density at the injured site were significantly different (p < 0.01). However, the transplanted cells survived at least 3 weeks at the injured site, but did not differentiate into neural cells. CONCLUSION These results suggested transplantation of CD34(+) HUCBCs during the acute phase could promote the functional recovery better than during the subacute phase after SCI by raising blood vessel density, suggesting the possible clinical application for the treatment of spinal injury.
Collapse
Affiliation(s)
- Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin Heping District Anshan Road 154, Tianjin 300052, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Yang Z, Chen P, Yu H, Luo W, Pi M, Wu Y, Wang L, Yang F, Gou Y. Combinatorial effects of conception and governor vessel electroacupuncture and human umbilical cord blood-derived mesenchymal stem cells on pathomorphologic lesion and cellular apoptosis in rats with cerebral ischemia/reperfusion. J TRADIT CHIN MED 2013; 33:779-86. [DOI: 10.1016/s0254-6272(14)60012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Naghdi M, Tiraihi T, Mesbah-Namin SA, Arabkharadmand J, Kazemi H, Taheri T. Improvement of Contused Spinal Cord in Rats by Cholinergic-like Neuron Therapy. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:127-35. [PMID: 23682324 PMCID: PMC3652499 DOI: 10.5812/ircmj.7653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/08/2013] [Indexed: 12/28/2022]
Abstract
Background Disability in spinal cord injury is an important medical problem, and cell transplantation is considered as an option for the treatment. Objectives The purpose of this study is to use bone marrow stromal cells (BMSCs) derived cholinergic neuron-like cells (CNL) in order to ameliorate the contusion model of spinal cord injury in rats. Materials and Methods The CNLs were produced by pre inducing BMSCs with β-mercaptoethanol (BME) followed by inducing with nerve growth factor (NGF). The cells were immunoreactive to neurofilament 200, NeuN, synaptophysin, synapsin, microtubule associated protein-2 and choline acetyl transferase (ChAT). The CNL were transplanted in contused rats (CR), which were sacrificed after 12 weeks. Results The results showed that BBB test showed an improvement in the CR, while the quantitative analysis showed that the improvement rate was higher in the rats treated with CNL than those treated with BMSCs only or the untreated animals, similar results were noticed in the improvement index. Immunohistochemical analysis of the tissue section prepared from the CR showed that the transplanted cells were engrafted and integrated in the traumatized spinal cord. The morphometric analysis showed that the volume density of the cavity in the CNL treated rats was significantly lower than that of the untreated ones, while the spinal tissue regeneration index was significantly higher. Conclusions The conclusion of the study is that CNL can improve the injured spinal cord.
Collapse
Affiliation(s)
- Majid Naghdi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | - Taki Tiraihi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University; Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, IR Iran
- Corresponding author: Taki Tiraihi, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, P.O: 14155-4838, Tehran, IR Iran. Tel: +98-2183553920, Fax: +98-2183553920, E-mail:
| | - Seyed Alireza Mesbah-Namin
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, IR Iran
| | | | - Hadi Kazemi
- Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, IR Iran
| | - Taher Taheri
- Shefa Neuroscience Research Center, Khatam Al-anbia Hospital, Tehran, IR Iran
| |
Collapse
|
11
|
Darlington D, Deng J, Giunta B, Hou H, Sanberg CD, Kuzmin-Nichols N, Zhou HD, Mori T, Ehrhart J, Sanberg PR, Tan J. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev 2012; 22:412-21. [PMID: 22816379 DOI: 10.1089/scd.2012.0345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive age-related dementia in the elderly and the fourth major cause of disability and mortality in that population. The disease is pathologically characterized by deposition of β-amyloid plaques neurofibrillary tangles in the brain. Current strategies for the treatment of AD are symptomatic only. As such, they are less than efficacious in terms of significantly slowing or halting the underlying pathophysiological progression of the disease. Modulation by cell therapy may be new promising disease-modifying therapy. Recently, we showed reduction in amyloid-β (Aβ) levels/β-amyloid plaques and associated astrocytosis following low-dose infusions of mononuclear human umbilical cord blood cells (HUCBCs). Our current study extended our previous findings by examining cognition via (1) the rotarod test, (2) a 2-day version of the radial-arm water maze test, and (3) a subsequent observation in an open pool platform test to characterize the effects of monthly peripheral HUCBC infusion (1×10(6) cells/μL) into the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) from 6 to 12 months of age. We show that HUCBC therapy correlates with decreased (1) cognitive impairment, (2) Aβ levels/β-amyloid plaques, (3) amyloidogenic APP processing, and (4) reactive microgliosis after a treatment of 6 or 10 months. As such, this report lays the groundwork for an HUCBC therapy as potentially novel alternative to oppose AD at the disease-modifying level.
Collapse
Affiliation(s)
- Donna Darlington
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Aly H, Mohsen L, Badrawi N, Gabr H, Ali Z, Akmal D. Viability and neural differentiation of mesenchymal stem cells derived from the umbilical cord following perinatal asphyxia. J Perinatol 2012; 32:671-6. [PMID: 22134676 DOI: 10.1038/jp.2011.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Hypoxia-ischemia is the leading cause of neurological handicaps in newborns worldwide. Mesenchymal stem cells (MSCs) collected from fresh cord blood of asphyxiated newborns have the potential to regenerate damaged neural tissues. The aim of this study was to examine the capacity for MSCs to differentiate into neural tissue that could subsequently be used for autologous transplantation. STUDY DESIGN We collected cord blood samples from full-term newborns with perinatal hypoxemia (n=27), healthy newborns (n=14) and non-hypoxic premature neonates (n=14). Mononuclear cells were separated, counted, and then analyzed by flow cytometry to assess various stem cell populations. MSCs were isolated by plastic adherence and characterized by morphology. Cells underwent immunophenotyping and trilineage differentiation potential. They were then cultured in conditions favoring neural differentiation. Neural lineage commitment was detected using immunohistochemical staining for glial fibrillary acidic protein, tubulin III and oligodendrocyte marker O4 antibodies. RESULT Mononuclear cell count and viability did not differ among the three groups of infants. Neural differentiation was best demonstrated in the cells derived from hypoxia-ischemia term neonates, of which 69% had complete and 31% had partial neural differentiation. Cells derived from preterm neonates had the least amount of neural differentiation, whereas partial differentiation was observed in only 12%. CONCLUSION These findings support the potential utilization of umbilical cord stem cells as a source for autologous transplant in asphyxiated neonates.
Collapse
Affiliation(s)
- H Aly
- Department of Newborn Services, George Washington University and Children's National Medical Center, Washington, DC 20037, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Neural stem cells for spinal cord repair. Cell Tissue Res 2012; 349:349-62. [DOI: 10.1007/s00441-012-1363-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/02/2012] [Indexed: 12/20/2022]
|
14
|
Xu X, Warrington AE, Bieber AJ, Rodriguez M. Enhancing CNS repair in neurological disease: challenges arising from neurodegeneration and rewiring of the network. CNS Drugs 2011; 25:555-73. [PMID: 21699269 PMCID: PMC3140701 DOI: 10.2165/11587830-000000000-00000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Repair of the central nervous system (CNS) constitutes an integral part of treating neurological disease and plays a crucial role in restoring CNS architecture and function. Distinct strategies have been developed to reconstruct the damaged neural tissue, with many tested preclinically in animal models. We review cell replacement-based repair strategies. By taking spinal cord injury, cerebral ischaemia and degenerative CNS disorders as examples for CNS repair, we discuss progress and potential problems in utilizing embryonic stem cells and adult neural/non-neural stem cells to repair cell loss in the CNS. Nevertheless, CNS repair is not simply a matter of cell transplantation. The major challenge is to induce regenerating neural cells to integrate into the neural network and compensate for damaged neural function. The neural cells confront an environment very different from that of the developmental stage in which these cells differentiate to form interwoven networks. During the repair process, one of the challenges is neurodegeneration, which can develop from interrupted innervations to/from the targets, chronic inflammation, ischaemia, aging or idiopathic neural toxicity. Neurodegeneration, which occurs on the basis of a characteristic vascular and neural web, usually presents as a chronically progressive process with unknown aetiology. Currently, there is no effective treatment to stop or slow down neurodegeneration. Pathological changes from patients with Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis indicate a broken homeostasis in the CNS. We discuss how the blood-brain barrier and neural networks are formed to maintain CNS homeostasis and their contribution to neurodegeneration in diseased conditions. Another challenge is that some inhibitors produced by CNS injury do not facilitate the regenerating neural cells to incorporate into a pre-existing network. We review glial responses to CNS injury. Of note, the reactive astrocytes not only encompass the lesions/pathogens but may also form glial scars to impede regenerating axons from traversing the lesions. In addition, myelin debris can prevent axon growth. Myelination enables saltatory transduction of electrical impulses along axonal calibers and actually provides trophic support to stabilize the axons. Therefore, repair strategies should be designed to promote axonal growth, myelination and modulate astrocytic responses. Finally, we discuss recent progress in developing human monoclonal IgMs that regulate CNS homeostasis and promote neural regeneration.
Collapse
Affiliation(s)
- Xiaohua Xu
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | | | - Allan J. Bieber
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905
| | - Moses Rodriguez
- Department of Neurology, Mayo Clinic and Foundation, Rochester, MN 55905, Department of Immunology, Mayo Clinic and Foundation, Rochester, MN 55905
| |
Collapse
|
15
|
Chung DJ, Choi CB, Lee SH, Kang EH, Lee JH, Hwang SH, Han H, Lee JH, Choe BY, Lee SY, Kim HY. Intraarterially delivered human umbilical cord blood-derived mesenchymal stem cells in canine cerebral ischemia. J Neurosci Res 2010; 87:3554-67. [PMID: 19642203 DOI: 10.1002/jnr.22162] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study examined the effects of human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs) delivered through the basilar artery in a canine thromboembolic brain ischemia model. Cerebral ischemia was induced through occlusion of the middle cerebral artery by injecting thrombus emboli into 10 beagles. In the HUCBC group (n = 5), 1 x 10(6) HUCB-derived MSCs were transplanted through the basilar artery 1 day after ischemic induction using an endovascular interventional approach. In the control group (n = 5), phosphate-buffered saline (PBS) was injected in the same manner in as the HUCBC group. Upon neurobehavioral examination, earlier recovery was observed in the HUCBC group. The HUCBC group showed a decrease in the infarction volume at 1 week after cerebral ischemic induction, whereas the control group showed an increase in the infarction volume at 1 week, by magnetic resonance image analysis. Transplanted cells had differentiated into neurons and astrocytes and were observed in and around endothelial cells that were positive for von Willebrand factor (vWF). HUCB-derived MSCs expressed neuroprotective factors, such as brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), at 4 weeks after the transplantation. The transplanted cells demonstrated their efficacy by reducing the infarction lesion volume and through earlier recovery from the neurological deficit. These results suggest that intraarterial transplantation of HUCB-derived MSCs could be useful in clinical treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dinç H, Sahin NH. Pregnant women's knowledge and attitudes about stem cells and cord blood banking. Int Nurs Rev 2009; 56:250-6. [PMID: 19646176 DOI: 10.1111/j.1466-7657.2008.00689.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM This study was to determine pregnant women's knowledge and attitudes towards stem cells and cord blood banking in Istanbul, Turkey. BACKGROUND Stem cell research is one of the most important and, at the same time, the most controversial topics of science and technology today. Nurses need to understand stem cell research so they can enter the debate on this issue. They can become important sources of information in order to help parents understand the issues. METHODS This exploratory descriptive study was conducted in two antenatal outpatient clinics in Istanbul. The sample consisted of 334 pregnant women during routine prenatal visits. Data were collected in interviews by using an interview form developed by the researchers according to the literature. The form included demographic characteristics of participants and 20 questions about stem cells, storing cord blood and banking and 10 independent attitude statements. RESULTS The majority of the participants had a lack of knowledge about stem cells and cord blood banking and wanted more information. Before pregnancy, they received some information through the media (newspaper, Internet, television, etc.), but unintentionally. It was determined that they wanted information before becoming pregnant, more from their obstetrician but also from nurses and midwives. The majority also wanted to store their infants' cord blood and stated that they would be more likely to choose a public cord blood bank. CONCLUSION Those giving ante- and perinatal care need to offer accurate and scientific counselling services on this subject to parents who need to be informed.
Collapse
Affiliation(s)
- H Dinç
- Department of Obstetric and Gynecologic Nursing, Bakirkoy School of Health, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
17
|
Yu G, Borlongan CV, Stahl CE, Hess DC, Ou Y, Kaneko Y, Yu SJ, Yang T, Fang L, Xie X. Systemic delivery of umbilical cord blood cells for stroke therapy: a review. Restor Neurol Neurosci 2009; 27:41-54. [PMID: 19164852 DOI: 10.3233/rnn-2009-0460] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE This review paper summarizes relevant studies, discusses potential mechanisms of transplanted cell-mediated neuroprotection, and builds a case for the need to establish outcome parameters that are critical for transplantation success. In particular, we outline the advantages and disadvantages of systemic delivery of human umbilical cord blood (HUCB) cells in the field of cellular transplantation for treating ischemic stroke. METHODS A MEDLINE/PubMed systematic search of published articles in peer-reviewed journals over the last 25 years was performed focusing on the theme of HUCB as donor graft source for transplantation therapy in neurological disorders with emphasis on stroke. RESULTS Ischemic stroke remains a leading cause of human death and disability. Although stroke survivors may gain spontaneous partial functional recovery, they often suffer from sensory-motor dysfunction, behavioral/neurological alterations, and various degrees of paralysis. Currently, limited clinical intervention is available to prevent ischemic damage and restore lost function in stroke victims. Stem cells from fetal tissues, bone marrow, and HUCB has emerged in the last few years as a potential cell transplant cell source for ischemic stroke, because of their capability to differentiate into multiple cell types and the possibility that they may provide trophic support for cell survival, tissue repair, and functional recovery. CONCLUSION A growing number of studies highlight the potential of systemic delivery of HUCB cells as a novel therapeutic approach for stroke. However, additional preclinical studies are warranted to reveal the optimal HUCB transplant regimen that is safe and efficacious prior to proceeding to large-scale clinical application of these cells for stroke therapy.
Collapse
Affiliation(s)
- Guolong Yu
- Department of Cardiology, Xiangya Hospital, Southern Central University, Changsha, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mäkinen S, Kekarainen T, Nystedt J, Liimatainen T, Huhtala T, Närvänen A, Laine J, Jolkkonen J. Human umbilical cord blood cells do not improve sensorimotor or cognitive outcome following transient middle cerebral artery occlusion in rats. Brain Res 2006; 1123:207-15. [PMID: 17070789 DOI: 10.1016/j.brainres.2006.09.056] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 09/11/2006] [Accepted: 09/11/2006] [Indexed: 11/17/2022]
Abstract
The present study investigated effects of human umbilical cord blood (HUCB) cells on sensorimotor, cognitive, and histological outcome in rats subjected to transient middle cerebral artery occlusion (MCAO). Halothane anesthetized adult male Wistar rats were subjected to transient MCAO for 2 h. HUCB cells (mononuclear 1-5x10(7) or Lin(-) cells 1-5x10(5)) were administered intravenously after 24 h recovery. The limb-placing test was performed on postoperative days 2, 4, 6, 9, 12, 16, and 20. In addition, beam-walking and cylinder tests were used to assess sensorimotor function at baseline, and on postoperative days 4, 12, and 20. Morris water-maze was used to assess cognitive performance on postoperative days 22-24. Subsequently, rats were perfused for measurement of infarct volumes and detection of HUCB cells by immunohistochemistry (MAB1281). MCAO rats showed a partial spontaneous recovery in sensorimotor function during the follow-up. However, the recovery profile was similar in MCAO controls and in MCAO rats that received HUCB cells. HUCB did not affect impaired water-maze performance of MCAO rats. Only few human nuclei-specific MAB1281-positive cells were detected in the ipsilateral hemisphere in MCAO rats that received HUCB cells. Infarct volumes did not differ between the experimental groups. A group of additional rats were used to further study biodistribution of intravenously given (111)In-oxine-labelled mononuclear HUCB cells in MCAO and sham-operated rats. SPECT imaging data indicated a high tracer uptake in the lung, liver, spleen, and kidney, but not in the brain immediately after administration or 24 h post-administration. The present study suggests that HUCB cells do not improve functional recovery or histological outcome in MCAO rats after systemic administration because of limited migration of cells in the ischemic brain.
Collapse
Affiliation(s)
- Susanna Mäkinen
- Department of Neuroscience and Neurology, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Newman MB, Willing AE, Manresa JJ, Davis-Sanberg C, Sanberg PR. Stroke-induced Migration of Human Umbilical Cord Blood Cells: Time Course and Cytokines. Stem Cells Dev 2005; 14:576-86. [PMID: 16305342 DOI: 10.1089/scd.2005.14.576] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The therapeutic window for treatment of individuals after stroke is narrow, regardless of the treatment regime; extension of this window would provide a major therapeutic advance. In prior reports, we demonstrated significant improvements in the behavioral defects of rats that received human umbilical cord blood (HUCB) cells 24 h after a middle cerebral arterial occlusion. These effects paralleled the recruitment of these cells to the site of tissue damage. While the administration of HUCB cells 24 h after stroke was effective, the optimal time to administer these cells after stroke has not been established. Here, we investigated the migration of HUCB cells to ischemic tissue extracts. After ischemic assault, brain tissue was homogenized, and the supernatants were assayed for their ability to attract HUCB mononuclear cells as well as for levels of several cytokines. We demonstrate increased migratory activity of HUCB cells toward the extracts harvested at 24-72 h after stroke. The extracts possessed increased levels of certain cytokines and chemokines, suggesting their participation in HUCB cell migration. The results from this study are promising in that the current 3-h therapeutic window for the treatment of stroke victims, using approved anticoagulant treatment, may be extended with the use of HUCB cell therapy 24-72 h post stroke. Last, the chemokines present in the supernatant provide a sound starting point to start examining the mechanisms responsible for the in vivo migration of HUCB cells after the induction of stroke.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, FL 33612, USA.
| | | | | | | | | |
Collapse
|
20
|
Newman MB, Misiuta I, Willing AE, Zigova T, Karl RC, Borlongan CV, Sanberg PR. Tumorigenicity issues of embryonic carcinoma-derived stem cells: relevance to surgical trials using NT2 and hNT neural cells. Stem Cells Dev 2005; 14:29-43. [PMID: 15725742 DOI: 10.1089/scd.2005.14.29] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a rapidly moving field with new cells, cell lines, and tissue-engineered constructs being developed globally. As these novel cells are further developed for transplantation studies, it is important to understand their safety profiles both prior to and posttransplantation in animals and humans. Embryonic carcinoma-derived cells are considered an important alternative to stem cells. The NTera2/D1 teratocarcinoma cell-line (or NT2-N cells) gives rise to neuron-like cells called hNT neurons after exposure to retinoic acid. NT2 cells form tumors upon transplantation into the rodent. However, when the NT2 cells are treated with retinoic acid to produce hNT cells, they terminally differentiate into post-mitotic neurons with no sign of tumorigenicity. Preliminary human transplantation studies in the brain of stroke patients also demonstrated a lack of tumorigenicity of these cells. This review focuses on the use of hNT neurons in cell transplantation for the treatment in central nervous system (CNS) diseases, disorders, or injuries and on the mechanism involved in retinoic acid exposure, final differentiation state, and subsequent tumorigenicity issues that must be considered prior to widespread clinical use.
Collapse
Affiliation(s)
- Mary B Newman
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery, University of South Florida, College of Medicine, Tampa, Fl 33612, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Kostrzewa RM, Segura-Aguilar J. Novel mechanisms and approaches in the study of neurodegeneration and neuroprotection. a review. Neurotox Res 2003; 5:375-83. [PMID: 14715440 DOI: 10.1007/bf03033166] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular mechanisms involved in neurodegeneration and neuroprotection are continuing to be explored, and this paper focuses on some novel discoveries that give further insight into these processes. Oligodendrocytes and activated astroglia are likely generators of the pro-inflammatory cytokines, such as the tumor necrosis factor family and interleukin family, and these glial support cells express adhesion receptors (e.g., VCAM) and release intercellular adhesion molecules (ICAM) that have a major role in neuronal apoptosis. Even brief exposure to some substances, in ontogeny and sometimes in adulthood, can have lasting effects on behaviors because of their prominent toxicity (e.g., NMDA receptor antagonists) or because they sensitize receptors (e.g., dopamine D2 agonists), possibly permanently, and thereby alter behavior for the lifespan. Cell cycle genes which may be derived from microglia, are the most-recent entry into the neuroprotection schema. Neuroprotection afforded by some common substances (e.g., melatonin) and uncommon substances [e.g., nicotine, green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG), trolox], ordinarily thought to be simple radical scavengers, now are thought to invoke previously unsuspected cellular mechanisms in the process of neuroprotection. Although Alzheimer's disease (AD) has features of a continuous spectrum of neural and functional decline, in vivo PET imaging and and functional magnetic resonance imaging, indicate that AD can be staged into an early phase treatable by inhibitors of beta and gamma secretase; and a late phase which may be more amenable to treatment by drugs that prevent or reverse tau phosphorylation. Neural transplantation, thought to be the last hope for neurally injured patients (e.g., Parkinsonians), may be displaced by non-neural tissue transplants (e.g., human umbilical cord blood; Sertoli cells) which seem to provide similar neurotrophic support and improved behavior - without posing the major ethical dilemma of removing tissue from aborted fetuses. The objective of this paper is to invite added research into the newly discovered (or postulated) novel mechanisms; and to stimulate discovery of additional mechanisms attending neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Richard M Kostrzewa
- Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.
| | | |
Collapse
|