1
|
Esteves AR, Gozes I, Cardoso SM. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:7-21. [PMID: 24120997 DOI: 10.1016/j.bbadis.2013.10.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/30/2013] [Accepted: 10/04/2013] [Indexed: 11/25/2022]
Abstract
In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure. We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomer accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophagosome-lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reducing alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function. Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.
Collapse
Affiliation(s)
- A R Esteves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
2
|
Cardoso SM, Esteves AR, Arduíno DM. Mitochondrial metabolic control of microtubule dynamics impairs the autophagic pathway in Parkinson's disease. NEURODEGENER DIS 2011; 10:38-40. [PMID: 22156537 DOI: 10.1159/000332601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/01/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder where the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies in surviving neurons are primary histopathological hallmarks. Recent evidence points to mitochondrial dysfunction as a common upstream event in PD etiopathology. OBJECTIVE In this overview, we will discuss some of our findings that provide support for the mitochondrial cascade hypothesis, whereas mitochondrial deficits trigger PD pathology through alterations in microtubule integrity and macroautophagy. METHODS Using, as a PD model, cells that have PD patients' mitochondrial DNA, cells without mitochondrial DNA and MPP(+)-treated cells, we showed that mitochondrial metabolism alteration may underlie changes in the microtubular net and in the autophagic-lysosomal pathway. CONCLUSIONS Finally, we will endow a potential new therapeutic target for PD pathology.
Collapse
Affiliation(s)
- S M Cardoso
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| | | | | |
Collapse
|
3
|
Lightfoot YL, Chen J, Mathews CE. Role of the mitochondria in immune-mediated apoptotic death of the human pancreatic β cell line βLox5. PLoS One 2011; 6:e20617. [PMID: 21738580 PMCID: PMC3124469 DOI: 10.1371/journal.pone.0020617] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are indispensable in the life and death of many types of eukaryotic cells. In pancreatic beta cells, mitochondria play an essential role in the secretion of insulin, a hormone that regulates blood glucose levels. Unregulated blood glucose is a hallmark symptom of diabetes. The onset of Type 1 diabetes is preceded by autoimmune-mediated destruction of beta cells. However, the exact role of mitochondria has not been assessed in beta cell death. In this study, we examine the role of mitochondria in both Fas- and proinflammatory cytokine-mediated destruction of the human beta cell line, βLox5. IFNγ primed βLox5 cells for apoptosis by elevating cell surface Fas. Consequently, βLox5 cells were killed by caspase-dependent apoptosis by agonistic activation of Fas, but only after priming with IFNγ. This beta cell line undergoes both apoptotic and necrotic cell death after incubation with the combination of the proinflammatory cytokines IFNγ and TNFα. Additionally, both caspase-dependent and -independent mechanisms that require proper mitochondrial function are involved. Mitochondrial contributions to βLox5 cell death were analyzed using mitochondrial DNA (mtDNA) depleted βLox5 cells, or βLox5 ρ0 cells. βLox5 ρ0 cells are not sensitive to IFNγ and TNFα killing, indicating a direct role for the mitochondria in cytokine-induced cell death of the parental cell line. However, βLox5 ρ0 cells are susceptible to Fas killing, implicating caspase-dependent extrinsic apoptotic death is the mechanism by which these human beta cells die after Fas ligation. These data support the hypothesis that immune mediators kill βLox5 cells by both mitochondrial-dependent intrinsic and caspase-dependent extrinsic pathways.
Collapse
Affiliation(s)
- Yaíma L. Lightfoot
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Jing Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
4
|
Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 2011; 192:263-74. [PMID: 21723922 DOI: 10.1016/j.neuroscience.2011.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD), characterized by selective midbrain nigrostriatal dopaminergic degeneration, is consistently associated with moderate systemic mitochondrial dysfunction. Downstream degeneration of spinal cord has also been suggested in PD, although the mechanisms have not been much investigated. In the present study, two mitochondrial toxicants, 1-methyl-4-phenylpyridinium ion (MPP(+)) and rotenone were tested in ventral spinal cord (VSC 4.1) motoneuronal cells. Cell death was assessed by morphological and biochemical means to discern a lower apoptosis-inducing concentration and lethal concentration of 50% cell death (LC(50)), which were subsequently compared in further cytoprotection experiments. Mitochondrial toxicants dose-dependently induced increase in intracellular free Ca(2+) level, which was conducive for increased expression and activities of Ca(2+)-activated neutral protease calpain and downstream caspase-3. Thus, mitochondrial damage triggered apoptotic mechanisms in spinal cord motoneurons. Inhibition of calpain by calpeptin significantly attenuated damaging effects of MPP(+) and rotenone on motoneurons, especially at low apoptosis-inducing concentrations of toxicants and partly at their LC(50), as demonstrated by absence of DNA ladder formation and decrease in terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Cytoprotection by calpeptin was observed with marked decreases in Bax: Bcl-2 ratio and activities of calpain and caspase-3, which affirmed the role of mitochondrial dysfunction and involvement of intrinsic pathway in mediation of apoptosis. These findings strongly suggested that parkinsonian toxicants MPP(+) and rotenone at low doses induced cascade of cell-damaging effects in spinal cord motoneurons, thus, highlighting the possibility of induction of apoptotic mechanisms in these cells, when subjected to mitochondrial stress. Cytoprotection rendered by calpeptin further validated the involvement of calpain in apoptosis and suggested calpain inhibition as a potential neuroprotective strategy.
Collapse
|
5
|
Esteves AR, Arduíno DM, Silva DFF, Oliveira CR, Cardoso SM. Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD. PARKINSON'S DISEASE 2011; 2011:693761. [PMID: 21318163 PMCID: PMC3026982 DOI: 10.4061/2011/693761] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/21/2010] [Accepted: 12/27/2010] [Indexed: 12/21/2022]
Abstract
While the etiology of Parkinson's disease remains largely elusive, there is accumulating evidence suggesting that mitochondrial dysfunction occurs prior to the onset of symptoms in Parkinson's disease. Mitochondria are remarkably primed to play a vital role in neuronal cell survival since they are key regulators of energy metabolism (as ATP producers), of intracellular calcium homeostasis, of NAD(+)/NADH ratio, and of endogenous reactive oxygen species production and programmed cell death. In this paper, we focus on mitochondrial dysfunction-mediated alpha-synuclein aggregation. We highlight some of the findings that provide proof of evidence for a mitochondrial metabolism control in Parkinson's disease, namely, mitochondrial regulation of microtubule-dependent cellular traffic and autophagic lysosomal pathway. The knowledge that microtubule alterations may lead to autophagic deficiency and may compromise the cellular degradation mechanisms that culminate in the progressive accumulation of aberrant protein aggregates shields new insights to the way we address Parkinson's disease. In line with this knowledge, an innovative window for new therapeutic strategies aimed to restore microtubule network may be unlocked.
Collapse
Affiliation(s)
- A. R. Esteves
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004 Coimbra, Portugal
| | - D. M. Arduíno
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004 Coimbra, Portugal
| | - D. F. F. Silva
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004 Coimbra, Portugal
| | - C. R. Oliveira
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004 Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, 3000 Coimbra, Portugal
| | - S. M. Cardoso
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004 Coimbra, Portugal
- Faculdade de Medicina, Universidade de Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
6
|
Calpain plays a central role in 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity in cerebellar granule neurons. Neurotox Res 2010; 19:374-88. [PMID: 20333497 DOI: 10.1007/s12640-010-9172-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 02/19/2010] [Accepted: 03/09/2010] [Indexed: 12/15/2022]
Abstract
1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress and dysfunction.
Collapse
|
7
|
Esteves AR, Arduíno DM, Swerdlow RH, Oliveira CR, Cardoso SM. Dysfunctional mitochondria uphold calpain activation: contribution to Parkinson's disease pathology. Neurobiol Dis 2009; 37:723-30. [PMID: 20034566 DOI: 10.1016/j.nbd.2009.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Revised: 11/06/2009] [Accepted: 12/11/2009] [Indexed: 11/29/2022] Open
Abstract
Calpain is a ubiquitous calcium-sensitive protease that is essential for normal physiologic neuronal function. However, mitochondrial-mediated-calcium homeostasis alterations may lead to its pathologic activation that jeopardizes neuronal structure and function. Here, we provide evidence to support a role for the involvement of calpain 1 in mitochondrial-induced neurodegeneration in a Parkinson's disease (PD) cellular model. We show that dysfunctional mitochondria increases cytosolic calcium, thereby, inducing calpain activation. Interestingly, its inhibition significantly attenuated the accumulation of alpha-synuclein oligomers and contributed to an increase of insoluble alpha-synuclein aggregates, known to be cytoprotective. Moreover, our data corroborate that calpain-1 overactivation in our mitochondrial-deficient cells promote caspase-3 activation. Overall, our findings further clarify the crucial role of dysfunctional mitochondria in the control of molecular mechanisms occurring in PD brain cells, providing a potentially novel correlation between the degradation of calpain substrates suggesting a putative role of calpain and calpain inhibition as a therapeutic tool in PD.
Collapse
Affiliation(s)
- A Raquel Esteves
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-Coimbra, Portugal
| | | | | | | | | |
Collapse
|
8
|
Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, Smith MA. Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2009; 1802:212-20. [PMID: 19853657 DOI: 10.1016/j.bbadis.2009.10.007] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 01/24/2023]
Abstract
Mitochondrial dysfunction has long been associated with neurodegenerative disease. Therefore, mitochondrial protective agents represent a unique direction for the development of drug candidates that can modify the pathogenesis of neurodegeneration. This review discusses evidence showing that mitochondrial dysfunction has a central role in the pathogenesis of Alzheimer's, Parkinson's and Huntington's diseases and amyotrophic lateral sclerosis. We also debate the potential therapeutic efficacy of metabolic antioxidants, mitochondria-directed antioxidants and Szeto-Schiller (SS) peptides. Since these compounds preferentially target mitochondria, a major source of oxidative damage, they are promising therapeutic candidates for neurodegenerative diseases. Furthermore, we will briefly discuss the novel action of the antihistamine drug Dimebon on mitochondria.
Collapse
Affiliation(s)
- Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Arduíno DM, Esteves AR, Cardoso SM, Oliveira CR. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: relevance to Parkinson's disease. Neurochem Int 2009; 55:341-8. [PMID: 19375464 DOI: 10.1016/j.neuint.2009.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 01/08/2023]
Abstract
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. Many cellular mechanisms are thought to be involved in the death of these specific neurons in PD, including oxidative stress, changes of intracellular calcium homeostasis, and mitochondrial dysfunction. Since recent studies have revealed that also endoplasmic reticulum (ER) stress in conjunction with abnormal protein degradation can contribute to the PD pathophysiology, we investigated here the molecular mechanisms underlying the interplay between ER and mitochondria and its relevance in the control of neuronal cell death in PD. We observed that MPP+ induced changes in the mitochondrial function, affecting mitochondrial membrane potential and electron transport chain function. Likewise, it was also evident the unfolded protein response activation by an overexpression of GRP78 protein. Moreover, stress stimuli caused the release of Ca2+ from the ER that consistently induced mitochondrial Ca2+ uptake, with a rise of mitochondrial matrix free Ca2+. Besides, Ca2+ release inhibition prevented MPP+ mediated mitochondria-dependent caspases activation. Our findings show that ER and mitochondria are in a close communication, establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent role in the neuronal cell death induction under particular stressful circumstances of PD pathology.
Collapse
Affiliation(s)
- Daniela Moniz Arduíno
- Centro de Neurociências e Biologia Celular, Faculdade de Medicina, Universidade de Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | |
Collapse
|
10
|
Domingues AF, Arduíno DM, Esteves AR, Swerdlow RH, Oliveira CR, Cardoso SM. Mitochondria and ubiquitin-proteasomal system interplay: relevance to Parkinson's disease. Free Radic Biol Med 2008; 45:820-5. [PMID: 18619530 DOI: 10.1016/j.freeradbiomed.2008.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 11/25/2022]
Abstract
The cellular mechanisms that may underlie the death of dopaminergic neurons in Parkinson's disease are ubiquitin-proteasomal system (UPS) impairment, mitochondrial dysfunction, and oxidative stress. The goal of this work was to elucidate the correlation between mitochondrial dysfunction and UPS impairment, focusing on the role of oxidative stress. Our data revealed that mitochondria-DNA-depleted cells (rho0) are compromised at the mitochondrial and UPS levels and also show an alteration of the oxidative status. In parental cells (rho+), MPP(+) induced a clear inhibition of complex I activity, as well as an increase in ubiquitinylated protein levels, which was not observed in cells treated with lactacystin. Moreover, MPP(+) induced a decreased in the 20S chymotrypsin-like and peptidyl-glutamyl peptide hydrolytic-like proteolytic activities after 24 h of exposure. ROS production was increased in rho+ cells treated with MPP(+) or lactacystin, at early treatment periods. MPP(+) induced an increase in carbonyl group formation in rho+ cells. The results suggest that a mitochondrial alteration leads to an imbalance in the cellular oxidative status, inducing a proteasomal deregulation, which may exacerbate protein aggregation, and consequently degenerative events.
Collapse
Affiliation(s)
- Ana F Domingues
- Center for Neurosciences and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|