1
|
Liu Y, Wang M, Han W, Guan X, Wang Z, Guo S, Fu P. Multiparametric analysis based on 18F-AV133 PET/MR imaging for clinical application in Parkinson's disease. Eur J Radiol 2025; 187:112074. [PMID: 40194470 DOI: 10.1016/j.ejrad.2025.112074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/18/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
OBJECTIVE The progressive loss of dopaminergic neurons and abnormal iron deposition in the central nervous system (CNS) are key pathogenic mechanisms of Parkinson's disease (PD). This study aimed to explore the relationship between iron deposition in specific CNS regions and striatal dysfunction using 18F-AV133 PET/MR imaging. METHODS Based on the Hoehn-Yahr stage, 24 patients with early-stage PD (EPD, stage ≤ 2.5), 17 patients with late-stage PD (LPD, stage ≥ 3), and 30 healthy controls (HCs) were recruited for scale evaluation. The specific uptake ratio (SUR) of striatal subregions was calculated using the occipital cortex as the reference region. Quantitative Susceptibility Mapping (QSM) values of major subcortical nuclei were derived through QSM imaging. Spearman correlation analysis was conducted to assess the relationships between SUR in striatal subregions, QSM values in nuclear groups, and PD clinical symptoms, as well as the correlation between SUR and QSM values. RESULTS Compared to HC, EPD and LPD patients showed significantly reduced VMAT2 distribution in the bilateral caudate nuclei and anteroposterior putamen, particularly in the contralateral posterior putamen. In PD patients, the SUR of striatal subregions and QSM values of the substantia nigra (SN), globus pallidus (GP), and external segment of the GP (GPe) were significantly correlated with disease duration, H&Y stage, UPDRS III score, and NMSS score. Moreover, SUR of striatal subregions was negatively correlated with QSM values in the SN, GP, internal segment of the GP (GPi), and GPe. CONCLUSION Multi-parameter analysis revealed a region-specific correlation between striatal dysfunction and iron deposition in PD, offering new avenues to elucidate the underlying mechanisms of the disease.
Collapse
Affiliation(s)
- Yansong Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Mengjiao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Wei Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Xinghe Guan
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Zeyu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Shibo Guo
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, PR China.
| |
Collapse
|
2
|
Chagraoui A, Anouar Y, De Deurwaerdere P, Arias HR. To what extent may aminochrome increase the vulnerability of dopaminergic neurons in the context of Parkinson's disease. Int J Biochem Cell Biol 2024; 168:106528. [PMID: 38246261 DOI: 10.1016/j.biocel.2024.106528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that progresses over time and is characterized by preferential reduction of dopaminergic neurons in the substantia nigra. Although the precise mechanisms leading to cell death in neurodegenerative disorders, such as PD, are not fully understood, it is widely accepted that increased oxidative stress may be a prevalent factor contributing to the deterioration of the nigrostriatal dopaminergic fibers in such conditions. Aminochrome, generated from dopamine (DA) metabolism, plays an important role in multiple pathogenic mechanisms associated with PD. Its capacity to induce a gradual reduction in dopaminergic neurons is due to its endogenous neurotoxicity. The formation of aminochrome results in the production of various reactive oxygen species (ROS), including pro-inflammatory factors, superoxide, nitric oxide, and hydroxyl radicals. This, in turn, causes loss of dopaminergic neurons, reducing DA uptake, and reduced numbers and shortened dendrites. Notably, o-quinones, which are more cytotoxic, arise from the oxidation of DA and possess a higher capacity to impede cellular defense mechanisms, thereby resulting in the death of neuronal cells. Aminochrome potentially contributes to the pathophysiology of PD by forming adducts with various proteins. All of the aforementioned effects suggest that aminochrome may play a crucial role in the pathophysiology of PD. Thus, aminochrome may serve as a more relevant preclinical model for PD, facilitating a better understanding of its pathophysiological processes and identification of novel therapeutic strategies aimed at preventing or slowing disease progression.
Collapse
Affiliation(s)
- Abdeslam Chagraoui
- Department of Medical Biochemistry, Rouen University Hospital, CHU de Rouen, France; UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France.
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Philippe De Deurwaerdere
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR, 5287, Bordeaux, France
| | - Hugo R Arias
- Department of Pharmacology and Physiology, Oklahoma State University College of Osteopathic Medicine, Tahlequah, OK, USA
| |
Collapse
|
3
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
4
|
Riederer P, Nagatsu T, Youdim MBH, Wulf M, Dijkstra JM, Sian-Huelsmann J. Lewy bodies, iron, inflammation and neuromelanin: pathological aspects underlying Parkinson's disease. J Neural Transm (Vienna) 2023; 130:627-646. [PMID: 37062012 PMCID: PMC10121516 DOI: 10.1007/s00702-023-02630-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/17/2023]
Abstract
Since the description of some peculiar symptoms by James Parkinson in 1817, attempts have been made to define its cause or at least to enlighten the pathology of "Parkinson's disease (PD)." The vast majority of PD subtypes and most cases of sporadic PD share Lewy bodies (LBs) as a characteristic pathological hallmark. However, the processes underlying LBs generation and its causal triggers are still unknown. ɑ-Synuclein (ɑ-syn, encoded by the SNCA gene) is a major component of LBs, and SNCA missense mutations or duplications/triplications are causal for rare hereditary forms of PD. Thus, it is imperative to study ɑ-syn protein and its pathology, including oligomerization, fibril formation, aggregation, and spreading mechanisms. Furthermore, there are synergistic effects in the underlying pathogenic mechanisms of PD, and multiple factors-contributing with different ratios-appear to be causal pathological triggers and progression factors. For example, oxidative stress, reduced antioxidative capacity, mitochondrial dysfunction, and proteasomal disturbances have each been suggested to be causal for ɑ-syn fibril formation and aggregation and to contribute to neuroinflammation and neural cell death. Aging is also a major risk factor for PD. Iron, as well as neuromelanin (NM), show age-dependent increases, and iron is significantly increased in the Parkinsonian substantia nigra (SN). Iron-induced pathological mechanisms include changes of the molecular structure of ɑ-syn. However, more recent PD research demonstrates that (i) LBs are detected not only in dopaminergic neurons and glia but in various neurotransmitter systems, (ii) sympathetic nerve fibres degenerate first, and (iii) at least in "brain-first" cases dopaminergic deficiency is evident before pathology induced by iron and NM. These recent findings support that the ɑ-syn/LBs pathology as well as iron- and NM-induced pathology in "brain-first" cases are important facts of PD pathology and via their interaction potentiate the disease process in the SN. As such, multifactorial toxic processes posted on a personal genetic risk are assumed to be causal for the neurodegenerative processes underlying PD. Differences in ratios of multiple factors and their spatiotemporal development, and the fact that common triggers of PD are hard to identify, imply the existence of several phenotypical subtypes, which is supported by arguments from both the "bottom-up/dual-hit" and "brain-first" models. Therapeutic strategies are necessary to avoid single initiation triggers leading to PD.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000, Odense, Denmark.
| | - Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | | | - Max Wulf
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801, Bochum, Germany
| | | | | |
Collapse
|
5
|
Ito S, Napolitano A, Sarna T, Wakamatsu K. Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implications for neuromelanin genesis. J Neural Transm (Vienna) 2023; 130:29-42. [PMID: 36527527 DOI: 10.1007/s00702-022-02574-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 ℃. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.
Collapse
Affiliation(s)
- Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan.
| | | | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
A. HP, Diwakar L, Ravindranath V. Protein Glutathionylation and Glutaredoxin: Role in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11122334. [PMID: 36552543 PMCID: PMC9774553 DOI: 10.3390/antiox11122334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Oxidative stress has been implicated in the pathogenesis and progression of many neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. One of the major enzyme systems involved in the defense against reactive oxygen species are the tripeptide glutathione and oxidoreductase glutaredoxin. Glutathione and glutaredoxin system are very important in the brain because of the oxidative modification of protein thiols to protein glutathione mixed disulfides with the concomitant formation of oxidized glutathione during oxidative stress. Formation of Pr-SSG acts as a sink in the brain and is reduced back to protein thiols during recovery, thus restoring protein functions. This is unlike in the liver, which has a high turnover of glutathione, and formation of Pr-SSG is very minimal as liver is able to quickly quench the prooxidant species. Given the important role glutathione and glutaredoxin play in the brain, both in normal and pathologic states, it is necessary to study ways to augment the system to help maintain the protein thiol status. This review details the importance of glutathione and glutaredoxin systems in several neurodegenerative disorders and emphasizes the potential augmentation of this system as a target to effectively protect the brain during aging.
Collapse
Affiliation(s)
- Haseena P. A.
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Latha Diwakar
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
| | - Vijayalakshmi Ravindranath
- Centre for Brain Research, Indian Institute of Science, Bangalore 560012, India
- Correspondence: ; Tel.: +91-80-22933433; Fax: +91-80-23603323
| |
Collapse
|
7
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 PMCID: PMC9188502 DOI: 10.1007/s00702-022-02505-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 12/21/2022]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J. Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| |
Collapse
|
8
|
Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. J Neural Transm (Vienna) 2022; 129:505-520. [PMID: 35534717 DOI: 10.1007/s00702-022-025055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/22/2022] [Indexed: 05/26/2023]
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
Collapse
Affiliation(s)
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology, Sydney, Australia
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Salkov VN, Khudoerkov RM, Voronkov DN, Sobolev VB. [Morphochemical study of alpha-synuclein, iron and iron-containing proteins in the substantia nigra of the brain in Parkinson's disease]. Arkh Patol 2022; 84:13-19. [PMID: 35417944 DOI: 10.17116/patol20228402113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study, using a complex morphochemical approach, the localization of alpha-synuclein, iron compounds and iron-containing proteins in the structures of the substantia nigra of the brain in Parkinson's disease (PD). MATERIAL AND METHODS Histochemistry and immunohistochemistry methods have been used to study the localization of pathological alpha-synuclein (α-Syn-p129), iron compounds and iron-containing proteins - transferrin receptor and ferritin in neurons and neuroglia in the substantia nigra of the brain of deceased PD patients and persons with no neurological symptoms detected during life (control). RESULTS In the substantia nigra of PD patients, in comparison with the control, a stable accumulation of pathological alpha-synuclein (α-Syn-p129) in the bodies and processes of neurons was found, and in the neuroglia and neuropil - the accumulation of iron (II) and ferritin heavy chain, the reaction of microglia to protein CD68 was moderately elevated. The transmembrane protein CD71 was detected equally in the brains of PD patients and in controls. CONCLUSION Synaptic protein alpha-synuclein in PD turns into a pathological metabolite that accumulates in the structures of substantia nigra, and probably disrupts the conduction of nervous excitation. Excessive accumulation of the ferritin heavy chain in neuroglia can increase the concentration of reactive forms of iron and increase neurotoxicity. The uniform distribution of the transmembrane glycoprotein CD71 in the of substantia nigra structures both in the control and in PD patients indicates the preservation of non-heme iron transport during the neurodegenerative process.
Collapse
Affiliation(s)
- V N Salkov
- Research Center of Neurology, Moscow, Russia
| | | | | | - V B Sobolev
- Research Center of Neurology, Moscow, Russia
| |
Collapse
|
10
|
Nagatsu T, Nakashima A, Watanabe H, Ito S, Wakamatsu K. Neuromelanin in Parkinson's Disease: Tyrosine Hydroxylase and Tyrosinase. Int J Mol Sci 2022; 23:4176. [PMID: 35456994 PMCID: PMC9029562 DOI: 10.3390/ijms23084176] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is an aging-related disease and the second most common neurodegenerative disease after Alzheimer's disease. The main symptoms of PD are movement disorders accompanied with deficiency of neurotransmitter dopamine (DA) in the striatum due to cell death of the nigrostriatal DA neurons. Two main histopathological hallmarks exist in PD: cytosolic inclusion bodies termed Lewy bodies that mainly consist of α-synuclein protein, the oligomers of which produced by misfolding are regarded to be neurotoxic, causing DA cell death; and black pigments termed neuromelanin (NM) that are contained in DA neurons and markedly decrease in PD. The synthesis of human NM is regarded to be similar to that of melanin in melanocytes; melanin synthesis in skin is via DOPAquinone (DQ) by tyrosinase, whereas NM synthesis in DA neurons is via DAquinone (DAQ) by tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC). DA in cytoplasm is highly reactive and is assumed to be oxidized spontaneously or by an unidentified tyrosinase to DAQ and then, synthesized to NM. Intracellular NM accumulation above a specific threshold has been reported to be associated with DA neuron death and PD phenotypes. This review reports recent progress in the biosynthesis and pathophysiology of NM in PD.
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Center for Research Promotion and Support, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Akira Nakashima
- Department of Physiological Chemistry, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Hirohisa Watanabe
- Department of Neurology, School of Medicine, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (S.I.); (K.W.)
| |
Collapse
|
11
|
Segura-Aguilar J, Paris I. Mechanisms of Dopamine Oxidation and Parkinson’s Disease. HANDBOOK OF NEUROTOXICITY 2022:1433-1468. [DOI: 10.1007/978-3-031-15080-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Interweaving of Reactive Oxygen Species and Major Neurological and Psychiatric Disorders. ANNALES PHARMACEUTIQUES FRANÇAISES 2021; 80:409-425. [PMID: 34896378 DOI: 10.1016/j.pharma.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species are found to be having a wide range of biological effects ranging from regulating functions in normal physiology to alteration and damaging various processes and cell components causing a number of diseases. Mitochondria is an important organelle responsible for energy production and in many signalling mechanisms. The electron transport chain in mitochondria where oxidative phosphorylation takes place is also coupled with the generation of reactive oxygen species (ROS). Changes in normal homeostasis and overproduction of reactive oxygen species by various sources are found to be involved in multiple neurological and major neurodegenerative diseases. This review summarises the role of reactive oxygen species and the mechanism of neuronal loss in major neuronal disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Depression, and Schizophrenia.
Collapse
|
13
|
Riederer P, Monoranu C, Strobel S, Iordache T, Sian-Hülsmann J. Iron as the concert master in the pathogenic orchestra playing in sporadic Parkinson's disease. J Neural Transm (Vienna) 2021; 128:1577-1598. [PMID: 34636961 PMCID: PMC8507512 DOI: 10.1007/s00702-021-02414-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
About 60 years ago, the discovery of a deficiency of dopamine in the nigro-striatal system led to a variety of symptomatic therapeutic strategies to supplement dopamine and to substantially improve the quality of life of patients with Parkinson's disease (PD). Since these seminal developments, neuropathological, neurochemical, molecular biological and genetic discoveries contributed to elucidate the pathology of PD. Oxidative stress, the consequences of reactive oxidative species, reduced antioxidative capacity including loss of glutathione, excitotoxicity, mitochondrial dysfunction, proteasomal dysfunction, apoptosis, lysosomal dysfunction, autophagy, suggested to be causal for ɑ-synuclein fibril formation and aggregation and contributing to neuroinflammation and neural cell death underlying this devastating disorder. However, there are no final conclusions about the triggered pathological mechanism(s) and the follow-up of pathological dysfunctions. Nevertheless, it is a fact, that iron, a major component of oxidative reactions, as well as neuromelanin, the major intraneuronal chelator of iron, undergo an age-dependent increase. And ageing is a major risk factor for PD. Iron is significantly increased in the substantia nigra pars compacta (SNpc) of PD. Reasons for this finding include disturbances in iron-related import and export mechanisms across the blood-brain barrier (BBB), localized opening of the BBB at the nigro-striatal tract including brain vessel pathology. Whether this pathology is of primary or secondary importance is not known. We assume that there is a better fit to the top-down hypotheses and pathogens entering the brain via the olfactory system, then to the bottom-up (gut-brain) hypothesis of PD pathology. Triggers for the bottom-up, the dual-hit and the top-down pathologies include chemicals, viruses and bacteria. If so, hepcidin, a regulator of iron absorption and its distribution into tissues, is suggested to play a major role in the pathogenesis of iron dyshomeostasis and risk for initiating and progressing ɑ-synuclein pathology. The role of glial components to the pathology of PD is still unknown. However, the dramatic loss of glutathione (GSH), which is mainly synthesized in glia, suggests dysfunction of this process, or GSH uptake into neurons. Loss of GSH and increase in SNpc iron concentration have been suggested to be early, may be even pre-symptomatic processes in the pathology of PD, despite the fact that they are progression factors. The role of glial ferritin isoforms has not been studied so far in detail in human post-mortem brain tissue and a close insight into their role in PD is called upon. In conclusion, "iron" is a major player in the pathology of PD. Selective chelation of excess iron at the site of the substantia nigra, where a dysfunction of the BBB is suggested, with peripherally acting iron chelators is suggested to contribute to the portfolio and therapeutic armamentarium of anti-Parkinson medications.
Collapse
Affiliation(s)
- P Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany. .,Department of Psychiatry, University of Southern Denmark, Odense, Denmark.
| | - C Monoranu
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - S Strobel
- Institute of Pathology, Department of Neuropathology, University of Wuerzburg, Wuerzburg, Germany
| | - T Iordache
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Târgu Mureș, Romania
| | - J Sian-Hülsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, Nairobi, 00100, Kenya
| |
Collapse
|
14
|
Tan S, Hartono S, Welton T, Ann CN, Lim SL, Koh TS, Li H, Setiawan F, Ng S, Chia N, Liu S, Mark Haacke E, King Tan E, Chew Seng Tan L, Ling Chan L. Utility of quantitative susceptibility mapping and diffusion kurtosis imaging in the diagnosis of early Parkinson's disease. NEUROIMAGE-CLINICAL 2021; 32:102831. [PMID: 34619654 PMCID: PMC8503579 DOI: 10.1016/j.nicl.2021.102831] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 01/19/2023]
Abstract
Putamen susceptibility value was higher in PD than controls one year into diagnosis. Putamen susceptibility value was associated with clinical motor scores in early PD. Mean diffusivity revealed greater cellular loss in the lateral substantial nigra. Putamen and caudate microstructural degradation were driven by radial diffusivity. A composite putamen-caudate DKI-QSM marker classified early PD from controls.
Objective To investigate the utility of quantitative susceptibility mapping (QSM) and diffusion kurtosis imaging (DKI) as complementary tools in characterizing pathological changes in the deep grey nuclei in early Parkinson’s disease (PD) and their clinical correlates to aid in diagnosis of PD. Method Patients with a diagnosis of PD made within a year and age-matched healthy controls were recruited. All participants underwent clinical evaluation using the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS III) and Hoehn & Yahr stage (H&Y), and brain 3 T MRI including QSM and DKI. Regions-of-interest (ROIs) in the caudate nucleus, putamen, globus pallidus, and medial and lateral substantia nigra (SN) were manually drawn to compare the mean susceptibility (representing iron deposition) and DKI indices (representing restricted water diffusion) between PD patients and healthy controls and in correlation with MDS-UPDRS III and H&Y, focusing on susceptibility value, mean diffusivity (MD) and mean kurtosis (MK). Results There were forty-seven PD patients (aged 68.7 years, 51% male, disease duration 0.78 years) and 16 healthy controls (aged 67.4 years, 63% male). Susceptibility value was increased in PD in all ROIs except the caudate, and was significantly different after multiple comparison correction in the putamen (PD: 64.75 ppb, HC: 44.61 ppb, p = 0.004). MD was significantly higher in PD in the lateral SN, putamen and caudate, the regions with the lowest susceptibility value. In PD patients, we found significant association between the MDS-UPDRS III score and susceptibility value in the putamen after correcting for age and sex (β = 0.21, p = 0.003). A composite DKI-QSM diagnostic marker based on these findings successfully differentiated the groups (p < 0.0001) and had “good” classification performance (AUC = 0.88). Conclusions QSM and DKI are complementary tools allowing a better understanding of the complex contribution of iron deposition and microstructural changes in the pathophysiology of PD.
Collapse
Affiliation(s)
- Samantha Tan
- Singapore General Hospital, Singapore, Singapore
| | - Septian Hartono
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Thomas Welton
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Chu Ning Ann
- Singapore General Hospital, Singapore, Singapore; National Neuroscience Institute, Singapore, Singapore
| | - Soo Lee Lim
- Singapore General Hospital, Singapore, Singapore; National Heart Centre Singapore, Singapore, Singapore
| | - Tong San Koh
- Duke-NUS Graduate Medical School, Singapore, Singapore; National Cancer Centre Singapore, Singapore, Singapore
| | - Huihua Li
- Singapore General Hospital, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Samuel Ng
- National Neuroscience Institute, Singapore, Singapore
| | - Nicole Chia
- National Neuroscience Institute, Singapore, Singapore
| | - Saifeng Liu
- MRI Institute for Biomedical Research, Bingham Farms, MI, USA
| | - E Mark Haacke
- MRI Institute for Biomedical Research, Bingham Farms, MI, USA; Wayne State University, Detroit, MI, USA
| | - Eng King Tan
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Louis Chew Seng Tan
- National Neuroscience Institute, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ling Ling Chan
- Singapore General Hospital, Singapore, Singapore; Duke-NUS Graduate Medical School, Singapore, Singapore.
| |
Collapse
|
15
|
Korzhevskii DE, Kirik OV, Guselnikova VV, Tsyba DL, Fedorova EA, Grigorev IP. Changes in cytoplasmic and extracellular neuromelanin in human substantia nigra with normal aging. Eur J Histochem 2021; 65. [PMID: 34468106 PMCID: PMC8419629 DOI: 10.4081/ejh.2021.3283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 01/26/2023] Open
Abstract
Neuromelanin (NM) is a dark polymer pigment produced in certain populations of catecholaminergic neurons in the brain. It is present in various areas of the human brain, most often in the substantia nigra (SN) pars compacta and the locus coeruleus, the main centers of dopaminergic and noradrenergic innervation, respectively. Interest in NM has revived in recent years due to the alleged link between NM and the particular vulnerability of NM-containing neurons to neurodegeneration. The aim of this work was to study the structural, cytochemical, and localization features of cytoplasmic and extracellular NM (eNM) in the human SN pars compacta during normal aging. Sections of human SN from young/middle-aged adults (25 to 51 years old, n=7) and older adults (60 to 78 years old, n=5), all of which had no neurological disorders, were stained histochemically for metals (Perls’ reaction, Mayer's hematoxylin) and immunohistochemically for tyrosine hydroxylase (TH), Iba- 1, and CD68. It was shown that dopaminergic neurons in SN pars compacta differ in the amount of NM and the intensity of TH-immunoreactivity. The number of NM-containing neurons with decreased TH-immunoreactivity positively correlates with age. eNM is present in SN pars compacta in both young/middle-aged and older adults. The number of eNM accumulations increases with aging. Cytoplasmic and eNM are predominantly not stained using histochemical methods for detecting metals in people of all ages. We did not detect the appearance of amoeboid microglia in human SN pars compacta with aging, but we found an age-related increase in microglial phagocytic activity. The absence of pronounced microgliosis, as well as a pronounced loss of NM-containing neurons, indicate the absence of neuroinflammation in human SN pars compacta during normal aging.
Collapse
Affiliation(s)
- Dmitrii E Korzhevskii
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Olga V Kirik
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Valeriia V Guselnikova
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Darya L Tsyba
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Elena A Fedorova
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| | - Igor P Grigorev
- Department of General and Special Morphology, Institute of Experimental Medicine, Saint Petersburg.
| |
Collapse
|
16
|
Rizzollo F, More S, Vangheluwe P, Agostinis P. The lysosome as a master regulator of iron metabolism. Trends Biochem Sci 2021; 46:960-975. [PMID: 34384657 DOI: 10.1016/j.tibs.2021.07.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/05/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022]
Abstract
Intracellular iron fulfills crucial cellular processes, including DNA synthesis and mitochondrial metabolism, but also mediates ferroptosis, a regulated form of cell death driven by lipid-based reactive oxygen species (ROS). Beyond their established role in degradation and recycling, lysosomes occupy a central position in iron homeostasis and integrate metabolic and cell death signals emanating from different subcellular sites. We discuss the central role of the lysosome in preserving iron homeostasis and provide an integrated outlook of the regulatory circuits coupling the lysosomal system to the control of iron trafficking, interorganellar crosstalk, and ferroptosis induction. We also discuss novel studies unraveling how deregulated lysosomal iron-handling functions contribute to cancer, neurodegeneration, and viral infection, and can be harnessed for therapeutic interventions.
Collapse
Affiliation(s)
- Francesca Rizzollo
- Laboratory of Cell Death and Research, Vlaams Instituut voor Biotechnologie (VIB)-Katholieke Universiteit (KU) Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cell Death and Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Sanket More
- Laboratory of Cell Death and Research, Vlaams Instituut voor Biotechnologie (VIB)-Katholieke Universiteit (KU) Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cell Death and Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Patrizia Agostinis
- Laboratory of Cell Death and Research, Vlaams Instituut voor Biotechnologie (VIB)-Katholieke Universiteit (KU) Leuven Center for Cancer Biology, Leuven, Belgium; Laboratory of Cell Death and Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
17
|
Sian-Hulsmann J, Riederer P. The Nigral Coup in Parkinson's Disease by α-Synuclein and Its Associated Rebels. Cells 2021; 10:598. [PMID: 33803185 PMCID: PMC8000327 DOI: 10.3390/cells10030598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Hoeppel-Platz 1, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
- Department Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
18
|
Shen Y, Wu Q, Shi J, Zhou S. Regulation of SIRT3 on mitochondrial functions and oxidative stress in Parkinson's disease. Biomed Pharmacother 2020; 132:110928. [PMID: 33128944 DOI: 10.1016/j.biopha.2020.110928] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Sirtuin-3 (SIRT3) is a NAD+-dependent protein deacetylase that is located in mitochondria, regulating mitochondrial proteins and maintaining cellular antioxidant status. Increasing evidence demonstrates that SIRT3 plays a role in degenerative disorders including Parkinson's disease (PD), which is a devastating nervous system disease currently with no effective treatments available. Although the etiology of PD is still largely ambiguous, substantial evidence indicates that mitochondrial dysfunction and oxidative stress play major roles in the pathogenesis of PD. The imbalance of reactive oxygen species (ROS) production and detoxification leads to oxidative stress that can accelerate the progression of PD. By causing conformational changes in the deacetylated proteins SIRT3 modulates the activities and biological functions of a variety of proteins involved in mitochondrial antioxidant defense and various mitochondrial functions. Increasingly more studies have suggested that upregulation of SIRT3 confers beneficial effect on neuroprotection in various PD models. This review discusses the mechanism by which SIRT3 regulates intracellular oxidative status and mitochondrial function with an emphasis in discussing in detail the regulation of SIRT3 on each component of the five complexes of the mitochondrial respiratory chain and mitochondrial antioxidant defense, as well as the pharmacological regulation of SIRT3 in light of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Yanhua Shen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnocentric of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563003, China.
| |
Collapse
|
19
|
Salkov VN, Khudoyerkov RM. [Changes in iron content in brain structures during aging and associated neurodegenerative diseases]. Arkh Patol 2020; 82:73-78. [PMID: 33054036 DOI: 10.17116/patol20208205173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The literature data on changes in the content of iron and its metabolites in brain structures during aging and neurodegenerative diseases (Parkinson's disease - PD and Alzheimer's disease - AD) are analyzed. It was revealed that with aging, the iron content in nigrostriatal formations of brain changes: the level of non-heme iron and ferritin increases and neuromelanin also accumulates in neurons of black substance. The accumulation of neuromelanin in combination with increase in ferritin content can be considered as a morphochemical sign of neuroprotective effect of nervous tissue during aging. The iron level in PD and AD compared with that during physiological aging continues to increase, and the ability of chelating agents to bind iron decreases (ferritin in neuroglia cells and neuromelanin in neurons), which activates the mechanisms of cell destruction. As a result, in PD, the aggregation of α-synuclein is disrupted, which leads to the formation of Levi bodies, and in AD, the amyloid beta precursor protein (APP) undergoes proteolysis and this leads to the formation of amyloid plaques, which triggers subsequent neurodegenerative changes, including the death of neurons.
Collapse
Affiliation(s)
- V N Salkov
- Scientific Center of Neurology, Moscow, Russia
| | | |
Collapse
|
20
|
D’Mello SR, Kindy MC. Overdosing on iron: Elevated iron and degenerative brain disorders. Exp Biol Med (Maywood) 2020; 245:1444-1473. [PMID: 32878460 PMCID: PMC7553095 DOI: 10.1177/1535370220953065] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT Brain degenerative disorders, which include some neurodevelopmental disorders and age-associated diseases, cause debilitating neurological deficits and are generally fatal. A large body of emerging evidence indicates that iron accumulation in neurons within specific regions of the brain plays an important role in the pathogenesis of many of these disorders. Iron homeostasis is a highly complex and incompletely understood process involving a large number of regulatory molecules. Our review provides a description of what is known about how iron is obtained by the body and brain and how defects in the homeostatic processes could contribute to the development of brain diseases, focusing on Alzheimer's disease and Parkinson's disease as well as four other disorders belonging to a class of inherited conditions referred to as neurodegeneration based on iron accumulation (NBIA) disorders. A description of potential therapeutic approaches being tested for each of these different disorders is provided.
Collapse
Affiliation(s)
| | - Mark C Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
- James A. Haley Veterans Affairs Medical Center, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Kurzawa-Akanbi M, Keogh M, Tsefou E, Ramsay L, Johnson M, Keers S, Wsa Ochieng L, McNair A, Singh P, Khan A, Pyle A, Hudson G, Ince PG, Attems J, Burn J, Chinnery PF, Morris CM. Neuropathological and biochemical investigation of Hereditary Ferritinopathy cases with ferritin light chain mutation: Prominent protein aggregation in the absence of major mitochondrial or oxidative stress. Neuropathol Appl Neurobiol 2020; 47:26-42. [PMID: 32464705 DOI: 10.1111/nan.12634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023]
Abstract
AIMS Neuroferritinopathy (NF) or hereditary ferritinopathy (HF) is an autosomal dominant movement disorder due to mutation in the light chain of the iron storage protein ferritin (FTL). HF is the only late-onset neurodegeneration with brain iron accumulation disorder and study of HF offers a unique opportunity to understand the role of iron in more common neurodegenerative syndromes. METHODS We carried out pathological and biochemical studies of six individuals with the same pathogenic FTL mutation. RESULTS CNS pathological changes were most prominent in the basal ganglia and cerebellar dentate, echoing the normal pattern of brain iron accumulation. Accumulation of ferritin and iron was conspicuous in cells with a phenotype suggesting oligodendrocytes, with accompanying neuronal pathology and neuronal loss. Neurons still survived, however, despite extensive adjacent glial iron deposition, suggesting neuronal loss is a downstream event. Typical age-related neurodegenerative pathology was not normally present. Uniquely, the extensive aggregates of ubiquitinated ferritin identified indicate that abnormal FTL can aggregate, reflecting the intrinsic ability of FTL to self-assemble. Ferritin aggregates were seen in neuronal and glial nuclei showing parallels with Huntington's disease. There was neither evidence of oxidative stress activation nor any significant mitochondrial pathology in the affected basal ganglia. CONCLUSIONS HF shows hallmarks of a protein aggregation disorder, in addition to iron accumulation. Degeneration in HF is not accompanied by age-related neurodegenerative pathology and the lack of evidence of oxidative stress and mitochondrial damage suggests that these are not key mediators of neurodegeneration in HF, casting light on other neurodegenerative diseases characterized by iron deposition.
Collapse
Affiliation(s)
- M Kurzawa-Akanbi
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - M Keogh
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - E Tsefou
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - L Ramsay
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - M Johnson
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Keers
- Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - L Wsa Ochieng
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A McNair
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - P Singh
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK
| | - A Khan
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - A Pyle
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - G Hudson
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK
| | - P G Ince
- Academic Unit of Pathology, Royal Hallamshire Hospital, Sheffield, UK
| | - J Attems
- Cellular Pathology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J Burn
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, International Centre for Life, Newcastle upon Tyne, UK
| | - P F Chinnery
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, Cambridge Biomedical Campus, Cambridge University, Cambridge, UK
| | - C M Morris
- Wolfson Building, Newcastle University, Newcastle upon Tyne, UK.,Newcastle Brain Tissue Resource, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
22
|
Cheng Q, Huang J, Liang J, Ma M, Zhao Q, Lei X, Shi C, Luo L. Evaluation of abnormal iron distribution in specific regions in the brains of patients with Parkinson's disease using quantitative susceptibility mapping and R2 * mapping. Exp Ther Med 2020; 19:3778-3786. [PMID: 32346442 PMCID: PMC7185157 DOI: 10.3892/etm.2020.8645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The primary aim of the present study was to evaluate abnormal iron distribution in specific regions of the brains in patients with Parkinson's disease (PD) using quantitative susceptibility mapping (QSM) and R2* mapping, and to compare the diagnostic performances of QSM and R2* mapping in differentiating patients with PD with that in normal controls. A total of 25 patients with idiopathic PD and 28 sex-and age-matched normal controls were included in the present study and their brains investigated using a 3T scanner. Magnetic resonance imaging techniques, namely, QSM and R2* mapping, were applied to generate susceptibility and R2* values. The differences in susceptibility and R2* values in deep grey matter nuclei between patients with PD and the normal controls were compared using independent samples t-tests. The abilities of QSM and R2* mapping to classify patients with PD and normal controls were analyzed using receiver operating characteristic curves. Correlation analyses between imaging parameters (e.g. susceptibility and R2* values) and clinical feature (disease severity assessed using the Hoehn and Yahr score) were performed. The intra-class correlation coefficient (ICC) for susceptibility (ICC=0.977; P<0.001) and R2* (ICC=0.945; P<0.001) values between two neuro-radiologists were >0.81, showing excellent inter-rater agreement. The susceptibility values were significantly increased in the substantia nigra (SN) and red nucleus, but were decreased in the putamen of patients with PD compared with that in the corresponding brain regions of normal controls. However, increased R2* values were observed only in the SN in patients with PD. QSM showed higher sensitivity and specificity compared with R2* mapping to separate the patients with PD from the normal controls. There were no significant correlations between the susceptibility/R2* values and clinical features in all targeted regions of the brains in patients with PD. In conclusion, both QSM and R2* mapping are feasible to calculate the iron levels in human brains, and QSM provides a more sensitive and accurate method to assess regional abnormal iron distribution in patients with PD.
Collapse
Affiliation(s)
- Qingqing Cheng
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jiaxi Huang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Jianye Liang
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Mengjie Ma
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Qian Zhao
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Xueping Lei
- Key Laboratory of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510799, P.R. China
| | - Changzheng Shi
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
23
|
The clinical application of nigrosome 1 detection on high-resolution susceptibility-weighted imaging in the evaluation of suspected Parkinsonism: The real-world performance and pitfalls. PLoS One 2020; 15:e0231010. [PMID: 32240236 PMCID: PMC7117705 DOI: 10.1371/journal.pone.0231010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 11/20/2022] Open
Abstract
Purpose To evaluate the real-world diagnostic performance of high-resolution susceptibility-weighted imaging (HR-SWI) and investigate whether the reader’s predictions can be used to find cases where HR-SWI finding and final clinical diagnosis matched. Methods This retrospective study enrolled patients with suspected Parkinsonism (n = 48) or volunteers with other intracranial pathologies (n = 31) who underwent brain magnetic resonance imaging (MRI) including HR-SWI, which was used to evaluate nigrosome 1 (NG1). All patients with suspected Parkinsonism underwent N-3-fluoropropyl-2-carbomethoxy-3-4-iodophenyl nortropane (FP-CIT) positron emission tomography and a clinical diagnosis was made by a neurologist. The HR-SWI data were qualitatively analyzed by two independent reviewers. A consensus reading was performed and a diagnostic confidence score was assigned. According to final clinical diagnosis, diagnostic sensitivity, specificity, and accuracy were calculated. Receiver operating characteristic (ROC) curve analysis was used to examine whether the diagnostic confidence score could be used to identify HR-SWI finding—final clinical diagnosis matched cases. Results Of the 48 patients with suspected Parkinsonism, 31 were diagnosed with idiopathic Parkinson’s disease, and three with multiple system atrophy. The remaining 14 patients were included in the disease control group. Of the 31 volunteers, 10 subjects were excluded due to possibility of nigrostriatal degeneration and finally 21 subjects were enrolled as controls with non-Parkinsonism pathology (non-PD control). After consensus reading, 25 subjects were classified as true positive and 28 as true negative, according to HR-SWI findings. The calculated diagnostic sensitivity, specificity, and accuracy were 73.5%, 80.0%, and 76.8%, respectively. With using diagnostic concordance score, the area under the ROC curve for the detection of concordance case was 0.83 (95% CI: 0.72–0.91, p < 0.05). Conclusion The diagnostic performance of NG1 detection using HR-SWI with 3T MRI was within acceptable range. Using the reader's diagnostic confidence could be helpful to find cases which HR-SWI finding and final clinical conclusion match. So HR-SWI may be of added value in the evaluation of suspected Parkinsonism.
Collapse
|
24
|
Abstract
While the initial causes of Parkinson's disease (PD) are not clearly defined, iron deposition has long been implicated in the pathogenesis of PD. The substantia nigra of PD patients, where the selective loss of dopaminergic neurons occurs, show a fairly selective and significant elevation in iron contents. However, the question remains whether iron deposition represents the initiation cause or merely the consequence of nigral degeneration. Here, we describe existing findings regarding the interaction of iron with neuromelanin and alpha synuclein, the iron deposition in experimental animal model of PD and sporadic and familial PD patients, and the treatment option involving the use of iron chelators for targeting the aberration of iron level in brain. This review may provide us a better understanding of the role of iron in PD to address the question of cause or consequence.
Collapse
|
25
|
Varešlija D, Tipton KF, Davey GP, McDonald AG. 6-Hydroxydopamine: a far from simple neurotoxin. J Neural Transm (Vienna) 2020; 127:213-230. [DOI: 10.1007/s00702-019-02133-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/13/2022]
|
26
|
Ben-Shachar D. The bimodal mechanism of interaction between dopamine and mitochondria as reflected in Parkinson's disease and in schizophrenia. J Neural Transm (Vienna) 2019; 127:159-168. [PMID: 31848775 DOI: 10.1007/s00702-019-02120-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) and schizophrenia (SZ) are two CNS disorders in which dysfunctions in the dopaminergic system and mitochondria are major pathologies. The symptomology of both, PD a neurodegenerative disorder and SZ a neurodevelopmental disorder, is completely different. However, the pharmacological treatment of each of the diseases can cause a shift of symptoms into those characteristic of the other disease. In this review, I describe a pathological interaction between dopamine and mitochondria in both disorders, which due to differences in the extent of oxidative stress leads either to cell death and tissue degeneration as in PD substantia nigra pars compacta or to distorted neuronal activity, imbalanced neuronal circuitry and abnormal behavior and cognition in SZ. This review is in the honor of Moussa Youdim who introduced me to the secrets of research work. His enthusiasm, curiosity and novelty-seeking inspired me throughout my career. Thank you Moussa.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus, and B. Rappaport Faculty of Medicine Technion-Israel Institute of Technology, POB 9649, 31096, Haifa, Israel.
| |
Collapse
|
27
|
Disubstituted Dithiolethione ACDT Exerts Neuroprotective Effects Against 6-Hydroxydopamine-Induced Oxidative Stress in SH-SY5Y Cells. Neurochem Res 2019; 44:1878-1892. [DOI: 10.1007/s11064-019-02823-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
|
28
|
Alvarez-Cordoba M, Villanueva-Paz M, Villalón-García I, Povea-Cabello S, Suárez-Rivero JM, Talaverón-Rey M, Abril-Jaramillo J, Vintimilla-Tosi AB, Sánchez-Alcázar JA. Precision medicine in pantothenate kinase-associated neurodegeneration. Neural Regen Res 2019; 14:1177-1185. [PMID: 30804242 PMCID: PMC6425824 DOI: 10.4103/1673-5374.251203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurodegeneration with brain iron accumulation is a broad term that describes a heterogeneous group of progressive and invalidating neurologic disorders in which iron deposits in certain brain areas, mainly the basal ganglia. The predominant clinical symptoms include spasticity, progressive dystonia, Parkinson’s disease-like symptoms, neuropsychiatric alterations, and retinal degeneration. Among the neurodegeneration with brain iron accumulation disorders, the most frequent subtype is pantothenate kinase-associated neurodegeneration (PKAN) caused by defects in the gene encoding the enzyme pantothenate kinase 2 (PANK2) which catalyzed the first reaction of the coenzyme A biosynthesis pathway. Currently there is no effective treatment to prevent the inexorable course of these disorders. The aim of this review is to open up a discussion on the utility of using cellular models derived from patients as a valuable tool for the development of precision medicine in PKAN. Recently, we have described that dermal fibroblasts obtained from PKAN patients can manifest the main pathological changes of the disease such as intracellular iron accumulation accompanied by large amounts of lipofuscin granules, mitochondrial dysfunction and a pronounced increase of markers of oxidative stress. In addition, PKAN fibroblasts showed a morphological senescence-like phenotype. Interestingly, pantothenate supplementation, the substrate of the PANK2 enzyme, corrected all pathophysiological alterations in responder PKAN fibroblasts with low/residual PANK2 enzyme expression. However, pantothenate treatment had no favourable effect on PKAN fibroblasts harbouring mutations associated with the expression of a truncated/incomplete protein. The correction of pathological alterations by pantothenate in individual mutations was also verified in induced neurons obtained by direct reprograming of PKAN fibroblasts. Our observations indicate that pantothenate supplementation can increase/stabilize the expression levels of PANK2 in specific mutations. Fibroblasts and induced neurons derived from patients can provide a useful tool for recognizing PKAN patients who can respond to pantothenate treatment. The presence of low but significant PANK2 expression which can be increased in particular mutations gives valuable information which can support the treatment with high dose of pantothenate. The evaluation of personalized treatments in vitro of fibroblasts and neuronal cells derived from PKAN patients with a wide range of pharmacological options currently available, and monitoring its effect on the pathophysiological changes, can help for a better therapeutic strategy. In addition, these cell models will be also useful for testing the efficacy of new therapeutic options developed in the future.
Collapse
Affiliation(s)
- Mónica Alvarez-Cordoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marina Villanueva-Paz
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| | | | | | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Sevilla, Spain
| |
Collapse
|
29
|
Sy KHS, Ho LWC, Lau WCY, Ko H, Choi CHJ. Morphological Diversity, Protein Adsorption, and Cellular Uptake of Polydopamine-Coated Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14033-14045. [PMID: 30360612 DOI: 10.1021/acs.langmuir.8b02572] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polydopamine (PDA)-coated nanoparticles are adhesive bionanomaterials widely utilized in intracellular applications, yet how their adhesiveness affects their colloidal stability and their interactions with serum proteins and mammalian cells remain unclear. In this work, we systematically investigate the combined effects of dopamine (DA) concentration and polymerization time (both reaction parameters spanning 2 orders of magnitude) on the morphological diversity of PDA-coated nanoparticles by coating PDA onto gold nanoparticle cores. Independent of the DA concentration, Au@PDA NPs remain largely aggregated upon several hours of limited polymerization; interestingly, extended polymerization for 2 days or longer yield randomly aggregated NPs, nearly monodisperse NPs, or worm-like NP chains in the ascending order of DA concentration. Upon exposure to serum proteins, the specific type of proteins adsorbed to the Au@PDA NPs strongly depends upon the DA concentration. As DA concentration increases, less albumin and more hemoglobin subunits adhere. Moreover, cellular uptake is a strong function of polymerization time. Serum-stabilized Au@PDA NPs prepared by limited polymerization enter Neuro-2a and HeLa cancer cells more abundantly than those prepared by extended polymerization. Our data underscore the importance of DA concentration and polymerization time for tuning the morphology and degree of intracellular delivery of PDA-coated nanostructures.
Collapse
|
30
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. NANO RESEARCH 2018; 11:4955-4984. [PMID: 30450165 PMCID: PMC6233906 DOI: 10.1007/s12274-018-2092-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 05/03/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are essential for normal physiological processes and play important roles in cell signaling, immunity, and tissue homeostasis. However, excess radical species are implicated in the development and augmented pathogenesis of various diseases. Several antioxidants may restore the chemical balance, but their use is limited by disappointing results of clinical trials. Nanoparticles are an attractive therapeutic alternative because they can change the biodistribution profile of antioxidants, and possess intrinsic ability to scavenge RONS. Herein, we review the types of RONS, how they are implicated in several diseases, and the types of nanoparticles with inherent antioxidant capability, their mechanisms of action, and their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
31
|
Isolation and Characterization of NP-POL Nonapeptide for Possible Therapeutic Use in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3760124. [PMID: 30116478 PMCID: PMC6079319 DOI: 10.1155/2018/3760124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/10/2018] [Indexed: 11/17/2022]
Abstract
Colostrum and milk are the initial mammalian nourishment and rich reservoir of essential nutrients for newborn development. Bioactive peptides isolated from natural sources, such as colostrum, serve as endogenous regulators and can be used as alternative therapeutic agents in the treatment of neurodegenerative diseases. One example is the previously unknown NP-POL nonapeptide isolated from Colostrinin. In the present study, we investigated a method of NP-POL nonapeptide isolation using Bio-Gel P2 molecular sieve chromatography. We showed the protective effect of NP-POL on 6-hydroxydopamine- (6-OHDA-) induced neurotoxicity using rat adrenal pheochromocytoma (PC12 Tet On) cells. Treatment of PC12 cells with NP-POL nonapeptide reduced 6-OHDA-induced apoptosis and caused transient phosphorylation of extracellular signal-regulated kinases (ERK 1/2), which were shown to promote cell survival. NP-POL nonapeptide also protected neuronal cells against oxidative injury induced by 6-OHDA. These results showed a potential use of NP-POL in the therapy of Parkinson's disease.
Collapse
|
32
|
Clinical utility of visualisation of nigrosome-1 in patients with Parkinson’s disease. Eur Radiol 2017; 28:718-726. [DOI: 10.1007/s00330-017-4950-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/30/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
33
|
Regulatory Role of Redox Balance in Determination of Neural Precursor Cell Fate. Stem Cells Int 2017; 2017:9209127. [PMID: 28804501 PMCID: PMC5540383 DOI: 10.1155/2017/9209127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/22/2017] [Indexed: 12/15/2022] Open
Abstract
In 1990s, reports of discovery of a small group of cells capable of proliferation and contribution to formation of new neurons in the central nervous system (CNS) reversed a century-old concept on lack of neurogenesis in the adult mammalian brain. These cells are found in all stages of human life and contribute to normal cellular turnover of the CNS. Therefore, the identity of regulating factors that affect their proliferation and differentiation is a highly noteworthy issue for basic scientists and their clinician counterparts for therapeutic purposes. The cues for such control are embedded in developmental and environmental signaling through a highly regulated tempo-spatial expression of specific transcription factors. Novel findings indicate the importance of reactive oxygen species (ROS) in the regulation of this signaling system. The elusive nature of ROS signaling in many vital processes from cell proliferation to cell death creates a complex literature in this field. Here, we discuss the emerging thoughts on the importance of redox regulation of proliferation and maintenance in mammalian neural stem and progenitor cells under physiological and pathological conditions. The current knowledge on ROS-mediated changes in redox-sensitive proteins that govern the molecular mechanisms in proliferation and differentiation of these cells is reviewed.
Collapse
|
34
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|
35
|
Al-Radaideh AM, Rababah EM. The role of magnetic resonance imaging in the diagnosis of Parkinson's disease: a review. Clin Imaging 2016; 40:987-96. [DOI: 10.1016/j.clinimag.2016.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 04/09/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
|
36
|
Zheng M, Liu C, Fan Y, Shi D, Zhang Y. Protective Effects of Paeoniflorin Against MPP+-induced Neurotoxicity in PC12 Cells. Neurochem Res 2016; 41:1323-34. [DOI: 10.1007/s11064-016-1834-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 01/23/2023]
|
37
|
Reimão S, Ferreira S, Nunes RG, Pita Lobo P, Neutel D, Abreu D, Gonçalves N, Campos J, Ferreira JJ. Magnetic resonance correlation of iron content with neuromelanin in the substantia nigra of early-stage Parkinson's disease. Eur J Neurol 2015; 23:368-74. [PMID: 26518135 DOI: 10.1111/ene.12838] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 08/04/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE Magnetic resonance (MR) studies have demonstrated a significant reduction of neuromelanin in the substantia nigra (SN) of Parkinson's disease (PD) patients with high accuracy for differential diagnosis compared to non-PD controls and essential tremor. However, studies state that not knowing how paramagnetic effects of iron influence neuromelanin signal is a limitation. In this study a neuromelanin-sensitive MR sequence was combined with T2* relaxometry iron quantification analysis to study the SN of early-stage PD patients to investigate the correlation between these parameters. METHODS The inclusion criteria were untreated de novo PD patients and a 2-5 year disease duration (early PD); in addition, age-matched controls were enrolled. These were studied at 3.0 T with a high-resolution T1-weighted MR sequence to visualize neuromelanin and a relaxometry sequence for iron quantification. The primary outcome was the correlation of the width of the neuromelanin high signal region and the T2* values in the lateral, central and medial segments of the SN. RESULTS Very weak correlations of T2* values with neuromelanin width, positive for global and negative for the medial and lateral SN segments, were found in both PD groups and control subjects. The SN neuromelanin width was markedly reduced in the de novo and early PD groups compared with controls in all SN segments, but no significant difference in T2* values was found between the groups. CONCLUSIONS The SN neuromelanin signal does not have a significant correlation with iron content in PD patients or controls. The neuromelanin MR signal reduction in PD does not seem to be significantly influenced by paramagnetic iron effects.
Collapse
Affiliation(s)
- S Reimão
- Neurological Imaging Department, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - S Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - R G Nunes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - P Pita Lobo
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Neurology Department, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,CNS - Campus Neurológico Sénior, Torres Vedras, Portugal
| | - D Neutel
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Neurology Department, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - D Abreu
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - N Gonçalves
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - J Campos
- Neurological Imaging Department, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - J J Ferreira
- Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.,Neurology Department, Hospital de Santa Maria - Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,CNS - Campus Neurológico Sénior, Torres Vedras, Portugal.,Laboratory of Clinical Pharmacology and Therapeutics, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
38
|
He N, Ling H, Ding B, Huang J, Zhang Y, Zhang Z, Liu C, Chen K, Yan F. Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping. Hum Brain Mapp 2015; 36:4407-20. [PMID: 26249218 DOI: 10.1002/hbm.22928] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/13/2015] [Accepted: 07/23/2015] [Indexed: 02/06/2023] Open
Abstract
In Parkinson's disease (PD), iron elevation in specific brain regions as well as selective loss of dopaminergic neurons is a major pathologic feature. A reliable quantitative measure of iron deposition is a potential biomarker for PD and may contribute to the investigation of iron-mediated PD. The primary purpose of this study is to assess iron variations in multiple deep grey matter nuclei in early PD with a novel MRI technique, quantitative susceptibility mapping (QSM). The inter-group differences of susceptibility and R2* value in deep grey matter nuclei, namely head of caudate nucleus (CN), putamen (PUT), global pallidus (GP), substantia nigra (SN), and red nucleus (RN), and the correlations between regional iron deposition and the clinical features were explored in forty-four early PD patients and 35 gender and age-matched healthy controls. Susceptibility values were found to be elevated within bilateral SN and RN contralateral to the most affected limb in early PD compared with healthy controls (HCs). The finding of increased susceptibility in bilateral SN is consistent with work on a subgroup of patients at the earliest clinical detectable state (Hoehn and Yahr [1967]: Neurology 17:427-442; Stage I). However, increased R2* values were only seen within SN contralateral to the most affected limb in the PD group when compared with controls. Furthermore, bilateral SN magnetic susceptibility positively correlated with disease duration and UPDRS-III scores in early PD. This finding supports the potential value of QSM as a non-invasive quantitative biomarker of early PD.
Collapse
Affiliation(s)
- Naying He
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huawei Ling
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- MR Research, GE Healthcare, Shanghai, China
| | | | - Chunlei Liu
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina.,Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Kemin Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Viceconte N, Burguillos MA, Herrera AJ, De Pablos RM, Joseph B, Venero JL. Neuromelanin activates proinflammatory microglia through a caspase-8-dependent mechanism. J Neuroinflammation 2015; 12:5. [PMID: 25586882 PMCID: PMC4302615 DOI: 10.1186/s12974-014-0228-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/21/2014] [Indexed: 12/27/2022] Open
Abstract
Background We have uncovered a caspase-dependent (caspase-8/caspase-3/7) signaling governing microglia activation and associated neurotoxicity. Importantly, a profuse non-nuclear activation of cleaved caspases 8 and 3 was found in reactive microglia in the ventral mesencephalon from subjects with Parkinson’s disease, thus supporting the existence of endogenous factors activating microglia through a caspase-dependent mechanism. One obvious candidate is neuromelanin, which is an efficient proinflammogen in vivo and in vitro and has been shown to have a role in the pathogenesis of Parkinson’s disease. Consequently, the goal of this study is to test whether synthetic neuromelanin activates microglia in a caspase-dependent manner. Results We found an in-vivo upregulation of CD16/32 (M1 marker) in Iba1-immunolabeled microglia in the ventral mesencephalon after neuromelanin injection. In vitro experiments using BV2 cells, a microglia-derived cell line, demonstrated that synthetic neuromelanin induced a significant chemotactic response to BV2 microglial cells, along with typical morphological features of microglia activation, increased oxidative stress and induction of pattern-recognition receptors including Toll-like receptor 2, NOD2, and CD14. Analysis of IETDase (caspase-8) and DEVDase (caspase-3/7) activities in BV2 cells demonstrated a modest but significant increase of both activities in response to neuromelanin treatment, in the absence of cell death. Conclusions Caspase-8 inhibition prevented typical features of microglia activation, including morphological changes, a high rate of oxidative stress and expression of key proinflammatory cytokines and iNOS.
Collapse
Affiliation(s)
- Nikenza Viceconte
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain. .,Present address: Department of Biosciences and Nutrition, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Miguel A Burguillos
- Centre for Neuroscience and Trauma, Blizard Institute, Queen Mary University of London, E1 2AT, London, United Kingdom.
| | - Antonio J Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| | - Rocío M De Pablos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| | - Bertrand Joseph
- Department of Oncology-Pathology, Karolinska Institutet, Cancer Centrum Karolinska, 17176, Stockholm, Sweden.
| | - José L Venero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain. .,Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Sevilla, Spain.
| |
Collapse
|
40
|
Chen D, Zhou Y, Lyons KE, Pahwa R, Reddy MB. Green Tea Consumption Reduces Oxidative Stress in Parkinson’s Disease Patients. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.56020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Kell DB, Pretorius E. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics 2014; 6:748-73. [PMID: 24549403 DOI: 10.1039/c3mt00347g] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
"Serum ferritin" presents a paradox, as the iron storage protein ferritin is not synthesised in serum yet is to be found there. Serum ferritin is also a well known inflammatory marker, but it is unclear whether serum ferritin reflects or causes inflammation, or whether it is involved in an inflammatory cycle. We argue here that serum ferritin arises from damaged cells, and is thus a marker of cellular damage. The protein in serum ferritin is considered benign, but it has lost (i.e. dumped) most of its normal complement of iron which when unliganded is highly toxic. The facts that serum ferritin levels can correlate with both disease and with body iron stores are thus expected on simple chemical kinetic grounds. Serum ferritin levels also correlate with other phenotypic readouts such as erythrocyte morphology. Overall, this systems approach serves to explain a number of apparent paradoxes of serum ferritin, including (i) why it correlates with biomarkers of cell damage, (ii) why it correlates with biomarkers of hydroxyl radical formation (and oxidative stress) and (iii) therefore why it correlates with the presence and/or severity of numerous diseases. This leads to suggestions for how one might exploit the corollaries of the recognition that serum ferritin levels mainly represent a consequence of cell stress and damage.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | | |
Collapse
|
42
|
Antioxidant potential, DNA protection, and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots. BIOMED RESEARCH INTERNATIONAL 2014; 2014:726241. [PMID: 24982907 PMCID: PMC4058516 DOI: 10.1155/2014/726241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/07/2014] [Accepted: 05/14/2014] [Indexed: 01/21/2023]
Abstract
Jurinea dolomiaea Boiss., family Compositae, is a medicinally important plant of alpine region. Its tuberous roots are used in various ailments in folk medicine. This study was undertaken to estimate total phenolic (TPC) and total flavonoid contents (TFC) and to determine anti-free radical potential by diverse in vitro antioxidant assays. Crude methanol extract (JDME) was fractionated into n-hexane (JDHE), chloroform (JDCE), ethyl acetate (JDEE), n-butanol (JDBE), and aqueous (JDAE) fractions. The results indicated that JDEE and JDCE constituted the highest amount of TFC (807 ± 7.2 mg rutin equivalent/g sample) and TPC (757 ± 9.4 mg gallic acid equivalent/g sample), respectively. Significant correlation of TFC with IC50 values was recorded for (•)OH (R (2) = 0.91), H2O2 (R (2) = 0.82), and ABTS (R (2) = 0.82) assay. It could be made clear that JDEE was the most potent in antioxidant activity as compared to others, with generally lower IC50 values for DPPH (41.1 ± 1.0 μ g/mL), ABTS (46.7 ± 0.6 μ g/mL), H2O2 (42.2 ± 0.9 μ g/mL), (•)OH (61.1 ± 1.1 μ g/mL), O2 (-) (152 ± 1.1 μ g/mL), and antilipid peroxidation (54.3 ± 1.6 μ g/mL). HPLC chromatogram of JDEE revealed the presence of catechin, caffeic acid, and rutin. The results indicated the antioxidant activities of J. dolomiaea roots and merit further investigations for their use in oxidative stress related disorders.
Collapse
|
43
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
44
|
Smeyne M, Smeyne RJ. Glutathione metabolism and Parkinson's disease. Free Radic Biol Med 2013; 62:13-25. [PMID: 23665395 PMCID: PMC3736736 DOI: 10.1016/j.freeradbiomed.2013.05.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 05/01/2013] [Accepted: 05/01/2013] [Indexed: 12/14/2022]
Abstract
It has been established that oxidative stress, defined as the condition in which the sum of free radicals in a cell exceeds the antioxidant capacity of the cell, contributes to the pathogenesis of Parkinson disease. Glutathione is a ubiquitous thiol tripeptide that acts alone or in concert with enzymes within cells to reduce superoxide radicals, hydroxyl radicals, and peroxynitrites. In this review, we examine the synthesis, metabolism, and functional interactions of glutathione and discuss how these relate to the protection of dopaminergic neurons from oxidative damage and its therapeutic potential in Parkinson disease.
Collapse
Affiliation(s)
- Michelle Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-3066
| | - Richard Jay Smeyne
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, 901-595-2830
| |
Collapse
|
45
|
Mochizuki H, Yasuda T. Iron accumulation in Parkinson's disease. J Neural Transm (Vienna) 2012; 119:1511-4. [PMID: 23070727 DOI: 10.1007/s00702-012-0905-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/05/2012] [Indexed: 01/04/2023]
Abstract
Although the exact cause of Parkinson's disease (PD) is still unknown, recent interest has been focused on the role of iron in the nigral cell death in PD. Several studies have shown that a selective and significant elevation in iron occurs in the substantia nigra of patients with PD. However, the mechanisms involved in iron accumulation also remain unclear. In this article, we describe recent findings regarding the mechanisms and potential toxic effects of iron accumulation in hereditary and sporadic PD and animal models of PD, including our genetic mouse model of PD. The review provides an opportunity to revisit the possible roles of iron accumulation in the pathogenic cascade(s) of PD.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
46
|
Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J. Dopamine oxidation and autophagy. PARKINSON'S DISEASE 2012; 2012:920953. [PMID: 22966478 PMCID: PMC3433151 DOI: 10.1155/2012/920953] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/09/2012] [Indexed: 11/17/2022]
Abstract
The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i) the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii) the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.
Collapse
Affiliation(s)
- Patricia Muñoz
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380453, Chile
| | - Sandro Huenchuguala
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380453, Chile
| | - Irmgard Paris
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380453, Chile
- Department of Basic Sciences, Santo Tomas University, Viña del Mar 2561780, Chile
| | - Juan Segura-Aguilar
- Molecular & Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Santiago 8380453, Chile
| |
Collapse
|
47
|
Neuroprotection of green tea catechins on surgical menopause-induced overactive bladder in a rat model. Menopause 2012; 19:346-54. [PMID: 22042325 DOI: 10.1097/gme.0b013e31822d652d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE A rat model of ovariectomy-induced voiding dysfunction has been established, which mimicked the urge incontinence in postmenopausal women. Previous studies have identified strong anti-inflammatory/antioxidant properties of green tea and its associated polyphenols. The aim of this study was to evaluate whether the green tea extract, epigallocatechin gallate (EGCG), could prevent an ovariectomy-induced overactive bladder. METHODS The study included 48 female Sprague-Dawley rats, which were divided into four groups. After bilateral ovariectomy during the following 6-month period, 12 rats received an intraperitoneal injection of saline, 24 rats received either a low-dose (1 μM kg(-1) d(-1)) or a high-dose (10 μM kg(-1) d(-1)) EGCG intraperitoneal injection. The sham group consisted of twelve rats that were not ovariectomized. In vivo isovolumetric cystometrograms were performed in all groups before the animals were euthanized. The immunofluorescence study used neurofilament stains to evaluate intramural nerve damage. Western immunoblots and real-time polymerase chain reaction were performed to determine M2 and M3 muscarinic cholinergic receptors (MChRs) at both protein and messenger RNA (mRNA) expressions. RESULTS Long-term ovariectomy significantly increased non-voiding contractions, whereas treatment with EGCG significantly attenuated the frequency of non-voiding contractions. Ovariectomy significantly decreased the numbers of neurofilament and increased M2 and M3 MChR protein and mRNA expressions. Treatment with EGCG restored the amount of neurofilament staining and decreased M2 and M3 MChR protein and mRNA overexpressions. CONCLUSIONS This study confirmed that ovary hormone deficiency induced overactive bladder dysfunction via intramural nerve damage and muscarinic receptor overexpression. EGCG prevented ovariectomy-induced bladder dysfunction through neuroprotective effects in a dose-dependent fashion.
Collapse
|
48
|
García-Montes JR, Boronat-García A, Drucker-Colín R. Pharmacological strategies for Parkinson’s disease. Health (London) 2012. [DOI: 10.4236/health.2012.431174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Elstner M, Müller SK, Leidolt L, Laub C, Krieg L, Schlaudraff F, Liss B, Morris C, Turnbull DM, Masliah E, Prokisch H, Klopstock T, Bender A. Neuromelanin, neurotransmitter status and brainstem location determine the differential vulnerability of catecholaminergic neurons to mitochondrial DNA deletions. Mol Brain 2011; 4:43. [PMID: 22188897 PMCID: PMC3278372 DOI: 10.1186/1756-6606-4-43] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 12/21/2011] [Indexed: 02/03/2023] Open
Abstract
Background Deletions of the mitochondrial DNA (mtDNA) accumulate to high levels in dopaminergic neurons of the substantia nigra pars compacta (SNc) in normal aging and in patients with Parkinson's disease (PD). Human nigral neurons characteristically contain the pigment neuromelanin (NM), which is believed to alter the cellular redox-status. The impact of neuronal pigmentation, neurotransmitter status and brainstem location on the susceptibility to mtDNA damage remains unclear. We quantified mtDNA deletions (ΔmtDNA) in single pigmented and non-pigmented catecholaminergic, as well as non-catecholaminergic neurons of the human SNc, the ventral tegmental area (VTA) and the locus coeruleus (LC), using laser capture microdissection and single-cell real-time PCR. Results In healthy aged individuals, ΔmtDNA levels were highest in pigmented catecholaminergic neurons (25.2 ± 14.9%), followed by non-pigmented catecholamergic (18.0 ± 11.2%) and non-catecholaminergic neurons (12.3 ± 12.3%; p < 0.001). Within the catecholaminergic population, ΔmtDNA levels were highest in dopaminergic neurons of the SNc (33.9 ± 21.6%) followed by dopaminergic neurons of the VTA (21.9 ± 12.3%) and noradrenergic neurons of the LC (11.1 ± 11.4%; p < 0.001). In PD patients, there was a trend to an elevated mutation load in surviving non-pigmented nigral neurons (27.13 ± 16.73) compared to age-matched controls (19.15 ± 11.06; p = 0.052), but levels where similar in pigmented nigral neurons of PD patients (41.62 ± 19.61) and controls (41.80 ± 22.62). Conclusions Catecholaminergic brainstem neurons are differentially susceptible to mtDNA damage. Pigmented dopaminergic neurons of the SNc show the highest ΔmtDNA levels, possibly explaining the exceptional vulnerability of the nigro-striatal system in PD and aging. Although loss of pigmented noradrenergic LC neurons also is an early feature of PD pathology, mtDNA levels are not elevated in this nucleus in healthy controls. Thus, ΔmtDNA are neither an inevitable consequence of catecholamine metabolism nor a universal explanation for the regional vulnerability seen in PD.
Collapse
Affiliation(s)
- Matthias Elstner
- Department of Neurology with Friedrich-Baur-Institute, Ludwig-Maximilians-University, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lotfipour AK, Wharton S, Schwarz ST, Gontu V, Schäfer A, Peters AM, Bowtell RW, Auer DP, Gowland PA, Bajaj NP. High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease. J Magn Reson Imaging 2011; 35:48-55. [DOI: 10.1002/jmri.22752] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 07/21/2011] [Indexed: 01/06/2023] Open
|