1
|
Sjakste N, Gajski G. A Review on Genotoxic and Genoprotective Effects of Biologically Active Compounds of Animal Origin. Toxins (Basel) 2023; 15:165. [PMID: 36828477 PMCID: PMC9961038 DOI: 10.3390/toxins15020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Envenomation by animal venoms remains a serious medical and social problem, especially in tropical countries. On the other hand, animal venoms are widely used as a source of biologically active compounds for the development of novel drugs. Numerous derivatives of animal venoms are already used in clinical practice. When analysing the mechanisms of action of animal venoms, attention is usually focused on the main target of the venom's enzymes and peptides such as neurotoxic, cytotoxic or haemorrhagic effects. In the present review, we would like to draw attention to the "hidden" effects of animal venoms and their derivatives in regard to DNA damage and/or protection against DNA damage. Alkaloids and terpenoids isolated from sponges such as avarol, ingenamine G or variolin B manifest the capability to bind DNA in vitro and produce DNA breaks. Trabectidin, isolated from a sea squirt, also binds and damages DNA. A similar action is possible for peptides isolated from bee and wasp venoms such as mastoparan, melectin and melittin. However, DNA lesions produced by the crude venoms of jellyfish, scorpions, spiders and snakes arise as a consequence of cell membrane damage and the subsequent oxidative stress, whereas certain animal venoms or their components produce a genoprotective effect. Current research data point to the possibility of using animal venoms and their components in the development of various potential therapeutic agents; however, before their possible clinical use the route of injection, molecular target, mechanism of action, exact dosage, possible side effects and other fundamental parameters should be further investigated.
Collapse
Affiliation(s)
- Nikolajs Sjakste
- Department of Medical Biochemistry, Faculty of Medicine, University of Latvia, 1004 Riga, Latvia
- Genetics and Bioinformatics, Institute of Biology, University of Latvia, 1004 Riga, Latvia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Lee SY, Han SY, Shim YJ, Han JJ, Cho D, Kim JE, Kim YH. Effect of Ginkgo Biloba Extract on N-Methyl-D-Aspartic Acid Receptor Subunit 2B Expression in a Salicylate-Induced Ototoxicity Model. Clin Exp Otorhinolaryngol 2018; 12:169-175. [PMID: 30360042 PMCID: PMC6453795 DOI: 10.21053/ceo.2018.00983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/14/2018] [Indexed: 12/31/2022] Open
Abstract
Objectives. Sodium salicylate (SS) is well known for its ototoxic properties that induce functional and morphological changes in the cochlea and brain. Ginkgo biloba extract (GBE) has been widely used for treatment of various neurodegenerative diseases; however, its effects on salicylate-induced ototoxicity remain unclear. Herein, we examined the effects of EGb 761 (EGb), a standard form of GBE, on the plasticity of the N-methyl-D-aspartate receptor subunit 2B (GluN2B) in the inferior colliculus (IC) following SS administration. Methods. Seven-week-old Sprague Dawley rats (n=24) were randomly allocated to control, SS, EGb, and EGb+SS groups. The SS group received a single intraperitoneal SS injection (350 mg/kg), the EGb group received EGb orally for 5 consecutive days (40 mg/kg), and the EGb+SS group received EGb for 5 consecutive days, followed by an SS injection. The auditory brainstem responses (ABRs) were assessed at baseline and 2 hours after SS administration. GluN2B expression was examined by Western blot and immunohistochemistry. Results. There were no significant differences in ABR threshold shifts among the groups. The expression of the GluN2B protein normalized by which of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was significantly lower in the EGb+SS group, as compared to the SS group (P=0.012). Weak and diffused GluN2B immunoreactivity was detected in the IC neural cells of the EGb+SS group, while those of the SS group exhibited strong and diffused GluN2B positivity. Conclusion. EGb may play a role in regulating the GluN2B expression in the IC of salicylate-induced ototoxicity model.
Collapse
Affiliation(s)
- Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Yoon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ye-Ji Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Joon Han
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - DeukTae Cho
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Eun Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ho Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Liang HM, Geng LJ, Shi XY, Zhang CG, Wang SY, Zhang GM. By up-regulating μ- and δ-opioid receptors, neuron-restrictive silencer factor knockdown promotes neurological recovery after ischemia. Oncotarget 2017; 8:101012-101025. [PMID: 29254142 PMCID: PMC5731852 DOI: 10.18632/oncotarget.18195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/06/2017] [Indexed: 11/30/2022] Open
Abstract
We investigated the effects of neuron-restrictive silencer factor (NRSF) on proliferation of endogenous nerve stem cells (NSCs) and on μ- and δ-opioid receptor (MOR/DOR) expression in rats after cerebral ischemia. Among 100 rats subjected to cerebral ischemia, 20 rats were transfected with NRSF shRNA, and the remaining 80 were randomly assigned to normal, sham, model, and negative control (NC) groups. On days 7, 14, and 28 after ischemia and reperfusion, neurological function scores were assigned and a step-down passive avoidance test was conducted. Nerve function scores, step-down reaction periods, error times and apoptosis rates, as well as levels of B-cell CLL/lymphoma 2 (Bcl-2), BCL2-associated X protein (Bax), and NRSF expression were lower in the NRSF shRNA group than in the model and NC groups. By contrast, step-down latency, numbers of bromodeoxyuridine-positive cells, MOR/DOR expression, and phosphorylation of extracellular signal regulated protein kinase (ERK) and cAMP response element binding protein (CREB) were higher in the NRSF shRNA group than in the model and NC groups. These results suggest that by up-regulating MOR/DOR expression, NRSF knockdown accelerates recovery of neurological function after cerebral ischemia, at least in part by promoting NSC proliferation and inhibiting apoptosis.
Collapse
Affiliation(s)
- Hui-Min Liang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Li-Jiao Geng
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Xiao-Yan Shi
- Institute of Traditional Chinese Medicine, Henan University, Kaifeng 475000, China
| | - Chao-Gang Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Shu-Yan Wang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| | - Guang-Ming Zhang
- Department of Anesthesiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
4
|
Anastasio TJ. Exploring the contribution of estrogen to amyloid-Beta regulation: a novel multifactorial computational modeling approach. Front Pharmacol 2013; 4:16. [PMID: 23459573 PMCID: PMC3585711 DOI: 10.3389/fphar.2013.00016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ). Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal-logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα), and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that non-steroidal anti-inflammatory drugs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.
Collapse
Affiliation(s)
- Thomas J Anastasio
- Computational Neurobiology Laboratory, Beckman Institute, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
5
|
Anastasio TJ. Data-driven modeling of Alzheimer Disease pathogenesis. J Theor Biol 2011; 290:60-72. [DOI: 10.1016/j.jtbi.2011.08.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 01/28/2023]
|
6
|
Tauskela JS, Brunette E. Neuroprotection against staurosporine by metalloporphyrins independent of antioxidant capability. Neurosci Lett 2009; 466:41-6. [PMID: 19766169 DOI: 10.1016/j.neulet.2009.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/26/2009] [Accepted: 09/14/2009] [Indexed: 11/29/2022]
Abstract
Metalloporphyrin catalytic antioxidants are remarkably useful in protecting cells and tissues in a wide array of disease models, attributed primarily to functioning as superoxide dismutase (SOD) mimetics or by scavenging other reactive oxygen species (ROS). However, we recently showed that neuroprotection against Ca(2+)-dependent excitotoxic insults did not correlate with antioxidant strength or capability [25], raising the question of whether scavenging of ROS underlies neuroprotection in other types of neuronal injury. The protein kinase inhibitor staurosporine causes neuronal demise primarily by apoptosis. Neuroprotection from staurosporine by a limited number of metalloporphyrin antioxidants has previously been attributed to antioxidant action. In the current study, a wide array of anionic and cationic metalloporphyrins and porphyrins, ranging in antioxidant strength or capability, provided protection against staurosporine in cortical neuron and cerebellar granule neuron (CGN) culture. Neuroprotection did not correlate with antioxidant strength or capability. In CGN but not cortical neuron cultures, NMDA receptor antagonists also prevented neurotoxicity, so metalloporphyrins may also target this secondary mode of death induced by staurosporine. Neuroprotection observed with antioxidant-inactive controls raises the possibility of an additional, or perhaps alternative, mechanism by antioxidant analogs not involving ROS scavenging.
Collapse
Affiliation(s)
- Joseph S Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Therapies & Devices Group, Montreal Rd. Campus, Ottawa, ON, Canada K1A 0R6.
| | | |
Collapse
|
7
|
Jantas D, Szymanska M, Budziszewska B, Lason W. An involvement of BDNF and PI3-K/Akt in the anti-apoptotic effect of memantine on staurosporine-evoked cell death in primary cortical neurons. Apoptosis 2009; 14:900-12. [DOI: 10.1007/s10495-009-0370-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Different mechanisms of NMDA-mediated protection against neuronal apoptosis: a stimuli-dependent effect. Neurochem Res 2009; 34:2040-54. [PMID: 19462233 DOI: 10.1007/s11064-009-9991-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 05/06/2009] [Indexed: 01/11/2023]
Abstract
The mechanisms of protective effect of N-methyl-D-aspartate (NMDA) receptor stimulation on apoptosis of neurons at their early stage of development are poorly understood. In the present study, we investigated the effects of NMDA on staurosporine (St)- and low-potassium (LP)-evoked apoptotic cell death in primary cerebellar granule cell (CGC) cultures at 7 days in vitro (DIV). We found that NMDA (200 microM) attenuated the St (0.5 microM)- and LP (5 mM KCl)-induced neuronal cell death in 7 but not 12 DIV CGC as confirmed by LDH release and MTT reduction assays. Moreover, NMDA attenuated St-and LP-evoked DNA fragmentation and cytosolic apoptosis inducing factor (AIF) protein level but not caspase-3 activation induced by both pro-apoptotic factors. Neuroprotective effects of NMDA on St-induced apoptosis in CGC were attenuated by inhibitors of ERK/MAPK-signaling, PD 98059 and U0126 but not by NMDA receptor antagonists, AP-5 (100 microM) and MK-801 (1 microM) or by inhibitors of PI3-K/Akt pathway (LY 294002 and wortmannin). In contrast to staurosporine model of apoptosis, AP-5 and MK-801 but not inhibitors of PI3-K/Akt and MAPK/ERK1/2 prevented the NMDA-mediated neuroprotection in LP-induced apoptosis of CGC. In separate experiments, we observed also the anti-apoptotic action of NMDA on St (0.5 microM)- and salsolinol (250 microM)-evoked cell death in human neuroblastoma SH-SY5Y cells without its influence on caspase-3 activity, induced by these pro-apoptotic factors. These data indicate that neuroprotection evoked by NMDA in CGC strongly depends on used pro-apoptotic agent and could engage NMDA channel function or be connected with the activation of pro-survival MAPK/ERK1/2 pathway. It is also suggested that anti-apoptotic effects of NMDA is connected with inhibition of fragmentation of DNA via caspase-3-independent mechanism.
Collapse
|
9
|
Davidson C, Chen Q, Zhang X, Xiong X, Lazarus C, Lee TH, Ellinwood EH. Deprenyl treatment attenuates long-term pre- and post-synaptic changes evoked by chronic methamphetamine. Eur J Pharmacol 2007; 573:100-10. [PMID: 17651730 DOI: 10.1016/j.ejphar.2007.06.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 06/13/2007] [Accepted: 06/21/2007] [Indexed: 12/20/2022]
Abstract
Deprenyl, used clinically in Parkinson's disease, has multiple pharmacological effects which make it a good candidate to treat neurotoxicity. Thus, we investigated deprenyl's ability to attenuate methamphetamine-induced dopamine neurotoxicity. We also examined deprenyl's effect in changing markers associated with psychostimulant sensitization. A potential therapeutic effect on either pathological domain would be a boon in developing novel treatments for methamphetamine abuse. Adult male Sprague-Dawley rats were split into 6 groups. Three groups received a 7-day saline minipump with saline, 0.05 or 0.25 mg/kg SC deprenyl injections given for 10 days before, during and 5 days after the 7-day saline minipump implant. Similarly, 3 groups received methamphetamine pumps (25 mg/kg/day) with escalating daily injections of methamphetamine (0-6 mg/kg) in addition to the minipump treatment. These rats also received saline, 0.05 or 0.25 mg/kg deprenyl injections given before, during and the 7-day minipump treatment. Rats were killed on day 28 of withdrawal and brain samples taken. HPLC analysis for dopamine and 3,4-Dihydroxy-Phenylacetic Acid (DOPAC) revealed a loss of dopamine in the caudate and accumbens which was partially reversed by high dose deprenyl. Tyrosine hydroxylase immunostaining in the midbrain was unaffected by methamphetamine, suggesting that dopamine neurotoxicity was localized to the caudate. Western blot analysis of the caudate after methamphetamine revealed little change in Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazole Propionic Acid (AMPA) GluR1 or N-Methyl-d-Aspartate (NMDA) NR2B subunits, or their phosphorylation state. However, methamphetamine increased levels of GluR1 and its phosphorylation state in the prefrontal cortex (PFC), and these increases were attenuated by deprenyl. Methamphetamine also increased levels of PFC NR2B subunit, but these increases were not attenuated by deprenyl. We suggest that deprenyl may be effective in reducing the neurotoxic effects of methamphetamine and may also attenuate changes in prefrontal AMPA receptor function, presumably more associated with addiction rather than neurotoxicity.
Collapse
Affiliation(s)
- Colin Davidson
- Department of Psychiatry and Behavioral Sciences, Box 3870, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Alex AB, Baucum AJ, Wilcox KS. Effect of Conantokin G on NMDA receptor-mediated spontaneous EPSCs in cultured cortical neurons. J Neurophysiol 2006; 96:1084-92. [PMID: 16760339 DOI: 10.1152/jn.01325.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Conantokin G (Con G), derived from the venom of Conus geographus, is the most characterized natural peptide antagonist targeted to N-methyl-D-aspartate (NMDA) receptors. Although Con G is known to bind to the glutamate binding site on the NR2 subunit of the receptor, it is unclear whether it can allosterically modulate the function of the receptor through the glycine binding site on the NR1 subunit. This study was designed to evaluate the action of Con G on NMDA receptor-mediated spontaneous excitatory postsynaptic currents (sEPSCs) and its modulation by glycine in cultured cortical neurons (13-19 days in vitro) using the whole cell patch-clamp technique. Con G inhibited NMDA receptor-mediated sEPSCs in a concentration-dependent manner. Also, the potency of Con G decreased as a function of time in culture. The inhibition of EPSCs observed after application of Con G in the presence of high (10 microM) and nominal (no added) concentrations of glycine was not different at 13 days in vitro (DIV). Furthermore, similar results were obtained with experiments on Con G-induced inhibition of NMDA-evoked whole cell currents. These results indicate that glycine concentrations do not have a direct effect on Con G-induced inhibition of NMDA currents. In addition, age dependency in the action of Con G on cortical neurons in vitro suggests that this model system would be useful in examining the effects of different agonists/antagonists on native synaptic NMDA receptors.
Collapse
Affiliation(s)
- Anitha B Alex
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
11
|
Jantas-Skotniczna D, Kajta M, Lasoń W. Memantine attenuates staurosporine-induced activation of caspase-3 and LDH release in mouse primary neuronal cultures. Brain Res 2006; 1069:145-53. [PMID: 16386235 DOI: 10.1016/j.brainres.2005.11.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/16/2005] [Accepted: 11/21/2005] [Indexed: 01/19/2023]
Abstract
Developmental aspects of pro- and antiapoptotic action of some NMDA receptor antagonists in the central nervous system have been postulated. In order to further elucidate this problem, we investigated effect of memantine, an uncompetitive NMDA receptor antagonist and staurosporine alone and in combination on caspase-3 activity and lactate dehydrogenase (LDH) release in primary hippocampal, neocortical and striatal cell cultures on 7 and 12 days in vitro. The data showed that the vulnerability of neuronal cells to induction of caspase-3 activity by staurosporine was higher on 7 DIV than on 12 DIV, whereas staurosporine-mediated LDH release increased with days in vitro in striatal culture only. A specific inhibitor of caspase-3, AcDEVDCHO (60 microM), completely abolished the effect of staurosporine on this enzyme's activity, but only partially attenuated staurosporine-induced LDH release in hippocampal cells. Memantine alone (0.05-2.0 microM) did not induce any cytotoxic effect but attenuated the staurosporine-induced caspase-3 activity and LDH release in hippocampal cultured neurons on each investigated day in vitro. In striatal culture, memantine had a moderate inhibitory effect on staurosporine-evoked LDH release only on 7 DIV with no significant influence on caspase-3 activity. As for neocortical cultures, memantine partially inhibited staurosporine-induced neuronal injury only on 7 DIV. These data showed that the induction of caspase-3 activity by staurosporine was more profound in immature cells, however, the staurosporine neurotoxicity, as reflected by LDH release, only partially depended on caspase-3 activation and stage of cell development. Furthermore, memantine attenuated staurosporine-induced apoptosis more efficiently in hippocampal cultures than in neocortical and striatal ones, which points to tissue specificity of effects of this neuroprotectant.
Collapse
Affiliation(s)
- Danuta Jantas-Skotniczna
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland.
| | | | | |
Collapse
|
12
|
Kajta M, Trotter A, Lasoń W, Beyer C. Effect of NMDA on staurosporine-induced activation of caspase-3 and LDH release in mouse neocortical and hippocampal cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 160:40-52. [PMID: 16153713 DOI: 10.1016/j.devbrainres.2005.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 08/04/2005] [Accepted: 08/04/2005] [Indexed: 12/20/2022]
Abstract
To achieve a better understanding of developmentally regulated NMDA- and staurosporine-induced apoptotic processes, we investigated the concerted action of these agents on caspase-3 activity and LDH release in neocortical and hippocampal cell cultures at different stages in vitro (DIV). Hoechst 33342 and MAP-2 stainings were additionally employed to visualize apoptotic changes and cell damage. The vulnerability of neocortical cells to NMDA was more prominent at later culture stages, whereas hippocampal neurons were more susceptible to NMDA treatment at earlier stages. A persistent activation of caspase-3 by staurosporine was found at all experimental stages. Despite of certain differences in susceptibility to NMDA and staurosporine, both tissues responded to regulatory action of NMDA towards staurosporine-activated caspase-3 in a similar way. Combined treatment with NMDA and staurosporine resulted in a substantial increase in caspase-3 activity in neocortical and hippocampal neurons on 2 DIV. Additive effects were also observed in neocortical cultures on 12 DIV. In contrast, NMDA substantially inhibited staurosporine-induced caspase-3 activity on 7 DIV in neocortical and hippocampal cultures. Additionally, pro-apoptotic effects of 17beta-estradiol were attenuated by NMDA on 7 DIV. Changes in vulnerability to NMDA- and staurosporine-mediated activation of caspase-3 were not strictly related to LDH release. Our data revealed that NMDA can both enhance and inhibit the staurosporine-induced neuronal cell apoptosis. The pro-apoptotic effect of NMDA was exhibited at early and late culture stages, whereas the anti-apoptotic effect was transient occurring on 7 DIV only.
Collapse
Affiliation(s)
- Malgorzata Kajta
- Department of Anatomy and Cell Biology, University of Ulm, Albert-Einstein-Allee 11, 89061 Ulm, Germany.
| | | | | | | |
Collapse
|
13
|
Segura Aguilar J, Kostrzewa RM. Neurotoxins and neurotoxic species implicated in neurodegeneration. Neurotox Res 2004; 6:615-30. [PMID: 15639792 DOI: 10.1007/bf03033456] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neurotoxins, in the general sense, represent novel chemical structures which when administered in vivo or in vitro, are capable of producing neuronal damage or neurodegeneration--with some degree of specificity relating to neuronal phenotype or populations of neurons with specific characteristics (i.e., receptor type, ion channel type, astrocyte-dependence, etc.). The broader term 'neurotoxin' includes this categorization but extends the term to include intra- or extracellular mediators involved in the neurodegenerative event, including necrotic and apoptotic factors. Moreover, as it is recognized that astrocytes are essential supportive satellite cells for neurons, and because damage to these cells ultimately affects neuronal function, the term 'neurotoxin' might reasonably be extended to include those chemical species which also adversely affect astrocytes. This review is intended to highlight developments that have occurred in the field of 'neurotoxins' during the past 5 years, including MPTP/MPP+, 6-hydroxydopamine (6-OHDA), methamphetamine; salsolinol; leukoaminochrome-o-semiquinone; rotenone; iron; paraquat; HPP+; veratridine; soman; glutamate; kainate; 3-nitropropionic acid; peroxynitrite anion; and metals (copper, manganese, lead, mercury). Neurotoxins represent tools to help elucidate intra- and extra-cellular processes involved in neuronal necrosis and apoptosis, so that drugs can be developed towards targets that interrupt the processes leading towards neuronal death.
Collapse
Affiliation(s)
- Juan Segura Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Casilla 70000, Santiago, Chile.
| | | |
Collapse
|