2
|
Lee RHC, Lee MHH, Wu CYC, Couto e Silva A, Possoit HE, Hsieh TH, Minagar A, Lin HW. Cerebral ischemia and neuroregeneration. Neural Regen Res 2018; 13:373-385. [PMID: 29623912 PMCID: PMC5900490 DOI: 10.4103/1673-5374.228711] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of morbidity and mortality worldwide. Although stroke (a form of cerebral ischemia)-related costs are expected to reach 240.67 billion dollars by 2030, options for treatment against cerebral ischemia/stroke are limited. All therapies except anti-thrombolytics (i.e., tissue plasminogen activator) and hypothermia have failed to reduce neuronal injury, neurological deficits, and mortality rates following cerebral ischemia, which suggests that development of novel therapies against stroke/cerebral ischemia are urgently needed. Here, we discuss the possible mechanism(s) underlying cerebral ischemia-induced brain injury, as well as current and future novel therapies (i.e., growth factors, nicotinamide adenine dinucleotide, melatonin, resveratrol, protein kinase C isozymes, pifithrin, hypothermia, fatty acids, sympathoplegic drugs, and stem cells) as it relates to cerebral ischemia.
Collapse
Affiliation(s)
- Reggie H. C. Lee
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Michelle H. H. Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, China
| | - Celeste Y. C. Wu
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Alexandre Couto e Silva
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Harlee E. Possoit
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Tsung-Han Hsieh
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Science Center, Shreveport, LA, USA
- Center for Brain Health, Louisiana State University Health Science Center, Shreveport, LA, USA
- Department of Cellular Biology and Anatomy, Louisiana State University Health Science Center, Shreveport, LA, USA
- Cardiovascular and Metabolomics Research Center, Hualien Tzu Chi Hospital, Hualien, Taiwan, China
| |
Collapse
|
3
|
Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. INTERVENTIONAL NEUROLOGY 2014; 1:185-99. [PMID: 25187778 DOI: 10.1159/000353125] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite ongoing advances in stroke imaging and treatment, ischemic and hemorrhagic stroke continue to debilitate patients with devastating outcomes at both the personal and societal levels. While the ultimate goal of therapy in ischemic stroke is geared towards restoration of blood flow, even when mitigation of initial tissue hypoxia is successful, exacerbation of tissue injury may occur in the form of cell death, or alternatively, hemorrhagic transformation of reperfused tissue. Animal models have extensively demonstrated the concept of reperfusion injury at the molecular and cellular levels, yet no study has quantified this effect in stroke patients. These preclinical models have also demonstrated the success of a wide array of neuroprotective strategies at lessening the deleterious effects of reperfusion injury. Serial multimodal imaging may provide a framework for developing therapies for reperfusion injury.
Collapse
Affiliation(s)
- May Nour
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Calif., USA
| | - Fabien Scalzo
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Calif., USA
| | - David S Liebeskind
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Calif., USA
| |
Collapse
|
4
|
Olmez I, Ozyurt H. Reactive oxygen species and ischemic cerebrovascular disease. Neurochem Int 2011; 60:208-12. [PMID: 22122807 DOI: 10.1016/j.neuint.2011.11.009] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 09/25/2011] [Accepted: 11/12/2011] [Indexed: 02/07/2023]
Abstract
Stroke is an emerging major health problem often resulting in death or disability. Hyperlipidemia, high blood pressure and diabetes are well established risk factors. Endothelial dysfunction associated with these risk factors underlies pathological processes leading to atherogenesis and cerebral ischemic injury. While mechanisms of disease are complex, endothelial dysfunction involves decreased nitric oxide (NO) and elevated levels of reactive oxygen species (ROS). At physiological levels, ROS participate in regulation of cellular metabolism. However, when ROS increase to toxic levels through imbalance of production and neutralization by antioxidant enzymes, they cause cellular injury in the form of lipid peroxidation, protein oxidation and DNA damage. Central nervous system cells are more vulnerable to ROS toxicity due to their inherent higher oxidative metabolism and less antioxidant enzymes, as well as higher content of membranous fatty acids. During ischemic stroke, ROS concentration rises from normal low levels to a peak point during reperfusion possibly underlying apoptosis or cellular necrosis. Clinical trials and animal studies have shown that natural compounds can reduce oxidative stress due to excessive ROS through their antioxidant properties. With further study, we may be able to incorporate these compounds into clinical use with potential efficacy for both the treatment and prevention of stroke.
Collapse
Affiliation(s)
- Inan Olmez
- Vanderbilt University, Department of Neurology, Nashville, TN 37232, USA.
| | | |
Collapse
|