1
|
Taniguchi E, Satoh K, Ohkubo M, Ue S, Matsuhira H, Kuroda Y, Kubo T, Kitazaki K. Nuclear DNA segments homologous to mitochondrial DNA are obstacles for detecting heteroplasmy in sugar beet (Beta vulgaris L.). PLoS One 2023; 18:e0285430. [PMID: 37552681 PMCID: PMC10409277 DOI: 10.1371/journal.pone.0285430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/21/2023] [Indexed: 08/10/2023] Open
Abstract
Heteroplasmy, the coexistence of multiple mitochondrial DNA (mtDNA) sequences in a cell, is well documented in plants. Next-generation sequencing technology (NGS) has made it feasible to sequence entire genomes. Thus, NGS has the potential to detect heteroplasmy; however, the methods and pitfalls in heteroplasmy detection have not been fully investigated and identified. One obstacle for heteroplasmy detection is the sequence homology between mitochondrial-, plastid-, and nuclear DNA, of which the influence of nuclear DNA segments homologous to mtDNA (numt) need to be minimized. To detect heteroplasmy, we first excluded nuclear DNA sequences of sugar beet (Beta vulgaris) line EL10 from the sugar beet mtDNA sequence. NGS reads were obtained from single plants of sugar beet lines NK-195BRmm-O and NK-291BRmm-O and mapped to the unexcluded mtDNA regions. More than 1000 sites exhibited intra-individual polymorphism as detected by genome browsing analysis. We focused on a 309-bp region where 12 intra-individual polymorphic sites were closely linked to each other. Although the existence of DNA molecules having variant alleles at the 12 sites was confirmed by PCR amplification from NK-195BRmm-O and NK-291BRmm-O, these variants were not always called by six variant-calling programs, suggesting that these programs are inappropriate for intra-individual polymorphism detection. When we changed the nuclear DNA reference, a numt absent from EL10 was found to include the 309-bp region. Genetic segregation of an F2 population from NK-195BRmm-O x NK-291BRmm-O supported the numt origin of the variant alleles. Using four references, we found that numt detection exhibited reference dependency, and extreme polymorphism of numts exists among sugar beet lines. One of the identified numts absent from EL10 is also associated with another intra-individual polymorphic site in NK-195mm-O. Our data suggest that polymorphism among numts is unexpectedly high within sugar beets, leading to confusion about the true degree of heteroplasmy.
Collapse
Affiliation(s)
- Eigo Taniguchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kosuke Satoh
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Megumi Ohkubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sachiyo Ue
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroaki Matsuhira
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Yosuke Kuroda
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro, Hokkaido, Japan
| | - Tomohiko Kubo
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Niu Y, Zhang T, Chen M, Chen G, Liu Z, Yu R, Han X, Chen K, Huang A, Chen C, Yang Y. Analysis of the Complete Mitochondrial Genome of the Bitter Gourd ( Momordica charantia). PLANTS (BASEL, SWITZERLAND) 2023; 12:1686. [PMID: 37111909 PMCID: PMC10143269 DOI: 10.3390/plants12081686] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Bitter gourd (Momordica charantia L.) is a significant vegetable. Although it has a special bitter taste, it is still popular with the public. The industrialization of bitter gourd could be hampered by a lack of genetic resources. The bitter gourd's mitochondrial and chloroplast genomes have not been extensively studied. In the present study, the mitochondrial genome of bitter gourd was sequenced and assembled, and its substructure was investigated. The mitochondrial genome of bitter gourd is 331,440 bp with 24 unique core genes, 16 variable genes, 3 rRNAs, and 23 tRNAs. We identified 134 SSRs and 15 tandem repeats in the entire mitochondrial genome of bitter gourd. Moreover, 402 pairs of repeats with a length greater than or equal to 30 were observed in total. The longest palindromic repeat was 523 bp, and the longest forward repeat was 342 bp. We found 20 homologous DNA fragments in bitter gourd, and the summary insert length was 19,427 bp, accounting for 5.86% of the mitochondrial genome. We predicted a total of 447 potential RNA editing sites in 39 unique PCGs and also discovered that the ccmFN gene has been edited the most often, at 38 times. This study provides a basis for a better understanding and analysis of differences in the evolution and inheritance patterns of cucurbit mitochondrial genomes.
Collapse
Affiliation(s)
- Yu Niu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Ting Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Muxi Chen
- Guangdong Helinong Biological Seeds Co., Ltd., Shantou 515800, China
- Guangdong Helinong Agricultural Research Institute Co., Ltd., Shantou 515800, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhaohua Liu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Renbo Yu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Xu Han
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| | - Kunhao Chen
- Guangdong Helinong Biological Seeds Co., Ltd., Shantou 515800, China
- Guangdong Helinong Agricultural Research Institute Co., Ltd., Shantou 515800, China
| | - Aizheng Huang
- Institute of Agricultural Science Research of Jiangmen, Jiangmen 529060, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yan Yang
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou 571737, China
| |
Collapse
|
3
|
Orłowska R. Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. ACTA ACUST UNITED AC 2021; 28:9. [PMID: 33726856 PMCID: PMC7962293 DOI: 10.1186/s40709-021-00138-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Background Somatic embryogenesis is a phenomenon carried out in an environment that generates abiotic stress. Thus, regenerants may differ from the source of explants at the morphological, genetic, and epigenetic levels. The DNA changes may be the outcome of induction media ingredients (i.e., copper and silver ions) and their concentrations and time of in vitro cultures. Results This study optimised the level of copper and silver ion concentration in culture media parallel with the induction medium longevity step towards obtaining barley regenerants via somatic embryogenesis with a minimum or maximum level of tissue culture-induced differences between the donor plant and its regenerants. The optimisation process is based on tissue culture-induced variation evaluated via the metAFLP approach for regenerants derived under varying in vitro tissue culture conditions and exploited by the Taguchi method. In the optimisation and verification experiments, various copper and silver ion concentrations and the different number of days differentiated the tested trials concerning the tissue culture-induced variation level, DNA demethylation, and de novo methylation, including symmetric (CG, CHG) and asymmetric (CHH) DNA sequence contexts. Verification of optimised conditions towards obtaining regenerants with minimum and maximum variability compared to donor plants proved useful. The main changes that discriminate optimised conditions belonged to DNA demethylation events with particular stress on CHG context. Conclusions The combination of tissue culture-induced variation evaluated for eight experimental trials and implementation of the Taguchi method allowed the optimisation of the in vitro tissue culture conditions towards the minimum and maximum differences between a source of tissue explants (donor plant) and its regenerants from somatic embryos. The tissue culture-induced variation characteristic is mostly affected by demethylation with preferences towards CHG sequence context.
Collapse
Affiliation(s)
- Renata Orłowska
- Plant Breeding & Acclimatization Institute-National Research Institute, 05-870 Błonie, Radzików, Poland.
| |
Collapse
|
4
|
Zhao N, Li Z, Zhang L, Yang X, Mackenzie SA, Hu Z, Zhang M, Yang J. MutS HOMOLOG1 mediates fertility reversion from cytoplasmic male sterile Brassica juncea in response to environment. PLANT, CELL & ENVIRONMENT 2021; 44:234-246. [PMID: 32978825 DOI: 10.1111/pce.13895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/14/2020] [Indexed: 05/15/2023]
Abstract
Spontaneous fertility reversion has been documented in cytoplasmic male sterile (CMS) plants of several species, influenced in frequency by nuclear genetic background. In this study, we found that MutS HOMOLOG1 (MSH1) mediates fertility reversion via substoichiometric shifting (SSS) of the CMS-associated mitochondrial Open Reading Frame 220 (ORF220), a process that may be regulated by pollination signalling in Brassica juncea. We show that plants adjust their growth and development in response to unsuccessful pollination. Measurable decrease in MSH1 transcript levels and evidence of ORF220 SSS under non-pollination conditions suggest that this nuclear-mitochondrial interplay influences fertility reversion in CMS plants in response to physiological signals. Suppression of MSH1 expression induced higher frequency SSS in CMS plants than occurs normally. Transcriptional analysis of floral buds under pollination and non-pollination conditions, and the response of MSH1 expression to different sugars, supports the hypothesis that carbon flux is involved in the pollination signalling of fertility reversion in CMS plants. Our findings suggest that facultative gynodioecy as a reproductive strategy may incorporate environmentally responsive genes like MSH1 as an "on-off" switch for sterility-fertility transition under ecological conditions of reproductive isolation.
Collapse
Affiliation(s)
- Na Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Zhangping Li
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Lili Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Xiaodong Yang
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Sally A Mackenzie
- Departments of Biology and Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture and Rural Affairs, Hangzhou, China
| |
Collapse
|
5
|
Skarzyńska A, Pawełkowicz M, Pląder W. Genome-wide discovery of DNA variants in cucumber somaclonal lines. Gene 2020; 736:144412. [PMID: 32007586 DOI: 10.1016/j.gene.2020.144412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/30/2023]
Abstract
The emergence of somaclonal variability in in vitro cultures is undesirable during micropropagation, but this phenomenon may be a source of genetic variability sought by breeders. The main factors that affect the appearance of variability are known, but the exact mechanism has not yet been determined. In this paper, we used next-generation sequencing and comparative genomics to study changes in the genomes of cucumber lines resulting from in vitro regeneration and somaclonal mutation in comparison to a reference, the highly inbred B10 line. The total number of obtained polymorphisms differed between the three somaclonal lines S1, S2 and S3, with 8369, 7591 and 44510, respectively. Polymorphisms occurred most frequently in non-coding regions and were mainly SNPs. High-impact changes accounted for 1%-3% of all polymorphisms and most often caused an open reading frame shift. Functional analysis of genes affected by high impact variants showed that they were related to transport, biosynthetic processes, nucleotide-containing compounds and cellular protein modification processes. The obtained results indicated significant factors affecting somaclonal variability and the appearance of changes in the genome, and demonstrated a lack of dependence between phenotype and the number of genomic polymorphisms.
Collapse
Affiliation(s)
- Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw, University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland.
| |
Collapse
|
6
|
Migocka M, Małas K, Maciaszczyk-Dziubinska E, Posyniak E, Migdal I, Szczech P. Cucumber Golgi protein CsMTP5 forms a Zn-transporting heterodimer with high molecular mass protein CsMTP12. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:196-206. [PMID: 30466585 DOI: 10.1016/j.plantsci.2018.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 06/09/2023]
Abstract
Heterodimeric complexes formed by members of the cation facilitator (CDF) family catalyse the import of Zn into the secretory pathway of yeast and vertebrate cells. Orthologous proteins AtMTP5 and AtMTP12 from Arabidopsis have also been shown to form a heterodimeric complex at the Golgi compartment of plant cells that possibly transport Zn. In this study we show that cucumber proteins CsMTP5 and CsMTP12 form a functional heterodimer that is involved in the loading of Zn into the ER lumen under low Zn, and not in the detoxification of yeast from Zn excess through vesicle-mediated exocytosis. Using specific antibodies, we demonstrate that CsMTP5 is localized at the Golgi compartment of cucumber cells and is markedly up-regulated upon Zn deficiency. The level of CsMTP5 transcript in cucumber is also significantly elevated in Zn-limiting conditions, whereas the expression of CsMTP12 is independent of the availability of Zn. Therefore we propose that the cucumber heterodimeric complex CsMTP5-CsMTP12 functions to deliver Zn to Zn-dependent proteins of the Golgi compartment and is regulated by zinc at the level of CsMTP5 transcription.
Collapse
Affiliation(s)
- Magdalena Migocka
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Karolina Małas
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewa Maciaszczyk-Dziubinska
- University of Wroclaw, Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Ewelina Posyniak
- University of Wroclaw, Institute of Experimental Biology, Department of Animal Developmental Biology, Sienkiewicza 21, 50-335 Wroclaw, Poland
| | - Iwona Migdal
- University of Wroclaw, Institute of Experimental Biology, Department of Genetics and Cell Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Patryk Szczech
- University of Wroclaw, Institute of Experimental Biology, Department of Plant Molecular Physiology, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
7
|
Transcriptome Analyses of Mosaic (MSC) Mitochondrial Mutants of Cucumber in a Highly Inbred Nuclear Background. G3-GENES GENOMES GENETICS 2018; 8:953-965. [PMID: 29330162 PMCID: PMC5844315 DOI: 10.1534/g3.117.300321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cucumber (Cucumis sativus L.) has a large, paternally transmitted mitochondrial genome. Cucumber plants regenerated from cell cultures occasionally show paternally transmitted mosaic (MSC) phenotypes, characterized by slower growth, chlorotic patterns on the leaves and fruit, lower fertility, and rearrangements in their mitochondrial DNAs (mtDNAs). MSC lines 3, 12, and 16 originated from different cell cultures all established using the highly inbred, wild-type line B. These MSC lines possess different rearrangements and under-represented regions in their mtDNAs. We completed RNA-seq on normalized and non-normalized cDNA libraries from MSC3, MSC12, and MSC16 to study their nuclear gene-expression profiles relative to inbred B. Results from both libraries indicated that gene expression in MSC12 and MSC16 were more similar to each other than MSC3. Forty-one differentially expressed genes (DEGs) were upregulated and one downregulated in the MSC lines relative to B. Gene functional classifications revealed that more than half of these DEGs are associated with stress-response pathways. Consistent with this observation, we detected elevated levels of hydrogen peroxide throughout leaf tissue in all MSC lines compared to wild-type line B. These results demonstrate that independently produced MSC lines with different mitochondrial polymorphisms show unique and shared nuclear responses. This study revealed genes associated with stress response that could become selection targets to develop cucumber cultivars with increased stress tolerance, and further support of cucumber as a model plant to study nuclear-mitochondrial interactions.
Collapse
|
8
|
Del Valle-Echevarria AR, Sanseverino W, Garcia-Mas J, Havey MJ. Pentatricopeptide repeat 336 as the candidate gene for paternal sorting of mitochondria (Psm) in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1951-9. [PMID: 27423873 PMCID: PMC5085266 DOI: 10.1007/s00122-016-2751-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/02/2016] [Indexed: 05/22/2023]
Abstract
Pentatricopeptide repeat (PPR) 336 was identified as the candidate gene for Paternal Sorting of Mitochondria ( Psm ), a nuclear locus that affects the predominant mitochondria transmitted to progenies. Cucumber (Cucumis sativus L.) is a useful plant to study organellar-nuclear interactions because its organelles show differential transmission, maternal for chloroplasts and paternal for mitochondria. The mitochondrial DNA (mtDNA) of cucumber is relatively large due in part to accumulation of repetitive DNAs and recombination among these repetitive regions produces structurally polymorphic mtDNAs associated with paternally transmitted mosaic (MSC) phenotypes. The mitochondrial mutant MSC16 possesses an under-representation of ribosomal protein S7 (rps7), a key component of the small ribosomal subunit in the mitochondrion. A nuclear locus, Paternal Sorting of Mitochondria (Psm), affects the predominant mitochondria transmitted to progenies generated from crosses with MSC16 as the male parent. Using single nucleotide polymorphisms, Psm was mapped to a 170 kb region on chromosome 3 of cucumber and pentatricopeptide repeat (PPR) 336 was identified as the likely candidate gene. PPR336 stabilizes mitochondrial ribosomes in Arabidopsis thaliana and because MSC16 shows reduced transcription of rps7, the cucumber homolog of PPR336 (CsPPR336) as the candidate for Psm is consistent with a nuclear effect on ribosome assembly or stability in the mitochondrion. We used polymorphisms in CsPPR336 to genotype progenies segregating at Psm and recovered only one Psm -/- plant with the MSC phenotype, indicating that the combination of the Psm- allele with mitochondria from MSC16 is almost always lethal. This research illustrates the usefulness of the MSC mutants of cucumber to reveal and study unique interactions between the mitochondrion and nucleus.
Collapse
Affiliation(s)
| | - W Sanseverino
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - J Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - M J Havey
- USDA-ARS and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, USA.
| |
Collapse
|
9
|
Krishna H, Alizadeh M, Singh D, Singh U, Chauhan N, Eftekhari M, Sadh RK. Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech 2016; 6:54. [PMID: 28330124 PMCID: PMC4752953 DOI: 10.1007/s13205-016-0389-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/20/2015] [Indexed: 01/07/2023] Open
Abstract
The advancements made in tissue culture techniques has made it possible to regenerate various horticultural species in vitro as micropropagation protocols for commercial scale multiplication are available for a wide range of crops. Clonal propagation and preservation of elite genotypes, selected for their superior characteristics, require high degree of genetic uniformity amongst the regenerated plants. However, plant tissue culture may generate genetic variability, i.e., somaclonal variations as a result of gene mutation or changes in epigenetic marks. The occurrence of subtle somaclonal variation is a drawback for both in vitro cloning as well as germplasm preservation. Therefore, it is of immense significance to assure the genetic uniformity of in vitro raised plants at an early stage. Several strategies have been followed to ascertain the genetic fidelity of the in vitro raised progenies comprising morpho-physiological, biochemical, cytological and DNA-based molecular markers approaches. Somaclonal variation can pose a serious problem in any micropropagation program, where it is highly desirable to produce true-to-type plant material. On the other hand, somaclonal variation has provided a new and alternative tool to the breeders for obtaining genetic variability relatively rapidly and without sophisticated technology in horticultural crops, which are either difficult to breed or have narrow genetic base. In the present paper, sources of variations induced during tissue culture cycle and strategies to ascertain and confirm genetic fidelity in a variety of in vitro raised plantlets and potential application of variants in horticultural crop improvement are reviewed.
Collapse
Affiliation(s)
- Hare Krishna
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, Rajasthan, 334 006, India.
| | - Mahdi Alizadeh
- Department of Horticulture, Faculty of Agriculture, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Golestan, Gorgan, Iran
| | - Dhurendra Singh
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, Rajasthan, 334 006, India
| | - Udayvir Singh
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, Rajasthan, 334 006, India
| | - Nitesh Chauhan
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, Rajasthan, 334 006, India
| | - Maliheh Eftekhari
- Department of Horticulture, Faculty of Agriculture, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Golestan, Gorgan, Iran
| | - Radha Kishan Sadh
- ICAR-Central Institute for Arid Horticulture, Beechwal, Bikaner, Rajasthan, 334 006, India
| |
Collapse
|
10
|
Pawełkowicz M, Zieliński K, Zielińska D, Pląder W, Yagi K, Wojcieszek M, Siedlecka E, Bartoszewski G, Skarzyńska A, Przybecki Z. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:77-88. [PMID: 26566826 DOI: 10.1016/j.plantsci.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
In the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits. This paper presents the role played by new omic technologies in the creation of knowledge on the mechanisms of the formation of the breeding features. The analysis of NGS (NGS-next generation sequencing) data allows the discovery of new genes and regulatory sequences, their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Firstly a high density map should be created for the reference genome, then each re-sequencing data could be mapped and new markers brought out into breeding populations. The paper also presents methods that could be used in the future for the creation of variability and genomic modification of the species in question. It has been shown also the state and usefulness in breeding the chloroplastomic and mitochondriomic study.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Konrad Zieliński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kouhei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michał Wojcieszek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
11
|
Mróz TL, Havey MJ, Bartoszewski G. Cucumber Possesses a Single Terminal Alternative Oxidase Gene That is Upregulated by Cold Stress and in the Mosaic (MSC) Mitochondrial Mutants. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:1893-1906. [PMID: 26752808 PMCID: PMC4695503 DOI: 10.1007/s11105-015-0883-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alternative oxidase (AOX) is a mitochondrial terminal oxidase which is responsible for an alternative route of electron transport in the respiratory chain. This nuclear-encoded enzyme is involved in a major path of survival under adverse conditions by transfer of electrons from ubiquinol instead of the main cytochrome pathway. AOX protects against unexpected inhibition of the cytochrome c oxidase pathway and plays an important role in stress tolerance. Two AOX subfamilies (AOX1 and AOX2) exist in higher plants and are usually encoded by small gene families. In this study, genome-wide searches and cloning were completed to identify and characterize AOX genes in cucumber (Cucumis sativus L.). Our results revealed that cucumber possesses no AOX1 gene(s) and only a single AOX2 gene located on chromosome 4. Expression studies showed that AOX2 in wild-type cucumber is constitutively expressed at low levels and is upregulated by cold stress. AOX2 transcripts and protein were detected in leaves and flowers of wild-type plants, with higher levels in the three independently derived mosaic (MSC) mitochondrial mutants. Because cucumber possesses a single AOX gene and its expression increases under cold stress and in the MSC mutants, this plant is a unique and intriguing model to study AOX expression and regulation particularly in the context of mitochondria-to-nucleus retrograde signaling.
Collapse
Affiliation(s)
- Tomasz L. Mróz
- />Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michael J. Havey
- />Agricultural Research Service, U.S. Department of Agriculture, Vegetable Crops Unit, Department of Horticulture, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706 USA
| | - Grzegorz Bartoszewski
- />Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
12
|
Del Valle-Echevarria AR, Kiełkowska A, Bartoszewski G, Havey MJ. The Mosaic Mutants of Cucumber: A Method to Produce Knock-Downs of Mitochondrial Transcripts. G3 (BETHESDA, MD.) 2015; 5:1211-21. [PMID: 25873637 PMCID: PMC4478549 DOI: 10.1534/g3.115.017053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/11/2015] [Indexed: 11/25/2022]
Abstract
Cytoplasmic effects on plant performance are well-documented and result from the intimate interaction between organellar and nuclear gene products. In plants, deletions, mutations, or chimerism of mitochondrial genes are often associated with deleterious phenotypes, as well as economically important traits such as cytoplasmic male sterility used to produce hybrid seed. Presently, genetic analyses of mitochondrial function and nuclear interactions are limited because there is no method to efficiently produce mitochondrial mutants. Cucumber (Cucumis sativus L.) possesses unique attributes useful for organellar genetics, including differential transmission of the three plant genomes (maternal for plastid, paternal for mitochondrial, and bi-parental for nuclear), a relatively large mitochondrial DNA in which recombination among repetitive motifs produces rearrangements, and the existence of strongly mosaic (MSC) paternally transmitted phenotypes that appear after passage of wild-type plants through cell cultures and possess unique rearrangements in the mitochondrial DNA. We sequenced the mitochondrial DNA from three independently produced MSC lines and revealed under-represented regions and reduced transcription of mitochondrial genes carried in these regions relative to the wild-type parental line. Mass spectrometry and Western blots did not corroborate transcriptional differences in the mitochondrial proteome of the MSC mutant lines, indicating that post-transcriptional events, such as protein longevity, may compensate for reduced transcription in MSC mitochondria. Our results support cucumber as a model system to produce transcriptional "knock-downs" of mitochondrial genes useful to study mitochondrial responses and nuclear interactions important for plant performance.
Collapse
Affiliation(s)
| | - Agnieszka Kiełkowska
- Faculty of Horticulture, Agricultural University of Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michael J Havey
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706 USDA Agricultural Research Service, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
13
|
Juszczuk IM, Szal B, Rychter AM. Oxidation-reduction and reactive oxygen species homeostasis in mutant plants with respiratory chain complex I dysfunction. PLANT, CELL & ENVIRONMENT 2012; 35:296-307. [PMID: 21414015 DOI: 10.1111/j.1365-3040.2011.02314.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mutations in a mitochondrial or nuclear gene encoding respiratory chain complex I subunits lead to decreased or a total absence of complex I activity. Plant mutants with altered or lost complex I activity adapt their respiratory metabolism by inducing alternative pathways of the respiratory chain and changing energy metabolism. Apparently, complex I is a crucial component of the oxidation-reduction (redox) regulatory system in photosynthetic cells, and alternative NAD(P)H dehydrogenases of the mitochondrial electron transport chain (mtETC) cannot fully compensate for its impairment. In most cases, dysfunction of complex I is associated with lowered or unchanged hydrogen peroxide (H(2)O(2)) concentrations, but increased superoxide (O(2)(-)) levels. Higher production of reactive oxygen species (ROS) by mitochondria in the mosaic (MSC16) cucumber mutant may be related to retrograde signalling. Different effects of complex I dysfunction on H(2)O(2) and O(2)(-) levels in described mutants might result from diverse regulation of processes involved in H(2)O(2) and O(2)(-) production. Often, dysfunction of complex I did not lead to oxidative stress, but increased the capacity of the antioxidative system and enhanced stress tolerance. The new cellular homeostasis in mutants with dysfunction of complex I allows growth and development, reflecting the plasticity of plant metabolism.
Collapse
Affiliation(s)
- Izabela M Juszczuk
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | | | | |
Collapse
|
14
|
Wóycicki R, Witkowicz J, Gawroński P, Dąbrowska J, Lomsadze A, Pawełkowicz M, Siedlecka E, Yagi K, Pląder W, Seroczyńska A, Śmiech M, Gutman W, Niemirowicz-Szczytt K, Bartoszewski G, Tagashira N, Hoshi Y, Borodovsky M, Karpiński S, Malepszy S, Przybecki Z. The genome sequence of the North-European cucumber (Cucumis sativus L.) unravels evolutionary adaptation mechanisms in plants. PLoS One 2011; 6:e22728. [PMID: 21829493 PMCID: PMC3145757 DOI: 10.1371/journal.pone.0022728] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 07/05/2011] [Indexed: 01/01/2023] Open
Abstract
Cucumber (Cucumis sativus L.), a widely cultivated crop, has originated from Eastern Himalayas and secondary domestication regions includes highly divergent climate conditions e.g. temperate and subtropical. We wanted to uncover adaptive genome differences between the cucumber cultivars and what sort of evolutionary molecular mechanisms regulate genetic adaptation of plants to different ecosystems and organism biodiversity. Here we present the draft genome sequence of the Cucumis sativus genome of the North-European Borszczagowski cultivar (line B10) and comparative genomics studies with the known genomes of: C. sativus (Chinese cultivar – Chinese Long (line 9930)), Arabidopsis thaliana, Populus trichocarpa and Oryza sativa. Cucumber genomes show extensive chromosomal rearrangements, distinct differences in quantity of the particular genes (e.g. involved in photosynthesis, respiration, sugar metabolism, chlorophyll degradation, regulation of gene expression, photooxidative stress tolerance, higher non-optimal temperatures tolerance and ammonium ion assimilation) as well as in distributions of abscisic acid-, dehydration- and ethylene-responsive cis-regulatory elements (CREs) in promoters of orthologous group of genes, which lead to the specific adaptation features. Abscisic acid treatment of non-acclimated Arabidopsis and C. sativus seedlings induced moderate freezing tolerance in Arabidopsis but not in C. sativus. This experiment together with analysis of abscisic acid-specific CRE distributions give a clue why C. sativus is much more susceptible to moderate freezing stresses than A. thaliana. Comparative analysis of all the five genomes showed that, each species and/or cultivars has a specific profile of CRE content in promoters of orthologous genes. Our results constitute the substantial and original resource for the basic and applied research on environmental adaptations of plants, which could facilitate creation of new crops with improved growth and yield in divergent conditions.
Collapse
MESH Headings
- Adaptation, Physiological
- Chromosome Mapping
- Chromosomes, Artificial, Bacterial
- Chromosomes, Plant/genetics
- Cucumis sativus/genetics
- DNA, Plant/genetics
- Evolution, Molecular
- Gene Expression Regulation, Plant
- Genes, Plant
- Genome, Plant
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Rafał Wóycicki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
- * E-mail: (ZP); (SK); (RW)
| | - Justyna Witkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Piotr Gawroński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Joanna Dąbrowska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Alexandre Lomsadze
- Center for Bioinformatics and Computational Genomics, Joint Wallace H. Coulter Georgia Tech and Emory Department of Biomedical Engineering, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Kohei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Anna Seroczyńska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Mieczysław Śmiech
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Wojciech Gutman
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Katarzyna Niemirowicz-Szczytt
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Norikazu Tagashira
- Department of Living Design and Information Science, Faculty of Human Development, Hiroshima Jogakuin University, Higashi-ku, Japan
| | - Yoshikazu Hoshi
- Department of Plant Science, Tokai University, Minamiaso-mura, Kumamoto, Japan
| | - Mark Borodovsky
- Center for Bioinformatics and Computational Genomics, Joint Wallace H. Coulter Georgia Tech and Emory Department of Biomedical Engineering, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
- * E-mail: (ZP); (SK); (RW)
| | - Stefan Malepszy
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of Life Sciences - SGGW, Nowoursynowska, Warsaw, Poland
- * E-mail: (ZP); (SK); (RW)
| |
Collapse
|
15
|
Cost of Having the Largest Mitochondrial Genome: Evolutionary Mechanism of Plant Mitochondrial Genome. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/620137] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The angiosperm mitochondrial genome is the largest and least gene-dense among the eukaryotes, because its intergenic regions are expanded. There seems to be no functional constraint on the size of the intergenic regions; angiosperms maintain the large mitochondrial genome size by a currently unknown mechanism. After a brief description of the angiosperm mitochondrial genome, this review focuses on our current knowledge of the mechanisms that control the maintenance and alteration of the genome. In both processes, the control of homologous recombination is crucial in terms of site and frequency. The copy numbers of various types of mitochondrial DNA molecules may also be controlled, especially during transmission of the mitochondrial genome from one generation to the next. An important characteristic of angiosperm mitochondria is that they contain polypeptides that are translated from open reading frames created as byproducts of genome alteration and that are generally nonfunctional. Such polypeptides have potential to evolve into functional ones responsible for mitochondrially encoded traits such as cytoplasmic male sterility or may be remnants of the former functional polypeptides.
Collapse
|
16
|
Bartoszewski G, Gawronski P, Szklarczyk M, Verbakel H, Havey MJ. A one-megabase physical map provides insights on gene organization in the enormous mitochondrial genome of cucumber. Genome 2009; 52:299-307. [DOI: 10.1139/g09-006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cucumber ( Cucumis sativus ) has one of the largest mitochondrial genomes known among all eukaryotes, due in part to the accumulation of short 20 to 60 bp repetitive DNA motifs. Recombination among these repetitive DNAs produces rearrangements affecting organization and expression of mitochondrial genes. To more efficiently identify rearrangements in the cucumber mitochondrial DNA, we built two nonoverlapping 800 and 220 kb BAC contigs and assigned major mitochondrial genes to these BACs. Polymorphism carried on the largest BAC contig was used to confirm paternal transmission. Mitochondrial genes were distributed across BACs and physically distant, although occasional clustering was observed. Introns in the nad1, nad4, and nad7 genes were larger than those reported in other plants, due in part to accumulation of short repetitive DNAs and indicating that increased intron sizes contributed to mitochondrial genome expansion in cucumber. Mitochondrial genes atp6 and atp9 are physically close to each other and cotranscribed. These physical contigs will be useful for eventual sequencing of the cucumber mitochondrial DNA, which can be exploited to more efficiently screen for unique rearrangements affecting mitochondrial gene expression.
Collapse
Affiliation(s)
- Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Piotr Gawronski
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Marek Szklarczyk
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Henk Verbakel
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J. Havey
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|