1
|
Wagner S, Whiteley SL, Castelli M, Patel HR, Deveson IW, Blackburn J, Holleley CE, Marshall Graves JA, Georges A. Gene expression of male pathway genes sox9 and amh during early sex differentiation in a reptile departs from the classical amniote model. BMC Genomics 2023; 24:243. [PMID: 37147622 PMCID: PMC10163765 DOI: 10.1186/s12864-023-09334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Sex determination is the process whereby the bipotential embryonic gonads become committed to differentiate into testes or ovaries. In genetic sex determination (GSD), the sex determining trigger is encoded by a gene on the sex chromosomes, which activates a network of downstream genes; in mammals these include SOX9, AMH and DMRT1 in the male pathway, and FOXL2 in the female pathway. Although mammalian and avian GSD systems have been well studied, few data are available for reptilian GSD systems. RESULTS We conducted an unbiased transcriptome-wide analysis of gonad development throughout differentiation in central bearded dragon (Pogona vitticeps) embryos with GSD. We found that sex differentiation of transcriptomic profiles occurs at a very early stage, before the gonad consolidates as a body distinct from the gonad-kidney complex. The male pathway genes dmrt1 and amh and the female pathway gene foxl2 play a key role in early sex differentiation in P. vitticeps, but the central player of the mammalian male trajectory, sox9, is not differentially expressed in P. vitticeps at the bipotential stage. The most striking difference from GSD systems of other amniotes is the high expression of the male pathway genes amh and sox9 in female gonads during development. We propose that a default male trajectory progresses if not repressed by a W-linked dominant gene that tips the balance of gene expression towards the female trajectory. Further, weighted gene expression correlation network analysis revealed novel candidates for male and female sex differentiation. CONCLUSION Our data reveal that interpretation of putative mechanisms of GSD in reptiles cannot solely depend on lessons drawn from mammals.
Collapse
Affiliation(s)
- Susan Wagner
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Australian National Wildlife Collection CSIRO, National Research Collections Australia, Crace, ACT, Australia
| | - Meghan Castelli
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Australian National Wildlife Collection CSIRO, National Research Collections Australia, Crace, ACT, Australia
| | - Hardip R Patel
- Genome Sciences Department. John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - James Blackburn
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Clare E Holleley
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- Australian National Wildlife Collection CSIRO, National Research Collections Australia, Crace, ACT, Australia
| | - Jennifer A Marshall Graves
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia.
| |
Collapse
|
2
|
Ye Z, Bishop T, Wang Y, Shahriari R, Lynch M. Evolution of sex determination in crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:1-11. [PMID: 37073332 PMCID: PMC10077267 DOI: 10.1007/s42995-023-00163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/28/2022] [Indexed: 05/03/2023]
Abstract
Sex determination (SD) involves mechanisms that determine whether an individual will develop into a male, female, or in rare cases, hermaphrodite. Crustaceans harbor extremely diverse SD systems, including hermaphroditism, environmental sex determination (ESD), genetic sex determination (GSD), and cytoplasmic sex determination (e.g., Wolbachia controlled SD systems). Such diversity lays the groundwork for researching the evolution of SD in crustaceans, i.e., transitions among different SD systems. However, most previous research has focused on understanding the mechanism of SD within a single lineage or species, overlooking the transition across different SD systems. To help bridge this gap, we summarize the understanding of SD in various clades of crustaceans, and discuss how different SD systems might evolve from one another. Furthermore, we review the genetic basis for transitions between different SD systems (i.e., Dmrt genes) and propose the microcrustacean Daphnia (clade Branchiopoda) as a model to study the transition from ESD to GSD.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| | - Trent Bishop
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Ryan Shahriari
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
3
|
Zhang J, Xia X, Zhu Y, Lian Z, Tian H, Xiao H, Hu Q. Potential antagonistic relationship of fgf9 and rspo1 genes in WNT4 pathway to regulate the sex differentiation in Chinese giant salamander (Andrias davidianus). Front Mol Biosci 2022; 9:974348. [PMID: 36203875 PMCID: PMC9530786 DOI: 10.3389/fmolb.2022.974348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Farmed chinese giant salamander (Andrias davidianus) was an important distinctive economically amphibian that exhibited male-biased sexual size dimorphism. Fgf9 and rspo1 genes antagonize each other in Wnt4 signal pathway to regulate mammalian gonadal differentiation has been demonstrated. However, their expression profile and function in A. davidianus are unclear. In this study, we firstly characterized fgf9 and rspo1 genes expression in developing gonad. Results showed that fgf9 expression level was higher in testes than in ovaries and increased from 1 to 6 years while rspo1 expression was higher in ovaries than in testes. In situ hybridization assay showed that both fgf9 and rspo1 genes expressed at 62 dpf in undifferentiated gonad, and fgf9 gene was mainly expressed in spermatogonia and sertoli cells in testis while strong positive signal of rspo1 was detected in granular cell in ovary. During sex-reversal, fgf9 expression was significantly higher in reversed testes and normal testes than in ovaries, and opposite expression pattern was detected for rspo1. When FH535 was used to inhibit Wnt/β-catenin pathway, expression of rspo1, wnt4 and β-catenin was down-regulated. Conversely, expression of fgf9, dmrt1, ftz-f1 and cyp17 were up-regulated. Furthermore, when rspo1 and fgf9 were knocked down using RNAi technology, respectively. We observed that female biased genes were down regulated in ovary primordial cells after rspo1 was knocked down, while the opposite expression profile was observed in testis primordial cells after fgf9 was knocked down. These results suggested that fgf9 and rspo1 played an antagonistic role to regulate sex differentiation in the process of the gonadal development and provided a foundation for further functional characterizations. The data also provided basic information for genome editing breeding to improve the Chinese giant salamander farming industry.
Collapse
Affiliation(s)
- Jiankang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xueping Xia
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ying Zhu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Zitong Lian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Haifeng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hanbing Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Qiaomu Hu,
| |
Collapse
|
4
|
Rato L, Sousa ACA. The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. J Xenobiot 2021; 11:163-196. [PMID: 34940512 PMCID: PMC8709303 DOI: 10.3390/jox11040012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The current scenario of male infertility is not yet fully elucidated; however, there is increasing evidence that it is associated with the widespread exposure to endocrine-disrupting chemicals (EDCs), and in particular to obesogens. These compounds interfere with hormones involved in the regulation of metabolism and are associated with weight gain, being also able to change the functioning of the male reproductive axis and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. The permanent exposure to obesogens has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline of male fertility and key players in shaping the future health outcomes not only for those who are directly exposed but also for upcoming generations. In addition to the changes that lead to inefficient functioning of the male gametes, obesogens induce alterations that are “imprinted” on the genes of the male gametes, establishing a link between generations and contributing to the transmission of defects. Unveiling the molecular mechanisms by which obesogens induce toxicity that may end-up in epigenetic modifications is imperative. This review describes and discusses the suggested molecular targets and potential mechanisms for obesogenic–disrupting chemicals and the subsequent effects on male reproductive health.
Collapse
Affiliation(s)
- Luís Rato
- Health School of the Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| | - Ana C. A. Sousa
- Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-671 Évora, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| |
Collapse
|
5
|
McDonald JMC, Nabili P, Thorsen L, Jeon S, Shingleton AW. Sex-specific plasticity and the nutritional geometry of insulin-signaling gene expression in Drosophila melanogaster. EvoDevo 2021; 12:6. [PMID: 33990225 PMCID: PMC8120840 DOI: 10.1186/s13227-021-00175-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sexual-size dimorphism (SSD) is replete among animals, but while the selective pressures that drive the evolution of SSD have been well studied, the developmental mechanisms upon which these pressures act are poorly understood. Ours and others' research has shown that SSD in D. melanogaster reflects elevated levels of nutritional plasticity in females versus males, such that SSD increases with dietary intake and body size, a phenomenon called sex-specific plasticity (SSP). Additional data indicate that while body size in both sexes responds to variation in protein level, only female body size is sensitive to variation in carbohydrate level. Here, we explore whether these difference in sensitivity at the morphological level are reflected by differences in how the insulin/IGF-signaling (IIS) and TOR-signaling pathways respond to changes in carbohydrates and proteins in females versus males, using a nutritional geometry approach. RESULTS The IIS-regulated transcripts of 4E-BP and InR most strongly correlated with body size in females and males, respectively, but neither responded to carbohydrate level and so could not explain the sex-specific response to body size to dietary carbohydrate. Transcripts regulated by TOR-signaling did, however, respond to dietary carbohydrate in a sex-specific manner. In females, expression of dILP5 positively correlated with body size, while expression of dILP2,3 and 8, was elevated on diets with a low concentration of both carbohydrate and protein. In contrast, we detected lower levels of dILP2 and 5 protein in the brains of females fed on low concentration diets. We could not detect any effect of diet on dILP expression in males. CONCLUSION Although females and males show sex-specific transcriptional responses to changes in protein and carbohydrate, the patterns of expression do not support a simple model of the regulation of body-size SSP by either insulin- or TOR-signaling. The data also indicate a complex relationship between carbohydrate and protein level, dILP expression and dILP peptide levels in the brain. In general, diet quality and sex both affect the transcriptional response to changes in diet quantity, and so should be considered in future studies that explore the effect of nutrition on body size.
Collapse
Affiliation(s)
- Jeanne M C McDonald
- Department of Ecology and Evolutionary Biology, Cornell University, Corson Hall Ithaca, NY, 14853, USA
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Pegah Nabili
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Lily Thorsen
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA
| | - Sohee Jeon
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, 555 North Sheridan Road, Lake Forest, IL, 60045, USA.
- Department of Biological Sciences, University of Illinois at Chicago, 840 W Taylor Street, Chicago, IL, 60607, USA.
| |
Collapse
|
6
|
Zhuang J, Chen C, Li J, Jiang Y, Wang J, Wang Y, Zeng S, Lin Y, Xie Y. The 46, XX Ovotesticular Disorder of Sex Development With Xq27.1q27.2 Duplication Involving the SOX3 Gene: A Rare Case Report and Literature Review. Front Pediatr 2021; 9:682846. [PMID: 34178900 PMCID: PMC8225946 DOI: 10.3389/fped.2021.682846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Very few reports are available on human XX ovotesticular disorder of sex development involving SOX3 gene duplication. Here we aim to present a rare case of SOX3 gene duplication in a person from the Chinese population who exhibits XX ovotesticular disorder of sex development. Case Presentation: A 7-year-old Chinese individual from Fujian province in Southeast China was recruited. The patient presented 46, XX karyotype, absence of sex-determining region Y, and was diagnosed with XX ovotesticular disorder of sex development. Furthermore, SNP array analysis demonstrated that the patient had a 2.2-Mb duplication in the Xq27.1q27.2 region (arr[hg19]Xq27.1q27.2:139,499,778-141,777,782) involving the SOX3 gene. Additionally, no SOX3 duplication was observed in the parents or the sibling, who displayed none of the clinical features. Conclusion: We identified the first case of SOX3 duplication in a Chinese individual who exhibits ovotesticular disorder of sex development. Our study strengthens the link between the SOX3 duplication and XX ovotesticular disorder of sex development and indicates that SOX3 is the evolutionary antecedent of sex-determining region Y.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jia Li
- Beijing Genomics Institute-Genomics, Beijing Genomics Institute-Shenzhen, Shenzhen, China
| | - Yuying Jiang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Junyu Wang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuanbai Wang
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Shuhong Zeng
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yiming Lin
- Neonatal Disease Screening Center of Quanzhou, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Piprek RP, Kloc M, Kubiak JZ. Matrix metalloproteinase-dependent regulation of extracellular matrix shapes the structure of sexually differentiating mouse gonads. Differentiation 2019; 106:23-34. [PMID: 30852470 DOI: 10.1016/j.diff.2019.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/24/2018] [Accepted: 01/18/2019] [Indexed: 11/19/2022]
Abstract
The extracellular matrix (ECM) proteins play an important role in the establishment of the sex-dependent structure of developing gonads. The matrix metalloproteinases (MMPs) are the major players in the regulation of ECM. Our hypothesis was that the MMPs-dependent regulation of EMC is crucial for the establishment of the correct, either testis or ovary, structure of developing gonad. We cultured developing mouse gonads in vitro in the presence of the MMPs inhibitors (α-2-macroglobulin, leupeptin, phosphoramidon) or the MMPs activator, APMA (4-aminophenylmercuric acetate). These inhibitors and activator inhibit/activate, to a different degree, matrix metalloproteinases, but the exact mechanism of inhibition/activation remains unknown. We found that the MMP inhibitors increased accumulation of ECM in the developing gonads. The α-2-macroglobulin had the weakest, and the phosphoramidon the strongest effect on the ECM and the structure of the gonads. The α-2-macroglobulin caused a slight increase of ECM and did not disrupt the gonad structure. Leupeptin led to the strong accumulation of ECM, resulted in the formation of the structures resembling testis cords in both testes and ovaries, and caused increase of apoptosis and complete loss of germ cells. Phosphoramidon caused the strongest accumulation of ECM, which separated individual cells and completely prevented intercellular adhesion both in the testes and in the ovaries. As a result of aberrant morphology, the sex of the phosphoramidon-treated gonads was morphologically unrecognizable. The APMA - the activator of MMP caused ECM loss, which led to the loss of cell adhesion, cell dispersion and an aberrant morphology of the gonads. These results indicate that the ECM accumulation is MMPs-dependent and that the correct amount and distribution of ECM during gonad development plays a key role in the formation of the gonad structure.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jacek Z Kubiak
- Univ Rennes, CNRS, Institute of Genetics and Development of Rennes, UMR 6290, Cell Cycle Group, Faculty of Medicine, F-35000, Rennes, France; Laboratory of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| |
Collapse
|
8
|
Mamsen LS, Ernst EH, Borup R, Larsen A, Olesen RH, Ernst E, Anderson RA, Kristensen SG, Andersen CY. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads. Sci Rep 2017; 7:15961. [PMID: 29162857 PMCID: PMC5698446 DOI: 10.1038/s41598-017-15931-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022] Open
Abstract
The precise timing and sequence of changes in expression of key genes and proteins during human sex-differentiation and onset of steroidogenesis was evaluated by whole-genome expression in 67 first trimester human embryonic and fetal ovaries and testis and confirmed by qPCR and immunohistochemistry (IHC). SRY/SOX9 expression initiated in testis around day 40 pc, followed by initiation of AMH and steroidogenic genes required for androgen production at day 53 pc. In ovaries, gene expression of RSPO1, LIN28, FOXL2, WNT2B, and ETV5, were significantly higher than in testis, whereas GLI1 was significantly higher in testis than ovaries. Gene expression was confirmed by IHC for GAGE, SOX9, AMH, CYP17A1, LIN28, WNT2B, ETV5 and GLI1. Gene expression was not associated with the maternal smoking habits. Collectively, a precise temporal determination of changes in expression of key genes involved in human sex-differentiation is defined, with identification of new genes of potential importance.
Collapse
Affiliation(s)
- Linn S Mamsen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Emil H Ernst
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
- Randers Regional Hospital, 8930, Randers, NØ, Denmark
| | - Rehannah Borup
- Microarray Center of Righshospitalet, Genomic Medicine, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
- Functional Genomics and Reproductive Health Group, Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Rasmus H Olesen
- Department of Biomedicine - Pharmacology, Aarhus University, Bartholins Allé 6, 8000, Aarhus C, Denmark
| | - Erik Ernst
- Randers Regional Hospital, 8930, Randers, NØ, Denmark
- Department of Obstetrics and Gynaecology, University Hospital of Aarhus, Skejby Sygehus, 8200, Aarhus N, Denmark
| | - Richard A Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, United Kingdom
| | - Stine G Kristensen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Claus Y Andersen
- Laboratory of Reproductive Biology, Section 5712, The Juliane Marie Centre for Women, Children and Reproduction, University Hospital of Copenhagen, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
9
|
Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ. Transcriptional profiling validates involvement of extracellular matrix and proteinases genes in mouse gonad development. Mech Dev 2017; 149:9-19. [PMID: 29129619 DOI: 10.1016/j.mod.2017.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/29/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022]
Abstract
Extracellular matrix (ECM) plays an important scaffolding role in the establishment of organs structure during development. A great number of ECM components and enzymes (proteinases) regulating formation/degradation of ECM during organ remodeling have been identified. In order to study the role of ECM in the mouse gonad development, especially during sexual differentiation of the gonads when the structure of the testis and ovary becomes established, we performed a global analysis of transcriptome in three main cell types of developing gonad (supporting, interstitial/stromal and germ cells) using transgenic mice, cell sorting and microarray. The genes coding for ECM components were mostly expressed in two gonadal cell lines: supporting and interstitial/stromal cells. These two cell lines differed in the expression pattern of ECM components, which suggests that ECM components might be crucial for differentiation of gonad compartments (for example testis cords vs. interstitium in XY gonads). Collagens and proteoglycans coding genes were mainly expressed in the interstitium/stromal cells, while non-collagen glycoproteins and matricellular coding genes were expressed in both cell lines. We also analyzed the expression of genes encoding ECM enzymes that are secreted to the ECM where they remodel the scaffolding of developing organs. We found that the ECM enzyme genes were also mostly expressed in supporting and interstitial/stromal cells. In contrast to the somatic cells, the germ cells expressed only limited number of ECM components and enzymes. This suggests that the germ line cells do not participate, or play only a minor role, in the sculpting of the gonad structure via ECM synthesis and remodeling. Importantly, the supporting cells showed the sex-specific pattern of expression of ECM components. However, the pattern of expression of most ECM enzymes in the somatic and germ cells is independent on the sex of the gonad. Further studies are required to elucidate the exact roles of identified genes in sexual differentiation of the gonads.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Michal Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Dagmara Podkowa
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, F-35043, France; Université Rennes 1, Faculty of Medicine, F-35043 Rennes, France; Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
10
|
Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad. Mech Dev 2017; 147:17-27. [PMID: 28760667 DOI: 10.1016/j.mod.2017.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 01/22/2023]
Abstract
Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland.
| | - Michal Kolasa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - Dagmara Podkowa
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Houston, TX, USA; The Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, F-35043, France; Université Rennes 1, UEB, UMS Biosit, Faculty of Medicine, F-35043 Rennes, France; Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| |
Collapse
|
11
|
Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci Rep 2017; 7:4433. [PMID: 28667307 PMCID: PMC5493664 DOI: 10.1038/s41598-017-04938-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 06/16/2017] [Indexed: 11/27/2022] Open
Abstract
In vertebrates, the primary sex-determining signals that initiate sexual development are remarkably diverse, ranging from complete genetic to environmental cues. However, no sex determination-related genes have been functionally identified in reptiles. Here, we characterized a conserved DM domain gene, Dmrt1, in Chinese soft-shelled turtle Pelodiscus sinensis (P. sinensis), which exhibits ZZ/ZW sex chromosomes. Dmrt1 exhibited early male-specific embryonic expression, preceding the onset of gonadal sex differentiation. The expression of Dmrt1 was induced in ZW embryonic gonads that were masculinized by aromatase inhibitor treatment. Dmrt1 knockdown in ZZ embryos by RNA interference resulted in male to female sex reversal, characterized by obvious feminization of gonads, significant down-regulation of testicular markers Amh and Sox9, and remarkable up-regulation of ovarian regulators, Cyp19a1 and Foxl2. Conversely, ectopic expression of Dmrt1 led to largely masculinized genetic females, production of Amh and Sox9, and a decline in Cyp19a1 and Foxl2. These findings demonstrate that Dmrt1 is both necessary and sufficient to initiate testicular development, thereby acting as an upstream regulator of the male pathway in P. sinensis.
Collapse
|
12
|
Abstract
In the female gonad, distinct signalling pathways activate ovarian differentiation while repressing the formation of testes. Human disorders of sex development (DSDs), such as 46,XX DSDs, can arise when this signalling is aberrant. Here we review the current understanding of the genetic mechanisms that control gonadal development, with particular emphasis on those that drive or inhibit ovarian differentiation. We discuss how disruption to these molecular pathways can lead to 46,XX disorders of ovarian development. Finally, we look at recently characterized novel genes and pathways that contribute and speculate how advances in technology will aid in further characterization of normal and disrupted human ovarian development.
Collapse
|
13
|
Piprek RP, Kloc M, Kubiak JZ. Early Development of the Gonads: Origin and Differentiation of the Somatic Cells of the Genital Ridges. Results Probl Cell Differ 2016; 58:1-22. [PMID: 27300173 DOI: 10.1007/978-3-319-31973-5_1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The earliest manifestation of gonadogenesis in vertebrates is the formation of the genital ridges. The genital ridges form through the transformation of monolayer coelomic epithelium into a cluster of somatic cells. This process depends on increased proliferation of coelomic epithelium and disintegration of its basement membrane, which is foreshadowed by the expression of series of regulatory genes. The earliest expressed gene is Gata4, followed by Sf1, Lhx9, Emx2, and Cbx2. The early genital ridge is a mass of somatic SF1-positive cells (gonadal precursor cells) that derive from proliferating coelomic epithelium. Primordial germ cells (PGCs) immigrate to the coelomic epithelium even in the absence of genital ridges, e.g., in mouse null mutants for Gata4. And conversely, the PGCs are not required for the formation of the genital ridges. After reaching genital ridges, the PGCs become enclosed by somatic cells derived from coelomic epithelium. Subsequently, the expression of sex-determining genes begins and the bipotential gonads differentiate into either testes or ovaries. Gonadal precursor cells, derived from coelomic epithelium, give rise to the somatic supporting cells such as Sertoli cells, follicular cells, and probably also peritubular myoid and steroidogenic cells.
Collapse
Affiliation(s)
- Rafal P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Malgorzata Kloc
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- The Houston Methodist Research Institute, Houston, TX, USA
| | - Jacek Z Kubiak
- CNRS, UMR 6290, Institute of Genetics and Development of Rennes, Cell Cycle Group, 35043, Rennes, France
- Université Rennes 1, UEB, UMS Biosit, Faculty of Medicine, 35043, Rennes, France
| |
Collapse
|
14
|
Chojnacka K, Zarzycka M, Mruk DD. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis. Results Probl Cell Differ 2016; 58:225-251. [PMID: 27300181 DOI: 10.1007/978-3-319-31973-5_9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.
Collapse
Affiliation(s)
- Katarzyna Chojnacka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA
| | - Marta Zarzycka
- Department of Endocrinology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
15
|
Abstract
Sex-specific gonadal development starts with formation of the bipotential gonad, which then differentiates into either a mature testis or an ovary. This process is dependent on activation of either the testis-specific or the ovary-specific pathway while the opposite pathway is continuously repressed. A network of transcription factors tightly regulates initiation and maintenance of these distinct pathways; disruption of these networks can lead to disorders of sex development in humans and male-to-female or female-to-male sex reversal in mice. Sry is the Y-linked master switch that is both required and sufficient to drive the testis-determining pathway. Another key component of the testis pathway is Sox9, which acts immediately downstream of Sry. In contrast to the testis pathway, no single sex-determining factor has been identified in the ovary pathway; however, multiple genes, such as Foxl2, Rspo1, Ctnnb1, and Wnt4, seem to work synergistically and in parallel to ensure proper ovary development. Our understanding of the regulatory networks that underpin testis and ovary development has grown substantially over the past two decades.
Collapse
Affiliation(s)
- Stefanie Eggers
- Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, 50 Flemington Road, Melbourne, VIC 3052, Australia
| | - Thomas Ohnesorg
- Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, 50 Flemington Road, Melbourne, VIC 3052, Australia
| | - Andrew Sinclair
- Murdoch Childrens Research Institute, Department of Paediatrics, The University of Melbourne, The Royal Children's Hospital, 50 Flemington Road, Melbourne, VIC 3052, Australia
| |
Collapse
|
16
|
Hofmann HA, Beery AK, Blumstein DT, Couzin ID, Earley RL, Hayes LD, Hurd PL, Lacey EA, Phelps SM, Solomon NG, Taborsky M, Young LJ, Rubenstein DR. An evolutionary framework for studying mechanisms of social behavior. Trends Ecol Evol 2014; 29:581-9. [DOI: 10.1016/j.tree.2014.07.008] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022]
|
17
|
Benagiano G, Dallapiccola B. Can modern biology interpret the mystery of the birth of Christ? J Matern Fetal Neonatal Med 2014; 28:240-4. [DOI: 10.3109/14767058.2014.907264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Larson AR, Zhan Q, Johnson E, Fragoso AC, Wan M, Murphy GF. A prostaglandind-synthase-positive mast cell gradient characterizes scalp patterning. J Cutan Pathol 2014; 41:364-9. [DOI: 10.1111/cup.12286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Allison R. Larson
- Department of Dermatology; Brigham and Women's Hospital; Boston MA USA
| | - Qian Zhan
- Program in Dermatopathology, Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| | - Elisha Johnson
- Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| | - Ana Carolina Fragoso
- Program in Dermatopathology, Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| | - Marilyn Wan
- Program in Dermatopathology, Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| | - George F. Murphy
- Program in Dermatopathology, Department of Pathology; Brigham and Women's Hospital; Boston MA USA
| |
Collapse
|
19
|
Flood DEK, Fernandino JI, Langlois VS. Thyroid hormones in male reproductive development: evidence for direct crosstalk between the androgen and thyroid hormone axes. Gen Comp Endocrinol 2013; 192:2-14. [PMID: 23524004 DOI: 10.1016/j.ygcen.2013.02.038] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/24/2013] [Accepted: 02/26/2013] [Indexed: 01/06/2023]
Abstract
Thyroid hormones (THs) exert a broad range of effects on development in vertebrate species, demonstrating connections in nearly every biological endocrine system. In particular, studies have shown that THs play a role in sexual differentiation and gonadal development in mammalian and non-mammalian species. There is considerable evidence that the effects of THs on reproductive development are mediated through the female hormonal axis; however, recent findings suggest a more direct crosstalk between THs and the androgen axis. These findings demonstrate that THs have considerable influence in the sexual ontogeny of male vertebrates, through direct interactions with select sex-determining-genes and regulation of gonadotropin production in the hypothalamus-pituitary-gonad axis. THs also regulate androgen biosynthesis and signaling through direct and indirect regulation of steroidogenic enzyme expression and activity. Novel promoter analysis presented in this work demonstrates the potential for direct and vertebrate wide crosstalk at the transcriptional level in mice (Mus musculus), Western clawed frogs (Silurana tropicalis) and medaka (Oryzias latipes). Cumulative evidence from previous studies; coupled with novel promoter analysis suggests mechanisms for a more direct crosstalk between the TH and male reproductive axes across vertebrate species.
Collapse
Affiliation(s)
- Diana E K Flood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, ON, Canada; Biology Department, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
20
|
Organotins: A review of their reproductive toxicity, biochemistry, and environmental fate. Reprod Toxicol 2013; 36:40-52. [DOI: 10.1016/j.reprotox.2012.11.008] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 11/05/2012] [Accepted: 11/23/2012] [Indexed: 01/10/2023]
|
21
|
Garza LA, Liu Y, Yang Z, Alagesan B, Lawson JA, Norberg SM, Loy DE, Zhao T, Blatt HB, Stanton DC, Carrasco L, Ahluwalia G, Fischer SM, FitzGerald GA, Cotsarelis G. Prostaglandin D2 inhibits hair growth and is elevated in bald scalp of men with androgenetic alopecia. Sci Transl Med 2012; 4:126ra34. [PMID: 22440736 DOI: 10.1126/scitranslmed.3003122] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Testosterone is necessary for the development of male pattern baldness, known as androgenetic alopecia (AGA); yet, the mechanisms for decreased hair growth in this disorder are unclear. We show that prostaglandin D(2) synthase (PTGDS) is elevated at the mRNA and protein levels in bald scalp compared to haired scalp of men with AGA. The product of PTGDS enzyme activity, prostaglandin D(2) (PGD(2)), is similarly elevated in bald scalp. During normal follicle cycling in mice, Ptgds and PGD(2) levels increase immediately preceding the regression phase, suggesting an inhibitory effect on hair growth. We show that PGD(2) inhibits hair growth in explanted human hair follicles and when applied topically to mice. Hair growth inhibition requires the PGD(2) receptor G protein (heterotrimeric guanine nucleotide)-coupled receptor 44 (GPR44), but not the PGD(2) receptor 1 (PTGDR). Furthermore, we find that a transgenic mouse, K14-Ptgs2, which targets prostaglandin-endoperoxide synthase 2 expression to the skin, demonstrates elevated levels of PGD(2) in the skin and develops alopecia, follicular miniaturization, and sebaceous gland hyperplasia, which are all hallmarks of human AGA. These results define PGD(2) as an inhibitor of hair growth in AGA and suggest the PGD(2)-GPR44 pathway as a potential target for treatment.
Collapse
Affiliation(s)
- Luis A Garza
- Department of Dermatology, Kligman Laboratories, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, Chitayat D. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet A 2012; 158A:1759-64. [PMID: 22678921 DOI: 10.1002/ajmg.a.35390] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/01/2012] [Indexed: 11/07/2022]
Abstract
Differentiation of the bipotential gonad into testis is initiated by the Y chromosome-linked gene SRY (Sex-determining Region Y) through upregulation of its autosomal direct target gene SOX9 (Sry-related HMG box-containing gene 9). Sequence and chromosome homology studies have shown that SRY most probably evolved from SOX3, which in humans is located at Xq27.1. Mutations causing SOX3 loss-of-function do not affect the sex determination in mice or humans. However, transgenic mouse studies have shown that ectopic expression of Sox3 in the bipotential gonad results in upregulation of Sox9, resulting in testicular induction and XX male sex reversal. However, the mechanism by which these rearrangements cause sex reversal and the frequency with which they are associated with disorders of sex development remains unclear. Rearrangements of the SOX3 locus were identified recently in three cases of human XX male sex reversal. We report on a case of XX male sex reversal associated with a novel de novo duplication of the SOX3 gene. These data provide additional evidence that SOX3 gain-of-function in the XX bipotential gonad causes XX male sex reversal and further support the hypothesis that SOX3 is the evolutionary antecedent of SRY.
Collapse
Affiliation(s)
- Sharon Moalem
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Piprek RP, Pecio A, Kubiak JZ, Szymura JM. Differential effects of testosterone and 17β-estradiol on gonadal development in five anuran species. Reproduction 2012; 144:257-67. [PMID: 22641770 DOI: 10.1530/rep-12-0048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sex hormones are essential for sexual differentiation and play a key role in the development of gonads in amphibians. The goal of this study was to evaluate the influence of exogenous sex steroids, testosterone, and 17β-estradiol (E(2)) on development of gonads in five anuran species differing in their evolutionary positions, sex determination, and mode of gonadogenesis. We found that in two closely related species of fire-bellied toad, Bombina bombina and Bombina variegata, testosterone and E(2) exposure results in sex reversal as well as intersex and undifferentiated gonads. Similarly, sex reversal was observed in Hyla arborea after exposure to male or female sex steroids. Xenopus laevis was sensitive to E(2) but only moderately to testosterone. In Bufo viridis, treatment with either sex hormone provoked a developmental delay in gonads and Bidder's organs. Therefore, susceptibility to hormonal sex reversal appeared species dependent but unrelated to genetic sex determination and the type of gonadogenesis. We also found that the onset of sex steroid exposure influences gonad differentiation and the meiotic status of the germ cells depends on their location within the gonad. Our findings reveal differential sensitivity of amphibians to testosterone and E(2), establishing a hierarchy of sensitivity to these hormones among different anuran species.
Collapse
Affiliation(s)
- Rafał P Piprek
- Department of Comparative Anatomy, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| | | | | | | |
Collapse
|
24
|
A novel missense mutation in the high mobility group domain of SRY drastically reduces its DNA-binding capacity and causes paternally transmitted 46,XY complete gonadal dysgenesis. Fertil Steril 2011; 96:851-5. [DOI: 10.1016/j.fertnstert.2011.07.1137] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 06/13/2011] [Accepted: 07/21/2011] [Indexed: 11/19/2022]
|
25
|
Delgado Filho V, Lopes P, Podratz P, Graceli J. Triorganotin as a compound with potential reproductive toxicity in mammals. Braz J Med Biol Res 2011; 44:958-65. [DOI: 10.1590/s0100-879x2011007500110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/09/2011] [Indexed: 11/22/2022] Open
|
26
|
Xi W, Wan HT, Zhao YG, Wong MH, Giesy JP, Wong CKC. Effects of perinatal exposure to bisphenol A and di(2-ethylhexyl)-phthalate on gonadal development of male mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 19:2515-27. [PMID: 22828881 DOI: 10.1007/s11356-012-0827-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 04/15/2023]
Abstract
PURPOSE In this study, we investigated the effects of maternal transfer of bisphenol A (BPA) and di(2-ethylhexyl) phthalate (DEHP) during gestational and weaning periods on gonadal development of male offspring. METHODS Pregnant CD-1 mice were administered by gavages in corn oil with 0.1, 1, or 10 mg/kg/day of BPA and DEHP from gestational days (GD1-21) to the weaning period (postnatal days (PND) 1-21). RESULTS Our data indicated that the exposure significantly reduced the male-to-female sex ratio and the sizes of the gonads of male pups as recorded at PND15. The testes of the perinatally exposed male pups were developed less and the expression levels of testicular anti-mullerian hormone, androgen receptor, cyclin A, and StAR were significantly lesser than the control male pups. The less developed testes were accompanied with significant reductions in the expression levels of Gnrh and Fsh at the hypothalamic-pituitary levels. The negative effects were found to be persistent in the sexually mature pups at PND42. CONCLUSION Our data reveal that the maternal transfer of BPA and DEHP may impose negative influence on the development and functions of the reproductive system of male pups.
Collapse
Affiliation(s)
- Wei Xi
- Croucher Institute of Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
O'Connell LA, Hofmann HA. Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol 2011; 32:320-35. [PMID: 21163292 DOI: 10.1016/j.yfrne.2010.12.004] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 12/23/2022]
Abstract
Tremendous progress has been made in our understanding of the ultimate and proximate mechanisms underlying social behavior, yet an integrative evolutionary analysis of its underpinnings has been difficult. In this review, we propose that modern genomic approaches can facilitate such studies by integrating four approaches to brain and behavior studies: (1) animals face many challenges and opportunities that are ecologically and socially equivalent across species; (2) they respond with species-specific, yet quantifiable and comparable approach and avoidance behaviors; (3) these behaviors in turn are regulated by gene modules and neurochemical codes; and (4) these behaviors are governed by brain circuits such as the mesolimbic reward system and the social behavior network. For each approach, we discuss genomic and other studies that have shed light on various aspects of social behavior and its underpinnings and suggest promising avenues for future research into the evolution of neuroethological systems.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, Section of Integrative Biology, University of Texas at Austin, Austin, TX 78705, USA
| | | |
Collapse
|
28
|
Cools M, Wolffenbuttel KP, Drop SLS, Oosterhuis JW, Looijenga LHJ. Gonadal development and tumor formation at the crossroads of male and female sex determination. Sex Dev 2011; 5:167-80. [PMID: 21791949 DOI: 10.1159/000329477] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2011] [Indexed: 01/19/2023] Open
Abstract
Malignant germ cell tumor (GCT) formation is a well-known complication in the management of patients with a disorder of sex development (DSD). DSDs are defined as congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical. DSD patients in whom the karyotype - at least at the gonadal level - contains (a part of) the Y chromosome are at increased risk for neoplastic transformation of germ cells, leading to the development of the so-called 'type II germ cell tumors'. However, tumor risk in the various forms of DSD varies considerably between the different diagnostic groups. This contribution integrates our actual knowledge on the pathophysiology of tumor development in DSDs, recent findings on gonadal (mal)development in DSD patients, and possible correlations between the patient's phenotype and his/her risk for germ cell tumor development.
Collapse
Affiliation(s)
- M Cools
- Division of Pediatric Endocrinology, Department of Pediatrics, University Hospital Ghent and Ghent University, Belgium. martine.cools @ ugent.be
| | | | | | | | | |
Collapse
|
29
|
Yeung BH, Wan HT, Law AY, Wong CK. Endocrine disrupting chemicals: Multiple effects on testicular signaling and spermatogenesis. SPERMATOGENESIS 2011; 1:231-239. [PMID: 22319671 PMCID: PMC3271665 DOI: 10.4161/spmg.1.3.18019] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 02/01/2023]
Abstract
In the past 200 years, an enormous number of synthetic chemicals with diverse structural features have been produced for industrial, medical and domestic purposes. These chemicals, originally thought to have little or no biological toxicity, are widely used in our daily lives as well as are commonly present in foods. It was not until the first World Wildlife Federation Wingspread Conference held in 1994 were concerns about the endocrine disrupting (ED) effects of these chemicals articulated. The potential hazardous effects of endocrine disrupting chemicals (EDCs) on human health and ecological well-being are one of the global concerns that affect the health and propagation of human beings. Considerable numbers of studies indicated that endocrine disruption is linked to "the developmental basis of adult disease," highlighting the significant effects of EDC exposure on a developing organism, leading to the propensity of an individual to develop a disease or dysfunction in later life. In this review, we intend to provide environmental, epidemiological and experimental data to associate pollutant exposure with reproductive disorders, in particular on the development and function of the male reproductive system. Possible effects of pollutant exposure on the processes of embryonic development, like sex determination and masculinization are described. In addition, the effects of pollutant exposure on hypothalamus-pituitary-gonadal axis, testicular signaling, steroidogenesis and spermatogenesis are also discussed.
Collapse
Affiliation(s)
- Bonnie Hy Yeung
- Croucher Institute of Environmental Sciences; Department of Biology; Hong Kong Baptist University; Hong Kong
| | | | | | | |
Collapse
|
30
|
Marino M, Masella R, Bulzomi P, Campesi I, Malorni W, Franconi F. Nutrition and human health from a sex-gender perspective. Mol Aspects Med 2011; 32:1-70. [PMID: 21356234 DOI: 10.1016/j.mam.2011.02.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/25/2011] [Accepted: 02/18/2011] [Indexed: 02/07/2023]
Abstract
Nutrition exerts a life-long impact on human health, and the interaction between nutrition and health has been known for centuries. The recent literature has suggested that nutrition could differently influence the health of male and female individuals. Until the last decade of the 20th century, research on women has been neglected, and the results obtained in men have been directly translated to women in both the medicine and nutrition fields. Consequently, most modern guidelines are based on studies predominantly conducted on men. However, there are many sex-gender differences that are the result of multifactorial inputs, including gene repertoires, sex steroid hormones, and environmental factors (e.g., food components). The effects of these different inputs in male and female physiology will be different in different periods of ontogenetic development as well as during pregnancy and the ovarian cycle in females, which are also age dependent. As a result, different strategies have evolved to maintain male and female body homeostasis, which, in turn, implies that there are important differences in the bioavailability, metabolism, distribution, and elimination of foods and beverages in males and females. This article will review some of these differences underlying the impact of food components on the risk of developing diseases from a sex-gender perspective.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Gau BH, Chen TM, Shih YHJ, Sun HS. FUBP3 interacts with FGF9 3' microsatellite and positively regulates FGF9 translation. Nucleic Acids Res 2011; 39:3582-93. [PMID: 21252297 PMCID: PMC3089454 DOI: 10.1093/nar/gkq1295] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A TG microsatellite in the 3'-untranslated region (UTR) of FGF9 mRNA has previously been shown to modulate FGF9 expression. In the present study, we investigate the possible interacting protein that binds to FGF9 3'-UTR UG-repeat and study the mechanism underlying this protein-RNA interaction. We first applied RNA pull-down assays and LC-MS analysis to identify proteins associated with this repetitive sequence. Among the identified proteins, FUBP3 specifically bound to the synthetic (UG)(15) oligoribonucleotide as shown by supershift in RNA-EMSA experiments. The endogenous FGF9 protein was upregulated in response to transient overexpression and downregulated after knockdown of FUBP3 in HEK293 cells. As the relative levels of FGF9 mRNA were similar in these two conditions, and the depletion of FUBP3 had no effect on the turn-over rate of FGF9 mRNA, these data suggested that FUBP3 regulates FGF9 expression at the post-transcriptional level. Further examination using ribosome complex pull-down assay showed overexpression of FUBP3 promotes FGF9 expression. In contrast, polyribosome-associated FGF9 mRNA decreased significantly in FUBP3-knockdown HEK293 cells. Finally, reporter assay suggested a synergistic effect of the (UG)-motif with FUBP3 to fine-tune the expression of FGF9. Altogether, results from this study showed the novel RNA-binding property of FUBP3 and the interaction between FUBP3 and FGF9 3'-UTR UG-repeat promoting FGF9 mRNA translation.
Collapse
Affiliation(s)
- Bing-Huang Gau
- Institute of Molecular Medicine, National Cheng Kung University Medical College, Tainan, Taiwan, ROC
| | | | | | | |
Collapse
|
32
|
Cox JJ, Willatt L, Homfray T, Woods CG. A SOX9 duplication and familial 46,XX developmental testicular disorder. N Engl J Med 2011; 364:91-3. [PMID: 21208124 DOI: 10.1056/nejmc1010311] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|