1
|
Łuczak JW, Palusińska M, Matak D, Pietrzak D, Nakielski P, Lewicki S, Grodzik M, Szymański Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. Int J Mol Sci 2024; 25:12766. [PMID: 39684476 DOI: 10.3390/ijms252312766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Bone defects and fractures present significant clinical challenges, particularly in orthopedic and maxillofacial applications. While minor bone defects may be capable of healing naturally, those of a critical size necessitate intervention through the use of implants or grafts. The utilization of traditional methodologies, encompassing autografts and allografts, is constrained by several factors. These include the potential for donor site morbidity, the restricted availability of suitable donors, and the possibility of immune rejection. This has prompted extensive research in the field of bone tissue engineering to develop advanced synthetic and bio-derived materials that can support bone regeneration. The optimal bone substitute must achieve a balance between biocompatibility, bioresorbability, osteoconductivity, and osteoinductivity while simultaneously providing mechanical support during the healing process. Recent innovations include the utilization of three-dimensional printing, nanotechnology, and bioactive coatings to create scaffolds that mimic the structure of natural bone and enhance cell proliferation and differentiation. Notwithstanding the advancements above, challenges remain in optimizing the controlled release of growth factors and adapting materials to various clinical contexts. This review provides a comprehensive overview of the current advancements in bone substitute materials, focusing on their biological mechanisms, design considerations, and clinical applications. It explores the role of emerging technologies, such as additive manufacturing and stem cell-based therapies, in advancing the field. Future research highlights the need for multidisciplinary collaboration and rigorous testing to develop advanced bone graft substitutes, improving outcomes and quality of life for patients with complex defects.
Collapse
Affiliation(s)
- Julia Weronika Łuczak
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Małgorzata Palusińska
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
| | - Damian Matak
- European Biomedical Institute, 05-410 Jozefów, Poland
| | - Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Sławomir Lewicki
- Institute of Outcomes Research, Maria Sklodowska-Curie Medical Academy, Pl. Żelaznej Bramy 10, 00-136 Warsaw, Poland
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Ciszewskiego 8, Bldg. 23, 02-786 Warsaw, Poland
| | - Łukasz Szymański
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Magdalenka, Poland
- European Biomedical Institute, 05-410 Jozefów, Poland
| |
Collapse
|
2
|
Diederichs EV, Mondal D, Willett TL. The effects of physiologically relevant environmental conditions on the mechanical properties of 3D-printed biopolymer nanocomposites. J Mech Behav Biomed Mater 2024; 159:106694. [PMID: 39191061 DOI: 10.1016/j.jmbbm.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
The demand for synthetic bone graft biomaterials has grown in recent years to alleviate the dependence on natural bone grafts and metal prostheses which are associated with significant practical and clinical issues. Biopolymer nanocomposites are a class of materials that display strong potential for these synthetic materials, especially when processed using additive manufacturing technologies. Novel nanocomposite biomaterials capable of masked stereolithography printing have been developed from functionalized plant-based monomers and hydroxyapatite (HA) with mechanical properties exceeding those of commercial bone cements. However, these biomaterials have not been evaluated under relevant physiological conditions. The effects of temperature (room temperature vs. 37 °C) and water absorption on the physical, surface, and mechanical properties of HA-containing biopolymer nanocomposites were investigated. Exposure to relevant conditions led to substantial impacts on material performance, such as significantly reduced mechanical strength and stiffness. For instance, a composite containing 10 vol% HA and functionalized monomers had 26 and 21% reductions in compressive yield strength and elastic modulus, respectively. After 14 days incubation in phosphate buffered saline, the same composition displayed a 62% decrease in compressive yield strength to 28 MPa. This manuscript demonstrates the relevance and importance of evaluating biomaterials under appropriate physiological conditions throughout their development and provides direction for future material development of HA-containing biopolymer nanocomposites.
Collapse
Affiliation(s)
- Elizabeth V Diederichs
- Waterloo Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada
| | - Dibakar Mondal
- Waterloo Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada
| | - Thomas L Willett
- Waterloo Composite Biomaterial Systems Laboratory, Department of Systems Design Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Canada.
| |
Collapse
|
3
|
Patel D, Tatum SA. Bone Graft Substitutes and Enhancement in Craniomaxillofacial Surgery. Facial Plast Surg 2023; 39:556-563. [PMID: 37473765 DOI: 10.1055/s-0043-1770962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Critical-sized bone defects are a reconstructive challenge, particularly in the craniomaxillofacial (CMF) skeleton. The "gold standard" of autologous bone grafting has been the work horse of reconstruction in both congenital and acquired defects of CMF skeleton. Autologous bone has the proper balance of the protein (or organic) matrix and mineral components with no immune response. Organic and mineral adjuncts exist that offer varying degrees of osteogenic, osteoconductive, osteoinductive, and osteostimulative properties needed for treatment of critical-sized defects. In this review, we discuss the various mostly organic and mostly mineral bone graft substitutes available for autologous bone grafting. Primarily organic bone graft substitutes/enhancers, including bone morphogenic protein, platelet-rich plasma, and other growth factors, have been utilized to support de novo bone growth in setting of critical-sized bone defects. Primarily mineral options, including various calcium salt formulation (calcium sulfate/phosphate/apatite) and bioactive glasses have been long utilized for their similar composition to bone. Yet, a bone graft substitute that can supplant autologous bone grafting is still elusive. However, case-specific utilization of bone graft substitutes offers a wider array of reconstructive options.
Collapse
Affiliation(s)
- Dhruv Patel
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, New York
| | - Sherard A Tatum
- Department of Otolaryngology and Pediatrics, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
4
|
Che J, Sun T, Lv X, Ma Y, Liu G, Li L, Yuan S, Fan X. Influence of Ag and/or Sr Dopants on the Mechanical Properties and In Vitro Degradation of β-Tricalcium Phosphate-Based Ceramics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6025. [PMID: 37687718 PMCID: PMC10489148 DOI: 10.3390/ma16176025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
β-tricalcium phosphate has good biodegradability and biocompatibility; it is widely perceived as a good material for treating bone deficiency. In this research, different contents of strontium (Sr) and silver (Ag) ion-doped β-tricalcium phosphate powders were prepared using the sol-gel method. After obtaining the best ratio of pore-forming agent and binder, the as-synthesized powders were sintered in a muffle for 5 h at 1000 °C to obtain the samples. Then, these samples were degraded in vitro in simulated body fluids. The samples were tested using a series of characterization methods before and after degradation. Results showed that the amount of Sr and/or Ag doping had an effect on the crystallinity and structural parameters of the samples. After degradation, though the compressive strength of these samples decreased overall, the compressive strength of the undoped samples was higher than that of the doped samples. Notably, apatite-like materials were observed on the surface of the samples. All the results indicate that Sr and/or Ag β-TCP has good osteogenesis and proper mechanical properties; it will be applied as a prospective biomaterial in the area of bone repair.
Collapse
Affiliation(s)
- Junjian Che
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| | - Tao Sun
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Xueman Lv
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Department of Ophthalmology, China-Japan Union Hospital of Jilin University, Changchun 130031, China
| | - Yunhai Ma
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
| | - Guoqin Liu
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| | - Lekai Li
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- Weihai Institute for Bionics, Jilin University, Weihai 264200, China
| | - Shengwang Yuan
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| | - Xueying Fan
- The College of Biological and Agricultural Engineering, Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
- The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University (Nanling Campus), 5988 Renmin Street, Changchun 130022, China
| |
Collapse
|
5
|
Gelli R, Ridi F. An Overview of Magnesium-Phosphate-Based Cements as Bone Repair Materials. J Funct Biomater 2023; 14:424. [PMID: 37623668 PMCID: PMC10455751 DOI: 10.3390/jfb14080424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
In the search for effective biomaterials for bone repair, magnesium phosphate cements (MPCs) are nowadays gaining importance as bone void fillers thanks to their many attractive features that overcome some of the limitations of the well-investigated calcium-phosphate-based cements. The goal of this review was to highlight the main properties and applications of MPCs in the orthopedic field, focusing on the different types of formulations that have been described in the literature, their main features, and the in vivo and in vitro response towards them. The presented results will be useful to showcase the potential of MPCs in the orthopedic field and will suggest novel strategies to further boost their clinical application.
Collapse
Affiliation(s)
| | - Francesca Ridi
- Department of Chemistry “Ugo Schiff” and CSGI Consortium, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
6
|
Sugimoto K, Zhou Y, Galindo TGP, Kimura R, Tagaya M. Investigation of Surface Layers on Biological and Synthetic Hydroxyapatites Based on Bone Mineralization Process. Biomimetics (Basel) 2023; 8:biomimetics8020184. [PMID: 37218770 DOI: 10.3390/biomimetics8020184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
In this review, the current status of the influence of added ions (i.e., SiO44-, CO32-, etc.) and surface states (i.e., hydrated and non-apatite layers) on the biocompatibility nature of hydroxyapatite (HA, Ca10(PO4)6(OH)2) is discussed. It is well known that HA is a type of calcium phosphate with high biocompatibility that is present in biological hard tissues such as bones and enamel. This biomedical material has been extensively studied due to its osteogenic properties. The chemical composition and crystalline structure of HA change depending on the synthetic method and the addition of other ions, thereby affecting the surface properties related to biocompatibility. This review illustrates the structural and surface properties of HA substituted with ions such as silicate, carbonate, and other elemental ions. The importance of the surface characteristics of HA and its components, the hydration layers, and the non-apatite layers for the effective control of biomedical function, as well as their relationship at the interface to improve biocompatibility, has been highlighted. Since the interfacial properties will affect protein adsorption and cell adhesion, the analysis of their properties may provide ideas for effective bone formation and regeneration mechanisms.
Collapse
Affiliation(s)
- Kazuto Sugimoto
- Department of Materials Science and Technology, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Yanni Zhou
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | | | - Reo Kimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| | - Motohiro Tagaya
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
7
|
Lv L, Cheng W, Wang S, Lin S, Dang J, Ran Z, Zhu H, Xu W, Huang Z, Xu P, Xu H. Poly(β-amino ester) Dual-Drug-Loaded Hydrogels with Antibacterial and Osteogenic Properties for Bone Repair. ACS Biomater Sci Eng 2023; 9:1976-1990. [PMID: 36881921 DOI: 10.1021/acsbiomaterials.2c01524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
In this study, we developed a poly(β-amino ester) (PBAE) hydrogel for the double release of vancomycin (VAN) and total flavonoids of Rhizoma Drynariae (TFRD). VAN was covalently bonded to PBAE polymer chains and was released to enhance the antimicrobial effect first. TFRD chitosan (CS) microspheres were physically dispersed in the scaffold, TFRD was released from the microspheres, and osteogenesis was induced subsequently. The scaffold had good porosity (90.12 ± 3.27%), and the cumulative release rate of the two drugs in PBS (pH 7.4) solution exceeded 80%. In vitro antimicrobial assays demonstrated the antibacterial properties of the scaffold against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Besides these, cell viability assays indicated that the scaffold had good biocompatibility. Moreover, alkaline phosphatase and matrix mineralization were expressed more than in the control group. Overall, cell experiments confirmed that the scaffolds have enhanced osteogenic differentiation capabilities. In conclusion, the dual-drug-loaded scaffold with antibacterial and bone regeneration effects is promising in the field of bone repair.
Collapse
Affiliation(s)
- Lu Lv
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wanting Cheng
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Sining Wang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Sihui Lin
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jiarui Dang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhihui Ran
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Hong Zhu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjin Xu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Zhijun Huang
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Peihu Xu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Haixing Xu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
8
|
Ielo I, Calabrese G, De Luca G, Conoci S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int J Mol Sci 2022; 23:ijms23179721. [PMID: 36077119 PMCID: PMC9456225 DOI: 10.3390/ijms23179721] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Bone tissue is a nanocomposite consisting of an organic and inorganic matrix, in which the collagen component and the mineral phase are organized into complex and porous structures. Hydroxyapatite (HA) is the most used ceramic biomaterial since it mimics the mineral composition of the bone in vertebrates. However, this biomimetic material has poor mechanical properties, such as low tensile and compressive strength, which make it not suitable for bone tissue engineering (BTE). For this reason, HA is often used in combination with different polymers and crosslinkers in the form of composites to improve their mechanical properties and the overall performance of the implantable biomaterials developed for orthopedic applications. This review summarizes recent advances in HA-based biocomposites for bone regeneration, addressing the most widely employed inorganic matrices, the natural and synthetic polymers used as reinforcing components, and the crosslinkers added to improve the mechanical properties of the scaffolds. Besides presenting the main physical and chemical methods in tissue engineering applications, this survey shows that HA biocomposites are generally biocompatible, as per most in vitro and in vivo studies involving animal models and that the results of clinical studies on humans sometimes remain controversial. We believe this review will be helpful as introductory information for scientists studying HA materials in the biomedical field.
Collapse
Affiliation(s)
- Ileana Ielo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Giovanna De Luca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Correspondence: (G.C.); (G.D.L.)
| | - Sabrina Conoci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Ottava Strada n.5, 95121 Catania, Italy
| |
Collapse
|
9
|
Besleaga C, Nan B, Popa AC, Balescu LM, Nedelcu L, Neto AS, Pasuk I, Leonat L, Popescu-Pelin G, Ferreira JMF, Stan GE. Sr and Mg Doped Bi-Phasic Calcium Phosphate Macroporous Bone Graft Substitutes Fabricated by Robocasting: A Structural and Cytocompatibility Assessment. J Funct Biomater 2022; 13:jfb13030123. [PMID: 36135559 PMCID: PMC9502687 DOI: 10.3390/jfb13030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/29/2022] Open
Abstract
Bi-phasic calcium phosphates (BCPs) are considered prominent candidate materials for the fabrication of bone graft substitutes. Currently, supplemental cation-doping is suggested as a powerful path to boost biofunctionality, however, there is still a lack of knowledge on the structural role of such substituents in BCPs, which in turn, could influence the intensity and extent of the biological effects. In this work, pure and Mg- and Sr-doped BCP scaffolds were fabricated by robocasting from hydrothermally synthesized powders, and then preliminarily tested in vitro and thoroughly investigated physically and chemically. Collectively, the osteoblast cell culture assays indicated that all types of BCP scaffolds (pure, Sr- or Sr–Mg-doped) delivered in vitro performances similar to the biological control, with emphasis on the Sr–Mg-doped ones. An important result was that double Mg–Sr doping obtained the ceramic with the highest β-tricalcium phosphate (β-TCP)/hydroxyapatite mass concentration ratio of ~1.8. Remarkably, Mg and Sr were found to be predominantly incorporated in the β-TCP lattice. These findings could be important for the future development of BCP-based bone graft substitutes since the higher dissolution rate of β-TCP enables an easier release of the therapeutic ions. This may pave the road toward medical devices with more predictable in vivo performance.
Collapse
Affiliation(s)
- Cristina Besleaga
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Bo Nan
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Liviu Nedelcu
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Ana Sofia Neto
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Lucia Leonat
- National Institute of Materials Physics, RO-077125 Magurele, Romania
| | - Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramics Engineering, CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.M.F.F.); (G.E.S.)
| | - George E. Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania
- Correspondence: (J.M.F.F.); (G.E.S.)
| |
Collapse
|
10
|
Maier J, Geske V, Werner D, Behnisch T, Ahlhelm M, Moritz T, Michaelis A, Gude M. Investigation of Targeted Process Control for Adjusting the Macrostructure of Freeze Foams Using In Situ Computed Tomography. CERAMICS 2022; 5:269-280. [DOI: 10.3390/ceramics5030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Freeze foams are novel and innovative cellular structures that are based on a direct foaming process and that can be manufactured using any material that can be processed by powder technology. The foam formation process is characterized by the highly complex interaction of various process and material parameters that were chosen empirically and that have so far been difficult to reproduce. To allow properties to be specifically tailored towards certain applications, it is necessary to examine the phenomena observed during foam formation as well as the impact of the process and material parameters on the structural constitution to deduce guidelines for manufacturing and quality assessment (e.g., mechanical strength, cell and pore sizes, pore size distribution). The variety of possible applications are a result of the wide spectrum of initial suspensions and especially the foam structure properties derived from process parameters such as the cell geometry, pore size distribution, fraction of open and closed porosity, and the textures of the cell struts. Due to earlier findings, the focus of this paper focuses on adjusting and tailoring the macrostructure (homogenization of the pore sizes and their distribution inside foam cells) to create load- and application-adapted ceramic foams. To this end, an experiment was designed using previously identified pore and characteristic influencers (air and water content, temperature of the suspension, pressure reduction rate) as influencing parameters. Their interconnected impacts on selected target values were examined during the freeze foaming process using an in situ freeze foaming device inside an X-ray.
Collapse
Affiliation(s)
- Johanna Maier
- Institute of Lightweight Engineering and Polymer Technology, University of Dresden, Holbeinstraße 3, 01307 Dresden, Germany
| | - Vinzenz Geske
- Institute of Lightweight Engineering and Polymer Technology, University of Dresden, Holbeinstraße 3, 01307 Dresden, Germany
| | - David Werner
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Winterbergstraße 28, 01277 Dresden, Germany
| | - Thomas Behnisch
- Institute of Lightweight Engineering and Polymer Technology, University of Dresden, Holbeinstraße 3, 01307 Dresden, Germany
| | - Matthias Ahlhelm
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Maria-Reiche-Str. 2, 01109 Dresden, Germany
| | - Tassilo Moritz
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Winterbergstraße 28, 01277 Dresden, Germany
| | - Alexander Michaelis
- Fraunhofer Institute for Ceramic Technologies and Systems, IKTS, Winterbergstraße 28, 01277 Dresden, Germany
| | - Maik Gude
- Institute of Lightweight Engineering and Polymer Technology, University of Dresden, Holbeinstraße 3, 01307 Dresden, Germany
| |
Collapse
|
11
|
Ghelich P, Kazemzadeh-Narbat M, Najafabadi AH, Samandari M, Memic A, Tamayol A. (Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100073. [PMID: 35935166 PMCID: PMC9355310 DOI: 10.1002/anbr.202100073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | | | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| |
Collapse
|
12
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
13
|
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112466. [PMID: 34702541 PMCID: PMC8555702 DOI: 10.1016/j.msec.2021.112466] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/26/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022]
Abstract
To induce bone regeneration there is a complex cascade of growth factors. Growth factors such as recombinant BMP-2, BMP-7, and PDGF are FDA-approved therapies in bone regeneration. Although, BMP shows promising results as being an alternative to autograft, it also has its own downfalls. BMP-2 has many adverse effects such as inflammatory complications such as massive soft-tissue swelling that can compromise a patient's airway, ectopic bone formation, and tumor formation. BMP-2 may also be advantageous for patients not willing to give up smoking as it shows bone regeneration success with smokers. BMP-7 is no longer an option for bone regeneration as it has withdrawn off the market. PDGF-BB grafts in studies have shown PDGF had similar fusion rates to autologous grafts and fewer adverse effects. There is also an FDA-approved bioactive molecule for bone regeneration, a peptide P-15. P-15 was found to be effective, safe, and have similar outcomes to autograft at 2 years post-op for cervical radiculopathy due to cervical degenerative disc disease. Growth factors and bioactive molecules show some promising results in bone regeneration, although more research is needed to avoid their adverse effects and learn about the long-term effects of these therapies. There is a need of a bone regeneration method of similar quality of an autograft that is osteoconductive, osteoinductive, and osteogenic. This review covers all FDA-approved bone regeneration therapies such as the "gold standard" autografts, allografts, synthetic bone grafts, and the newer growth factors/bioactive molecules. It also covers international bone grafts not yet approved in the United States and upcoming technologies in bone grafts.
Collapse
Affiliation(s)
- Cassidy E Gillman
- The Doctor of Medicine (M.D.) Program, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ambalangodage C Jayasuriya
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
14
|
Chun YS, Lee DH, Won TG, Kim Y, Shetty AA, Kim SJ. Current Modalities for Fracture Healing Enhancement. Tissue Eng Regen Med 2021; 19:11-17. [PMID: 34665454 DOI: 10.1007/s13770-021-00399-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 01/14/2023] Open
Abstract
Previously, most fractures have been treated through bone reduction and immobilization. With an increase in the patients' need for an early return to their normal function, development in surgical techniques and materials have accelerated. However, delayed union or non-union of the fracture site sometimes inhibits immediate return to normal life. To enhance fracture healing, diverse materials and methods have been developed. This is a review on the current modalities of fracture healing enhancement, which aims to provide a comprehensive knowledge regarding fracture healing for researchers and health practitioners.
Collapse
Affiliation(s)
- You Seung Chun
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Dong Hwan Lee
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Tae Gu Won
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Yuna Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea
| | - Asode Ananthram Shetty
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, 30 Pembroke Court, Chatham Maritime, Kent, ME4 4UF, UK
| | - Seok Jung Kim
- Department of Orthopedic Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 271, Cheonbo-ro, Uijeongbu-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
15
|
Cheng J, Liu J, Wu B, Liu Z, Li M, Wang X, Tang P, Wang Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front Bioeng Biotechnol 2021; 9:734688. [PMID: 34660555 PMCID: PMC8511325 DOI: 10.3389/fbioe.2021.734688] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/14/2021] [Indexed: 01/14/2023] Open
Abstract
Bone regeneration or replacement has been proved to be one of the most effective methods available for the treatment of bone defects caused by different musculoskeletal disorders. However, the great contradiction between the large demand for clinical therapies and the insufficiency and deficiency of natural bone grafts has led to an urgent need for the development of synthetic bone graft substitutes. Bone tissue engineering has shown great potential in the construction of desired bone grafts, despite the many challenges that remain to be faced before safe and reliable clinical applications can be achieved. Graphene, with outstanding physical, chemical and biological properties, is considered a highly promising material for ideal bone regeneration and has attracted broad attention. In this review, we provide an introduction to the properties of graphene and its derivatives. In addition, based on the analysis of bone regeneration processes, interesting findings of graphene-based materials in bone regenerative medicine are analyzed, with special emphasis on their applications as scaffolds, membranes, and coatings in bone tissue engineering. Finally, the advantages, challenges, and future prospects of their application in bone regenerative medicine are discussed.
Collapse
Affiliation(s)
- Junyao Cheng
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China.,Chinese PLA Medical School, Beijing, China
| | - Jianheng Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Bing Wu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zhongyang Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Ming Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Mechanically Stable β-TCP Structural Hybrid Scaffolds for Potential Bone Replacement. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5100281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The authors report on the manufacturing of mechanically stable β-tricalcium phosphate (β-TCP) structural hybrid scaffolds via the combination of additive manufacturing (CerAM VPP) and Freeze Foaming for engineering a potential bone replacement. In the first step, load bearing support structures were designed via FE simulation and 3D printed by CerAM VPP. In the second step, structures were foamed-in with a porous and degradable calcium phosphate (CaP) ceramic that mimics porous spongiosa. For this purpose, Fraunhofer IKTS used a process known as Freeze Foaming, which allows the foaming of any powdery material and the foaming-in into near-net-shape structures. Using a joint heat treatment, both structural components fused to form a structural hybrid. This bone construct had a 25-fold increased compressive strength compared to the pure CaP Freeze Foam and excellent biocompatibility with human osteoblastic MG-63 cells when compared to a bone grafting Curasan material for benchmark.
Collapse
|
17
|
Pinto PO, Branquinho MV, Caseiro AR, Sousa AC, Brandão A, Pedrosa SS, Alvites RD, Campos JM, Santos FL, Santos JD, Mendonça CM, Amorim I, Atayde LM, Maurício AC. The application of Bonelike® Poro as a synthetic bone substitute for the management of critical-sized bone defects - A comparative approach to the autograft technique - A preliminary study. Bone Rep 2021; 14:101064. [PMID: 33981810 PMCID: PMC8082556 DOI: 10.1016/j.bonr.2021.101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/16/2021] [Accepted: 04/05/2021] [Indexed: 12/26/2022] Open
Abstract
The effective treatment of non-unions and critical-sized defects remains a challenge in the orthopedic field. From a tissue engineering perspective, this issue can be addressed through the application bioactive matrixes to support bone regeneration, such as Bonelike®, as opposed to the widespread autologous grafting technique. An improved formulation of Bonelike® Poro, was assessed as a synthetic bone substitute in an ovine model for critical-sized bone defects. Bone regeneration was assessed after 5 months of recovery through macro and microscopic analysis of the healing features of the defect sites. Both the application of natural bone graft or Bonelike® Poro resulted in bridging of the defects margins. Untreated defect remained as fibrous non-unions at the end of the study period. The characteristics of the newly formed bone and its integration with the host tissue were assessed through histomorphometric and histological analysis, which demonstrated Bonelike® Poro to result in improved healing of the defects. The group treated with synthetic biomaterial presented bone bridges of increased thickness and bone features that more closely resembled the native spongeous and cortical bone. The application of Bonelike® Poro enabled the regeneration of critical-sized lesions and performed comparably to the autograph technique, validating its octeoconductive and osteointegrative potential for clinical application as a therapeutic strategy in human and veterinary orthopedics.
Collapse
Affiliation(s)
- P O Pinto
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - M V Branquinho
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A R Caseiro
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - A C Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A Brandão
- Biosckin, Molecular and Cell Therapies, SA, Parque de Ciência e Tecnologia da Maia, Rua Eng. Frederico Ulrich, 2650, 4470-605 Moreira da Maia, Portugal
| | - S S Pedrosa
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - R D Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - J M Campos
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal.,Vasco da Gama Research Center (CIVG), Vasco da Gama University School (EUVG), Av. José R. Sousa Fernandes 197, Campus Universitário, Lordemão, 3020-210 Coimbra, Portugal
| | - F L Santos
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - J D Santos
- Network of Chemistry and Technology - Associated Laboratory for Green Chemistry (REQUIMTE-LAQV), Department of Metallurgy and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | - C M Mendonça
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences (ICBAS), University of Porto (UP), Rua Jorge Viterbo Ferreira, n ° 228, 4050-313 Porto, Portugal.,Institute of Research and Innovation in Health (i3S), University of Porto (UP), Rua Alfredo Allen, 4200-135 Porto, Portugal
| | - L M Atayde
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - A C Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.,Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
18
|
Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv Healthc Mater 2021; 10:e2001414. [PMID: 33103370 PMCID: PMC8218309 DOI: 10.1002/adhm.202001414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Graphene and its derivatives have continued to garner worldwide interest due to their unique characteristics. Having expanded into biomedical applications, there have been efforts to employ their exceptional properties for the regeneration of different tissues, particularly bone. This article presents a comprehensive review on the usage of graphene-based materials for bone regenerative engineering. The graphene family of materials (GFMs) are used either alone or in combination with other biomaterials in the form of fillers in composites, coatings for both scaffolds and implants, or vehicles for the delivery of various signaling and therapeutic agents. The applications of the GFMs in each of these diverse areas are discussed and emphasis is placed on the characteristics of the GFMs that have implications in this regard. In tandem and of importance, this article evaluates the safety and biocompatibility of the GFMs and carefully elucidates how various factors influence the biocompatibility and biodegradability of this new class of nanomaterials. In conclusion, the challenges and opportunities regarding the use of the GFMs in regenerative engineering applications are discussed, and future perspectives for the developments in this field are proposed.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
19
|
Chitosan Composite Biomaterials for Bone Tissue Engineering—a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00187-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Keppler AM, Saller MM, Alberton P, Westphal I, Heidenau F, Schönitzer V, Böcker W, Kammerlander C, Schieker M, Aszodi A, Neuerburg C. Bone defect reconstruction with a novel biomaterial containing calcium phosphate and aluminum oxide reinforcement. J Orthop Surg Res 2020; 15:287. [PMID: 32727506 PMCID: PMC7391532 DOI: 10.1186/s13018-020-01801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background Reconstruction of metaphyseal fractures represents a clinical challenge for orthopedic surgeons. Especially in osteoporotic bone, these fractures are frequently accompanied by osseous substance defects. In order to ensure rapid mobilization of patients, high stability requirements must be met by osteosynthesis. Various bone graft materials have been introduced in the past, such as autologous bone or exogenous bone substitute materials. These are used as bone void fillers or as augmentation techniques to ensure safe fixation of osteosynthesis. New calcium phosphate-based bone void-filling materials could be a promising alternative to autologous bone or to the currently and widely used polymethylmethacrylate (PMMA)-based cement. The aim of this study was to evaluate a novel paste-like bone void filler in vivo and in vitro with regard to biocompatibility and osteoconductivity. Methods In addition to in vitro testing of cell compatibility using pre-osteoblasts (MC3T3-E1), 35 Wistar rats were treated in vivo with implantation of various material mixtures based on calcium phosphate and aluminum oxide reinforcement in a metaphyseal drill hole defect. After 4 weeks, an examination by micro-computed tomography (μCT) and histology was performed. Results The in vitro analysis showed good biocompatibility with a high cell survival of osteoblasts. In the in vivo experiments, a significantly higher bone ingrowth compared to the empty defect was shown by μCT and histological analysis. Here, the group receiving material reinforced with aluminum oxide (Al2O3) showed a bone volume/tissue volume (BV/TV) of 89.19% compared to a BV/TV of 83.14% for the empty defect (p = 0.0013). In the group treated with a polysaccharide matrix, no increase in BV/TV was observed given a mean ratio of 80.14%. Scoring of histological sections did not reveal a significant difference between CaP and CaP that was substituted with Al2O3. Conclusion The results of this study show an encouraging first step towards the development of new pasty, bone void-filling materials. We demonstrated that a new paste-like bone-filling material, based on calcium phosphate granulates and aluminum oxide to provide strength, exhibits good biocompatibility and osteoconductivity. Further biomechanical test in an osteoporotic animal model will have to be performed, to prove feasibility in metaphyseal defects.
Collapse
Affiliation(s)
- Alexander M Keppler
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Maximilian M Saller
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Paolo Alberton
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Ines Westphal
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.,LivImplant GmbH, Starnberg, Germany
| | | | - Veronika Schönitzer
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Wolfgang Böcker
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Christian Kammerlander
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Matthias Schieker
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.,Novartis Institute for Biomedical Research, Basel, Switzerland.,LivImplant GmbH, Starnberg, Germany
| | - Attila Aszodi
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany
| | - Carl Neuerburg
- Department of General, Trauma and Reconstructive Surgery, University Hospital of the Ludwig-Maximilians-University Munich, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|
21
|
Souza ATP, Lopes HB, Freitas GP, Ferraz EP, Oliveira FS, Almeida ALG, Weffort D, Beloti MM, Rosa AL. Role of embryonic origin on osteogenic potential and bone repair capacity of rat calvarial osteoblasts. J Bone Miner Metab 2020; 38:481-490. [PMID: 32078052 DOI: 10.1007/s00774-020-01090-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The aim of this study was to evaluate the in vitro osteogenic potential of osteoblasts from neural crest-derived frontal bone (OB-NC) and mesoderm-derived parietal bone (OB-MS) and the bone formation induced by them when injected into calvarial defects. MATERIALS AND METHODS Calvarial bones were collected from newborn Wistar rats (3-day old) and characterized as frontal and parietal prior to OB-NC and OB-MS harvesting. The cells were cultured, and several parameters of osteoblast differentiation were evaluated. These cells, or PBS without cells (control), were locally injected into 5-mm rat calvarial defects (5 × 106 cells/defect) and after 4 weeks bone formation was evaluated by morphometric and histological analyses. RESULTS The characterization of frontal and parietal bones assured the different embryonic origin of both cell populations, OB-NC and OB-MS. The OB-NC presented higher proliferation while the OB-MS presented higher alkaline phosphatase (ALP) activity, extracellular matrix mineralization and gene expression of runt-related transcription factor 2, Alp, bone sialoprotein and osteocalcin revealing their high osteogenic potential. µCT analysis indicated that there was higher amount of bone formation in defects injected with both OB-NC and OB-MS compared to the control. Moreover, the bone tissue formed by both cells displayed the same histological characteristics. CONCLUSIONS Despite the distinct in vitro osteogenic potential, OB-NC and OB-MS induced similar bone repair in a rat calvarial defect model. Thus, osteoblasts, irrespective of their in vitro osteogenic potential linked to embryonic origins, seem to be suitable for cell-based therapies aiming to repair bone defects.
Collapse
Affiliation(s)
- Alann Thaffarell Portilho Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Helena Bacha Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Emanuela Prado Ferraz
- Department of Maxillofacial Surgery, Prosthesis and Traumatology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Adriana Luisa Gonçalves Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Denise Weffort
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Av do Café s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
22
|
Yarygin NV, Parshikov MV, Prosvirin AA, Gur'ev VV, Govorov MV, Bosykh VG, Akatov VS, Chekanov AV. Effect of Morphogenetic Protein BMP-2 on X-Ray Density of Bone Defect in the Experiment. Bull Exp Biol Med 2020; 168:574-577. [PMID: 32152849 DOI: 10.1007/s10517-020-04755-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Indexed: 12/18/2022]
Abstract
In experiments on Wistar rats, a simulated defect in the flat bones of the skull was filled with a collagen sponge of animal origin impregnated with BMP-2 or pure sponge; in control rats, the defect was left open. During follow-up, X-ray density of the collagen sponge in the experimental groups differed significantly. The results attest to the absence of spontaneous remodeling of the bone tissue under conditions modeled focal defect. Moreover, stimulation of reparative processes by the collagen matrix did not lead to positive dynamics. Saturation of the collagen sponge with BMP-2 in a concentration of 0.05 mg/ml allowed increasing Xray density of the bone starting from week 4.
Collapse
Affiliation(s)
- N V Yarygin
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - M V Parshikov
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A A Prosvirin
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Gur'ev
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - M V Govorov
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V G Bosykh
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia
| | | | - A V Chekanov
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
23
|
Busch A, Wegner A, Haversath M, Jäger M. Bone Substitutes in Orthopaedic Surgery: Current Status and Future Perspectives. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 159:304-313. [PMID: 32023626 DOI: 10.1055/a-1073-8473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone replacement materials have been successfully supplied for a long time. But there are cases, especially in critical sized bone defects, in which the therapy is not sufficient. Nowadays, there are multiple bone substitutes available. Autologous bone grafts remain the "gold standard" in bone regeneration. Yet, donor-site morbidity and the available amount of sufficient material are limitations for autologous bone grafting. This study aimed to provide information about the current status in research regarding bone substitutes. We report on the advantages and drawbacks of several bone substitutes. At the end, we discuss the current developments of combining ceramic substitutes with osteoinductive substances.
Collapse
Affiliation(s)
- André Busch
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| | - Alexander Wegner
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| | - Marcel Haversath
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| | - Marcus Jäger
- Department of Orthopaedics, Trauma and Reconstructive Surgery, Marienhospital Mülheim an der Ruhr, Chair of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Germany
| |
Collapse
|
24
|
Freitas GP, Lopes HB, P Souza AT, F P Oliveira PG, G Almeida AL, Coelho PG, Ferreira FU, Covas DT, Beloti MM, Rosa AL. Effect of cell therapy with osteoblasts differentiated from bone marrow or adipose tissue stromal cells on bone repair. Regen Med 2020; 14:1107-1119. [PMID: 31960753 DOI: 10.2217/rme-2019-0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: The aim of this study was to investigate the effect of local injection of osteoblasts differentiated from bone marrow (BM-OB) or adipose tissue (AT-OB) mesenchymal stromal cells on bone tissue formation. Materials & methods: Defects were created in rat calvaria and injected with BM-OB or AT-OB and phosphate-buffered saline without cells were injected as control. Bone formation was evaluated 4 weeks postinjection. Results: Injection of BM-OB or AT-OB resulted in higher bone formation than that obtained with control. The bone tissue induced by cell injections exhibited similar mechanical properties as those of pristine calvarial bone, and its molecular cues suggested the occurrence of a remodeling process. Conclusion: Results of this study demonstrated that cell therapy with osteoblasts induced significant bone formation that exhibited the same quality as that of pre-existent bone.
Collapse
Affiliation(s)
- Gileade P Freitas
- Department of Oral & Maxillofacial Surgery & Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Helena B Lopes
- Department of Oral & Maxillofacial Surgery & Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Alann T P Souza
- Department of Oral & Maxillofacial Surgery & Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Paula G F P Oliveira
- Department of Oral & Maxillofacial Surgery & Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Adriana L G Almeida
- Department of Oral & Maxillofacial Surgery & Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, NY 10010, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, NY 10016, USA
| | - Fernanda U Ferreira
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Dimas T Covas
- Center for Cell-Based Research, Regional Blood Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil.,Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Marcio M Beloti
- Department of Basic & Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| | - Adalberto L Rosa
- Department of Oral & Maxillofacial Surgery & Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, SP, Brazil
| |
Collapse
|
25
|
Abstract
The number of fragility fractures is rising, and treatment is a challenge for orthopaedic trauma surgeons. Various augmentation options have been developed to prevent mechanical failure. Different composites can be used based on the fracture type, patient needs, and biomechanical needs. Indications for augmentation are not limited to osteoporotic fractures but can also be performed as a salvage procedure or in pathologic fractures. Biomechanical studies have shown advantages for augmented implants in the spine, proximal femur, and humerus. Clinical studies are preliminary but promising, showing good clinical results after augmentation with reduced mechanical failure and minimal complications.
Collapse
|
26
|
Current and Future Concepts for the Treatment of Impaired Fracture Healing. Int J Mol Sci 2019; 20:ijms20225805. [PMID: 31752267 PMCID: PMC6888215 DOI: 10.3390/ijms20225805] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Bone regeneration represents a complex process, of which basic biologic principles have been evolutionarily conserved over a broad range of different species. Bone represents one of few tissues that can heal without forming a fibrous scar and, as such, resembles a unique form of tissue regeneration. Despite a tremendous improvement in surgical techniques in the past decades, impaired bone regeneration including non-unions still affect a significant number of patients with fractures. As impaired bone regeneration is associated with high socio-economic implications, it is an essential clinical need to gain a full understanding of the pathophysiology and identify novel treatment approaches. This review focuses on the clinical implications of impaired bone regeneration, including currently available treatment options. Moreover, recent advances in the understanding of fracture healing are discussed, which have resulted in the identification and development of novel therapeutic approaches for affected patients.
Collapse
|
27
|
Freitas GP, Lopes HB, Souza ATP, Oliveira PGFP, Almeida ALG, Souza LEB, Coelho PG, Beloti MM, Rosa AL. Cell Therapy: Effect of Locally Injected Mesenchymal Stromal Cells Derived from Bone Marrow or Adipose Tissue on Bone Regeneration of Rat Calvarial Defects. Sci Rep 2019; 9:13476. [PMID: 31530883 PMCID: PMC6748998 DOI: 10.1038/s41598-019-50067-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023] Open
Abstract
Treatment of large bone defects is a challenging clinical situation that may be benefited from cell therapies based on regenerative medicine. This study was conducted to evaluate the effect of local injection of bone marrow-derived mesenchymal stromal cells (BM-MSCs) or adipose tissue-derived MSCs (AT-MSCs) on the regeneration of rat calvarial defects. BM-MSCs and AT-MSCs were characterized based on their expression of specific surface markers; cell viability was evaluated after injection with a 21-G needle. Defects measuring 5 mm that were created in rat calvaria were injected with BM-MSCs, AT-MSCs, or vehicle-phosphate-buffered saline (Control) 2 weeks post-defect creation. Cells were tracked by bioluminescence, and 4 weeks post-injection, the newly formed bone was evaluated by µCT, histology, nanoindentation, and gene expression of bone markers. BM-MSCs and AT-MSCs exhibited the characteristics of MSCs and maintained their viability after passing through the 21-G needle. Injection of both BM-MSCs and AT-MSCs resulted in increased bone formation compared to that in Control and with similar mechanical properties as those of native bone. The expression of genes associated with bone formation was higher in the newly formed bone induced by BM-MSCs, whereas the expression of genes involved in bone resorption was higher in the AT-MSC group. Cell therapy based on local injection of BM-MSCs or AT-MSCs is effective in delivering cells that induced a significant improvement in bone healing. Despite differences observed in molecular cues between BM-MSCs and AT-MSCs, both cells had the ability to induce bone tissue formation at comparable amounts and properties. These results may drive new cell therapy approaches toward complete bone regeneration.
Collapse
Affiliation(s)
- Gileade P Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Helena B Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Paula G F P Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Adriana L G Almeida
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas E B Souza
- Hemotherapy Center of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo G Coelho
- Department of Biomaterials, New York University College of Dentistry, New York, NY, USA.,Hanjorg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
28
|
Peña Fernández M, Dall’Ara E, Bodey AJ, Parwani R, Barber AH, Blunn GW, Tozzi G. Full-Field Strain Analysis of Bone–Biomaterial Systems Produced by the Implantation of Osteoregenerative Biomaterials in an Ovine Model. ACS Biomater Sci Eng 2019; 5:2543-2554. [DOI: 10.1021/acsbiomaterials.8b01044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marta Peña Fernández
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Enrico Dall’Ara
- Department of Oncology and Metabolism and INSIGNEO Institute for in silico Medicine, University of Sheffield, The Pam Liversidge Building, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, U.K
| | - Andrew J. Bodey
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Fermi Avenue, Didcot, OX11 0DE, U.K
| | - Rachna Parwani
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| | - Asa H. Barber
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
- School of Engineering, London South Bank University, 103 Borough Road, London, SE1 0AA, U.K
| | - Gordon W. Blunn
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, St. Michael’s Building, White Swan Road, Portsmouth, PO1 2DT, U.K
| | - Gianluca Tozzi
- Zeiss Global Centre, School of Mechanical and Design Engineering, University of Portsmouth, Anglesea Building, Anglesea Road, Portsmouth, PO1 3DJ, U.K
| |
Collapse
|
29
|
Sohn HS, Oh JK. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater Res 2019; 23:9. [PMID: 30915231 PMCID: PMC6417250 DOI: 10.1186/s40824-019-0157-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Background Autogenous bone graft is the gold standard bone graft material. However, due to limitations of supply and morbidity associated with autograft harvest, various bone substitutes have been considered. This article aims to review the properties of the bone graft and various bone substitutes currently available in orthopedic surgery. Main body Synthetic bone substitutes consist of hydroxyapatite, tricalcium phosphate, calcium sulfate, or a combination of these minerals. Synthetic porous substitutes share several advantages over allografts, including unlimited supply, easy sterilization, and storage. However, they also have some disadvantages, such as brittle properties, variable rates of resorption, and poor performance in some clinical conditions. Recently, attention has been drawn to osteoinductive materials, such as demineralized bone matrix and bone morphogenetic proteins. Conclusion Despite tremendous efforts toward developing autograft alternatives, a single ideal bone graft substitute has not been developed. The surgeon should understand the properties of each bone graft substitute to facilitate appropriate selection in each specific clinical situation.
Collapse
Affiliation(s)
- Hoon-Sang Sohn
- 2Department of Orthopaedic Surgery, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, South Korea
| | - Jong-Keon Oh
- 1Department of Orthopaedic Surgery, Guro Hospital, Korea University College of Medicine, 80 Guro 2-dong, Guro-gu, Seoul 152-703 South Korea
| |
Collapse
|
30
|
Drug-Loaded Biomimetic Ceramics for Tissue Engineering. Pharmaceutics 2018; 10:pharmaceutics10040272. [PMID: 30551594 PMCID: PMC6321415 DOI: 10.3390/pharmaceutics10040272] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/09/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
The mimesis of biological systems has been demonstrated to be an adequate approach to obtain tissue engineering scaffolds able to promote cell attachment, proliferation, and differentiation abilities similar to those of autologous tissues. Bioceramics are commonly used for this purpose due to their similarities to the mineral component of hard tissues as bone. Furthermore, biomimetic scaffolds are frequently loaded with diverse therapeutic molecules to enhance their biological performance, leading to final products with advanced functionalities. In this review, we aim to describe the already developed bioceramic-based biomimetic systems for drug loading and local controlled release. We will discuss the mechanisms used for the inclusion of therapeutic molecules on the designed systems, paying special attention to the identification of critical parameters that modulate drug loading and release kinetics on these scaffolds.
Collapse
|
31
|
Histological Evaluation of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body. MATERIALS 2018; 11:ma11050714. [PMID: 29724045 PMCID: PMC5978091 DOI: 10.3390/ma11050714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/23/2023]
Abstract
The purpose of this study was to measure the level of new bone formation induced by various bone graft materials to provide clinicians with more choices. The samples were divided into three groups: group 1 (n = 9: allograft + xenograft, DBX®, San Francisco, CA, USA + Bio-Oss®, Princeton, NJ, USA), group 2 (n = 10: xenograft, Bio-Oss®), and group 3 (n = 8: autogenous tooth bone graft, AutoBT®, Korea Tooth Bank, Seoul, Korea). The average duration of evaluation was 9.56, 2.50, and 3.38 months, respectively. A tissue sample was taken from 27 patients during the second implant surgery. New bone formation was measured via histomorphometry, using a charge-coupled device camera, adaptor, and image analysis software. Total bone area, total area, and ((total bone area/total area) × 100) was measured to determine the extent of new bone formation. The mean value of the total bone area was 152,232.63 μm2; the mean value of the total area was 1,153,696.46 μm2; and the mean total bone area/total area ratio was 13.50%. In each comparison, there was no significant difference among the groups; no inflammation or complications were found in any of the groups. AutoBT®, an autogenous tooth bone graft, resulted in a level of bone formation similar to that using allografts and xenografts.
Collapse
|
32
|
Leach JK, Whitehead J. Materials-Directed Differentiation of Mesenchymal Stem Cells for Tissue Engineering and Regeneration. ACS Biomater Sci Eng 2018; 4:1115-1127. [PMID: 30035212 PMCID: PMC6052883 DOI: 10.1021/acsbiomaterials.6b00741] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell-based therapies are a promising alternative to grafts and organ transplantation for treating tissue loss or damage due to trauma, malfunction, or disease. Over the past two decades, mesenchymal stem cells (MSCs) have attracted much attention as a potential cell population for use in regenerative medicine. While the proliferative capacity and multilineage potential of MSCs provide an opportunity to generate clinically relevant numbers of transplantable cells, their use in tissue regenerative applications has met with relatively limited success to date apart from secreting paracrine-acting factors to modulate the defect microenvironment. Presently, there is significant effort to engineer the biophysical properties of biomaterials to direct MSC differentiation and further expand on the potential of MSCs in tissue engineering, regeneration, and repair. Biomaterials can dictate MSC differentiation by modulating features of the substrate including composition, mechanical properties, porosity, and topography. The purpose of this review is to highlight recent approaches for guiding MSC fate using biomaterials and provide a description of the underlying characteristics that promote differentiation toward a desired phenotype.
Collapse
Affiliation(s)
- J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Medical Center, Sacramento, C 95817
| | - Jacklyn Whitehead
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616
| |
Collapse
|
33
|
Yusof MFH, Zahari W, Hashim SNM, Osman ZF, Chandra H, Kannan TP, Noordin KBAA, Azlina A. Angiogenic and osteogenic potentials of dental stem cells in bone tissue engineering. J Oral Biol Craniofac Res 2018; 8:48-53. [PMID: 29556464 PMCID: PMC5854554 DOI: 10.1016/j.jobcr.2017.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023] Open
Abstract
Manipulation of dental stem cells (DSCs) using current technologies in tissue engineering unveil promising prospect in regenerative medicine. DSCs have shown to possess angiogenic and osteogenic potential in both in vivo and in vitro. Neural crest derived DSCs can successfully be isolated from various dental tissues, exploiting their intrinsic great differentiation potential. In this article, researcher team intent to review the characteristics of DSCs, with focus on their angiogenic and osteogenic differentiation lineage. Clinical data on DSCs are still lacking to prove their restorative abilities despite extensive contemporary literature, warranting research to further validate their application for bone tissue engineering.
Collapse
Affiliation(s)
- Muhammad Fuad Hilmi Yusof
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wafa’ Zahari
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurnasihah Md Hashim
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Zul Faizuddin Osman
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hamshawagini Chandra
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Thirumulu Ponnuraj Kannan
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | | | - Ahmad Azlina
- Basic Sciences and Oral Biology Unit, School of Dental Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
- Human Genome Center, School of Medical Sciences, USM Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
34
|
Wang W, Yeung KWK. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2017; 2:224-247. [PMID: 29744432 PMCID: PMC5935655 DOI: 10.1016/j.bioactmat.2017.05.007] [Citation(s) in RCA: 943] [Impact Index Per Article: 117.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Bone grafts have been predominated used to treat bone defects, delayed union or non-union, and spinal fusion in orthopaedic clinically for a period of time, despite the emergency of synthetic bone graft substitutes. Nevertheless, the integration of allogeneic grafts and synthetic substitutes with host bone was found jeopardized in long-term follow-up studies. Hence, the enhancement of osteointegration of these grafts and substitutes with host bone is considerably important. To address this problem, addition of various growth factors, such as bone morphogenetic proteins (BMPs), parathyroid hormone (PTH) and platelet rich plasma (PRP), into structural allografts and synthetic substitutes have been considered. Although clinical applications of these factors have exhibited good bone formation, their further application was limited due to high cost and potential adverse side effects. Alternatively, bioinorganic ions such as magnesium, strontium and zinc are considered as alternative of osteogenic biological factors. Hence, this paper aims to review the currently available bone grafts and bone substitutes as well as the biological and bio-inorganic factors for the treatments of bone defect.
Collapse
Affiliation(s)
- Wenhao Wang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam, Hong Kong, China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, 1 Haiyuan 1st Road, Futian District, Shenzhen, China
| |
Collapse
|
35
|
Desantis S, Accogli G, Burk J, Zizza S, Mastrodonato M, Francioso EG, Rossi R, Crovace A, Resta L. Ultrastructural characteristics of ovine bone marrow-derived mesenchymal stromal cells cultured with a silicon stabilized tricalcium phosphate bioceramic. Microsc Res Tech 2017; 80:1189-1198. [PMID: 28799674 DOI: 10.1002/jemt.22916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/29/2022]
Abstract
Bioceramics are being used in experimental bone engineering application in association with bone marrow derived mesenchymal stem cells (BM-MSCs) as a new therapeutic tool, but their effects on the ultrastructure of BM-MSCs are yet unknown. In this study we report the morphological features of ovine (o)BM-MSCs cultured with Skelite, a resorbable bioceramic based on silicon stabilized tricalcium phosphate (SiTCP), able to promote the repair of induced bone defect in sheep model. oBM-MSCs were isolated from the iliac crest, cultured until they reached near-confluence and incubated with SiTCP. After 48 hr the monolayers were highly damaged and only few cells adhered to the plastic. Thus, SiTCP was removed, and after washing the cells were cultured until they became confluent. Then, they were trypsinizated and processed for transmission electron microscopy (TEM) and RT-PCR analysis. RT-PCR displayed that oBM-MSCs express typical surface marker for MSCs. TEM revealed the presence of electron-lucent cells and electron-dense cells, both expressing the CD90 surface antigen. The prominent feature of electron-lucent cells was the concentration of cytoplasmic organelles around the nucleus as well as large surface blebs containing glycogen or profiles of endoplasmic reticulum. The dark cells had a multilocular appearance by the presence of peripheral vacuoles. Some dark cells contained endocytic vesicles, lysosomes, and glycogen aggregates. oBM-MSCs showed different types of specialized interconnections. The comparison with ultrastructural features of untreated oBM-MSCs suggests the light and dark cells are two distinct cell types which were differently affected by SiTCP bioceramic. Skelite cultured ovine BM-MSCs display electron-dense and electron-lucent cells which are differently affected by this bioceramic. This suggests that they could play a different role in bioceramic based therapy.
Collapse
Affiliation(s)
- Salvatore Desantis
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Gianluca Accogli
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Janina Burk
- Saxon Incubator for Clinical Translation (SIKT), University of Leipzig, Philipp-Rosenthal-Street 55, Leipzigi, 04103, Germany.,Institute of Veterinary Physiolgy, University of Leipzig, An den Tierkliniken 7, Leipzig, 04103, Germany
| | - Sara Zizza
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Maria Mastrodonato
- Department of Biology, University of Bari Aldo Moro, Via E. Orabona 4, Bari, 70124, Italy
| | - Edda G Francioso
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Roberta Rossi
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Antonio Crovace
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| | - Leonardo Resta
- Department of Emergency and Organ Transplants (DETO), University of Bari Aldo Moro, Piazza G. Cesare, Bari, 70124, Italy
| |
Collapse
|
36
|
Zhu Y, Wang Z, Zhou H, Li L, Zhu Q, Zhang P. An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:326-334. [PMID: 28866171 DOI: 10.1016/j.msec.2017.04.121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 01/26/2023]
Abstract
Porous nanocomposite of hydroxyapatite/poly(lactide-co-glycolide) (HA/PLGA) is conventionally used in bone tissue engineering but seldom in load-bearing orthopedic applications due to poor mechanical property. This study aimed to fabricate an injectable ternary composite by incorporating different contents of poly(glycolide) (PGA) fibers (0, 30, 50 and 70wt%) into the nanocomposite HA/PLGA matrix as reinforcing fillers for bone tissue repair. The fibers were obtained from melt-spinning and fiber diameter ranged from 70nm to 191μm. The injectability, mechanical strength, solidification rate and cytotoxicity of injectable composites were characterized. All composites achieved the acceptable injectability under an injection force of 100N. The mechanical properties of composites were gradually enhanced by increasing PGA fiber contents. The compression strength of composite with 70wt% content of PGA fibers was up to 31.1MPa, which was four times stronger than that of composite without PGA fibers. In the solidification rate analysis, the compression strength of composites with 50 or 70wt% PGA fibers in immersion time of only 45min was similar to that of composite without fibers in immersion time of 4-5h. The MTT test showed that exceeding 70% cells could survive in the fourfold dilution of extract, and its cytotoxicity focused on the first 4h after immersing. This study have revealed that the PGA fiber-reinforced HA/PLGA composite is a promising candidate for orthopedic applications.
Collapse
Affiliation(s)
- Yuhang Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Hongli Zhou
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Linlong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.; University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, PR China
| | - Qingsan Zhu
- Department of Orthopedics, China-Japan Union Hospital, Jilin University, 126 Xiantai Street, Changchun 130033, PR China.
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China..
| |
Collapse
|
37
|
Ho SS, Vollmer NL, Refaat MI, Jeon O, Alsberg E, Lee MA, Leach JK. Bone Morphogenetic Protein-2 Promotes Human Mesenchymal Stem Cell Survival and Resultant Bone Formation When Entrapped in Photocrosslinked Alginate Hydrogels. Adv Healthc Mater 2016; 5:2501-2509. [PMID: 27581621 PMCID: PMC5176258 DOI: 10.1002/adhm.201600461] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/13/2016] [Indexed: 12/15/2022]
Abstract
There is a substantial need to prolong cell persistence and enhance functionality in situ to enhance cell-based tissue repair. Bone morphogenetic protein-2 (BMP-2) is often used at high concentrations for osteogenic differentiation of mesenchymal stem cells (MSCs) but can induce apoptosis. Biomaterials facilitate the delivery of lower doses of BMP-2, reducing side effects and localizing materials at target sites. Photocrosslinked alginate hydrogels (PAHs) can deliver osteogenic materials to irregular-sized bone defects, providing improved control over material degradation compared to ionically cross-linked hydrogels. It is hypothesized that the delivery of MSCs and BMP-2 from a PAH increases cell persistence by reducing apoptosis, while promoting osteogenic differentiation and enhancing bone formation compared to MSCs in PAHs without BMP-2. BMP-2 significantly decreases apoptosis and enhances survival of photoencapsulated MSCs, while simultaneously promoting osteogenic differentiation in vitro. Bioluminescence imaging reveals increased MSC survival when implanted in BMP-2 PAHs. Bone defects treated with MSCs in BMP-2 PAHs demonstrate 100% union as early as 8 weeks and significantly higher bone volumes at 12 weeks, while defects with MSC-entrapped PAHs alone do not fully bridge. This study demonstrates that transplantation of MSCs with BMP-2 in PAHs achieves robust bone healing, providing a promising platform for bone repair.
Collapse
Affiliation(s)
- Steve S Ho
- Department of Biomedical Engineering, University of California, Davis 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Nina L Vollmer
- Department of Biomedical Engineering, University of California, Davis 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Motasem I Refaat
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Oju Jeon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark A Lee
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis 451 Health Sciences Drive, Davis, CA, 95616, USA.
- Department of Orthopaedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
38
|
Vissers CAB, Harvestine JN, Leach JK. Pore size regulates mesenchymal stem cell response to Bioglass-loaded composite scaffolds. J Mater Chem B 2015; 3:8650-8658. [PMID: 32262722 DOI: 10.1039/c5tb00947b] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Composite scaffolds fabricated from synthetic polymers and bioceramics such as bioactive glasses are promising alternatives to autogenous bone grafts for treatment of bone defects. Compared to other bioceramics, we previously demonstrated that bioactive glass (Bioglass 45S®, BG) further enhances the osteogenic program of bone-forming osteoblasts when incorporated into poly(lactide-co-glycolide) (PLG) macroporous scaffolds. However, cell response is dependent on parameters beyond scaffold composition including pore size and bioceramic availability to cells. We hypothesized that the osteogenic potential of human mesenchymal stem/stromal cells (MSCs) seeded on BG composite scaffolds was dependent upon pore diameter. Composite BG scaffolds were formed with three pore diameters - 125-300 μm, 300-500 μm, and 500-850 μm - by controlling porogen size. To determine the contribution of pore size to composite scaffold osteogenic potential, we characterized the biophysical properties, bioceramic distribution within the scaffold, and the osteogenic response of MSCs. All composite scaffolds were approximately 2-fold stiffer than the PLG control, and scaffolds with 500-850 μm pore diameters induced the greatest osteogenic response. The enhanced response of MSCs to scaffolds fabricated with large pores resulted from increased presentation of Bioglass along pore surfaces, enabling increased interaction between the cells and bioceramic. These data indicate that cellular behavior is dependent upon both pore size and material composition, confirming that the role of pore size should be considered in the development of new materials designed for bone repair.
Collapse
Affiliation(s)
- Caroline A B Vissers
- Department of Biomedical Engineering, University of California, Davis, 451 Health Sciences Drive, Davis, CA 95616, USA.
| | | | | |
Collapse
|
39
|
Kido HW, Brassolatti P, Tim CR, Gabbai‐Armelin PR, Magri AM, Fernandes KR, Bossini PS, Parizotto NA, Crovace MC, Malavazi I, da Cunha AF, Plepis AM, Anibal FF, Rennó AC. Porous poly (
D,L
‐lactide‐
co
‐glycolide) acid/biosilicate
®
composite scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 105:63-71. [DOI: 10.1002/jbm.b.33536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/26/2015] [Accepted: 09/12/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Hueliton W. Kido
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Patricia Brassolatti
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Carla R. Tim
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | | | - Angela M.P. Magri
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Kelly R. Fernandes
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| | - Paulo S. Bossini
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Nivaldo A. Parizotto
- Department of PhysiotherapyPost‐Graduate Program of Biotechnology, Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Murilo C. Crovace
- Department of Materials EngineeringVitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Iran Malavazi
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Anderson F. da Cunha
- Department of Genetics and EvolutionFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana M.G. Plepis
- Institute of Chemistry of Sao Carlos, University of São Paulo (USP)São Carlos Sao Paulo Brazil
| | - Fernanda F. Anibal
- Department of Morphology and PathologyFederal University of São Carlos (UFSCar)São Carlos Sao Paulo Brazil
| | - Ana C.M. Rennó
- Department of BiosciencesFederal University of São Paulo (UNIFESP)Santos Sao Paulo Brazil
| |
Collapse
|
40
|
Schmidt-Bleek K, Petersen A, Dienelt A, Schwarz C, Duda GN. Initiation and early control of tissue regeneration - bone healing as a model system for tissue regeneration. Expert Opin Biol Ther 2014; 14:247-59. [PMID: 24397854 DOI: 10.1517/14712598.2014.857653] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tissue regeneration in itself is a fascinating process that promises repeated renewal of tissue and organs. AREAS COVERED This article aims to illustrate the different strategies available to control tissue regeneration at a very early stage, using bone as an exemplary tissue. The aspects of a controlled inflammatory cascade to achieve a balanced immune response, cell therapeutic approaches for improved tissue formation and angiogenesis, guiding the organization of newly formed extracellular matrix by biomaterials, the relevance of mechanical signals for tissue regeneration processes, and the chances and limitations of growth factor treatments are discussed. EXPERT OPINION The currently available knowledge is reviewed and perspectives for potential new targets are given. This is done under the assumption that early identification of risk patients as well as the application of early intervention strategies is possible.
Collapse
Affiliation(s)
- Katharina Schmidt-Bleek
- Charité - Universitätsmedizin Berlin, Julius Wolff Institut and Center for Musculoskeletal Surgery , Augustenburger Platz 1, D-13353 Berlin , Germany +49 30 450 536196 ; +49 30 450 559969 ;
| | | | | | | | | |
Collapse
|
41
|
Operative technique for human composite flexor tendon allograft procurement and engraftment. Ann Plast Surg 2014; 72:S191-7. [PMID: 24691346 DOI: 10.1097/sap.0000000000000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Devastating volar hand injuries with significant damage to the pulley structures and fibro-osseous sheath, flexor tendons, and volar plates pose a major problem to the reconstructive hand surgeon. Despite advances in tendon handling, operative technique, and postoperative hand rehabilitation, patients who have undergone flexor tendon reconstruction are often plagued by chronic pain, stiffness, and decreased range of motion with resultant decreased ability to work and poor quality of life. Postoperative adhesion formation and lack of suitable donor material for tendon autograft are 2 fundamental problems that continue to challenge the hand surgeon. In 1967, Erle E. Peacock, Jr, described a technique of flexor tendon reconstruction using cadaveric composite flexor tendon allograft, which consisted of both the flexor digitorum profundus and superficialis tendons in their respective fibro-osseous sheaths consisting of the digital pulley structures and the underlying periosteum and volar plates. This technique never gained widespread acceptance due to concerns regarding tissue antigenicity, infectious disease transmission, and the rising popularity of the method of Hunter for silastic rod-based flexor tendon reconstruction initially described during the same period. With modern-day advances in tissue processing with acellularization and extensive donor screening for transmissible diseases, this technique should be revisited to address the reconstructive needs of patients with extensive volar soft tissue and tendon injury. Herein, we describe the operative technique of composite flexor tendon procurement and reconstruction with key modifications from the initial technique described by Peacock for improved composite construct elevation, soft tissue inset, and bony attachment.
Collapse
|
42
|
Zwingenberger S, Yao Z, Jacobi A, Vater C, Valladares RD, Li C, Nich C, Rao AJ, Christman JE, Antonios JK, Gibon E, Schambach A, Maetzig T, Goodman SB, Stiehler M. Enhancement of BMP-2 induced bone regeneration by SDF-1α mediated stem cell recruitment. Tissue Eng Part A 2013; 20:810-8. [PMID: 24090366 DOI: 10.1089/ten.tea.2013.0222] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Treatment of critical size bone defects is challenging. Recent studies showed that the cytokine stromal cell-derived factor 1 alpha (SDF-1α) has potential to improve the bone regenerative effect of low bone morphogenetic protein 2 (BMP-2) concentrations. The goal of this study was to demonstrate the combined effect of SDF-1α and BMP-2 on bone regeneration and stem cell recruitment using a critical size femoral bone defect model. A total of 72 mice were randomized to six groups. External fixators were implanted onto the right femur of each mouse and 3 mm defects were created. Depending on the group affiliation, adenovirally activated fat tissue grafts expressing SDF-1α or/and BMP-2 were implanted at the defect site. One day after operation, 1×10⁶ murine mesenchymal stromal cells (MSCs), lentivirally transduced to express the gene enhanced green fluorescent protein (eGFP), firefly luciferase, and CXCR4 were injected systemically in selected groups. Migration of the injected MSCs was observed by bioluminescence imaging on days 0, 2, 4, 6, 8, 10, 12, 14, 21, 28, and 42. After 6 weeks, animals were euthanized and 80 μm CT-scans were performed. For histological investigations, hematoxylin and eosin-, tartrate-resistant acid phosphatase-, alkaline phosphatase-, and anti-eGFP-stained sections were prepared. BMP-2 and SDF-1α combined at the defect site increased bone volume (BV) (2.72 mm³; 95% CI 1.95-3.49 mm³) compared with the negative control group (1.80 mm³; 95% CI 1.56-2.04 mm³; p<0.05). In addition, histological analysis confirmed a higher degree of bone healing in the BMP-2 and SDF-1α combined group compared with the negative control group. Bioluminescence imaging demonstrated higher numbers of migrated MSCs toward the defect site in the presence of both BMP-2 and SDF-1α at the defect site. Furthermore, eGFP-labeled migrated MSCs were found in all defect areas, when cells were injected. The ratio of osteoblasts to osteoclasts, assessed by immunohistological staining, was higher and thus showed a trend toward more bone formation for the combined use of BMP-2 and SDF-1α compared with all other groups. This study demonstrated that SDF-1α enhanced BMP-2 mediated bone healing in a critical size segmental bone defect model. Notably, both proteins alone also provided a cumulative effect on MSC attraction toward the site of injury.
Collapse
|
43
|
Autograft, allograft and bone substitutes in reconstructive orthopedic surgery. Aging Clin Exp Res 2013; 25 Suppl 1:S101-3. [PMID: 24046051 DOI: 10.1007/s40520-013-0088-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
Reconstruction of bone defects is a challenge for all orthopedic surgeons worldwide; to overcome this problem there are different options: the use of autografts, allografts and bone substitutes (BSs) to enhance and accelerate bone repair. Autografts have excellent biological properties but are associated with morbidity of the donor site and are restricted in volume. Allografts are available in adequate quantity but concerns still remain about the risk of infections, moreover they do not have osteogenetic properties. Bone substitutes have different indications and are very attractive for orthopedic surgeons. The present paper briefly reviews the advantages and disadvantages of autografts, allografts and BSs for bone reconstruction.
Collapse
|