1
|
Stavrou EF, Chatzopoulou F, Antonatos C, Pappa P, Makridou E, Oikonomou K, Kapsoritakis A, Potamianos PS, Karmiris K, Tzathas C, Chatzidimitriou D, Vizirianakis IS, Vasilopoulos Y. Pharmacogenetic analysis of canonical versus noncanonical pathway of NF-kB in Crohn's disease patients under anti-tumor necrosis factor-α treatment. Pharmacogenet Genomics 2022; 32:235-241. [PMID: 35852914 DOI: 10.1097/fpc.0000000000000471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES This study explores the potential of gene polymorphisms in the canonical and noncanonical NF-kB signaling pathway as a prediction biomarker of anti-tumor necrosis factor (TNF)α response in Crohn's patients. MATERIALS AND METHODS A total of 109 Greek patients with Crohn's disease (CD) were recruited, and the genotype of TLR2 rs3804099, LTA rs909253, TLR4 rs5030728, and MAP3K14/NIK rs7222094 single nucleotide polymorphisms was investigated for association with response to anti-TNFα therapy. Patient's response to therapy was based on the Crohn's Disease Activity Index, depicting the maximum response within 24 months after initiation of treatment. RESULTS Seventy-three patients (66.7%) were classified as responders while 36 as nonresponders (33.3%). Comparing allelic frequencies between responders and nonresponders, the presence of TLR2 rs3804099 T allele was associated with nonresponse (P = 0.003), even after stratification by anti-TNFα drugs (infliximab: P = 0.032, adalimumab: P = 0.026). No other association was identified for the rest of the polymorphisms under study. Haplotype analysis further enhanced the association of rs3804099 T allele with loss of response, even though the results were NS (P = 0.073). CONCLUSION Our results suggest that polymorphisms in the canonical NF-kB pathway genes could potentially act as a predictive biomarker of anti-TNFα response in CD.
Collapse
Affiliation(s)
- Eleana F Stavrou
- Laboratory of Genetics, Department of Biology, University of Patras, Patras
| | - Fani Chatzopoulou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki
- Labnet Laboratories, Department of Molecular Biology and Genetics
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki
| | | | - Panagiota Pappa
- Laboratory of Genetics, Department of Biology, University of Patras, Patras
| | - Eutychia Makridou
- Laboratory of Genetics, Department of Biology, University of Patras, Patras
| | | | | | | | - Konstantinos Karmiris
- Gastroenterology Department, "Venizeleio Pananeio" General Hospital of Heraklion, Crete
| | - Charalambos Tzathas
- Gastroenterology Department, "Tzaneio" General Hospital of Piraeus, Piraeus, Greece
| | - Dimitris Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | | |
Collapse
|
2
|
Abstract
The gastrointestinal tract (GIT) represents the largest interface between the human organism and the external environment. In the lumen and upper part of the mucus layer, this organ hosts an enormous number of microorganisms whose composition affects the functions of the epithelial barrier and the gut immune system. Consequentially, the microorganisms in the GIT influence the health status of the organism. Probiotics are living microorganisms which, in specific conditions, confer a health benefit to the host. Among others, probiotics have immunomodulatory properties that usually act directly by (a) increasing the activity of macrophages or natural killer cells, (b) modulating the secretion of immunoglobulins or cytokines, or indirectly by (c) enhancing the gut epithelial barrier, (d) altering the mucus secretion, and (e) competitive exclusion of other (pathogenic) bacteria. This review focuses on specific bacteria strains with indirect immunomodulatory properties. Particularly, we describe here the mechanisms through which specific probiotics enhance the gut epithelial barrier and modulate mucus production. Moreover, we describe the antimicrobial properties of specific bacteria strains. Recent data suggest that multiple pathologies are associated with an unbalanced gut microflora (dysbiosis). Although the cause-effect relationship between pathology and gut microflora is not yet well established, consumption of specific probiotics may represent a powerful tool to re-establish gut homeostasis and promote gut health.
Collapse
Affiliation(s)
- Giorgio La Fata
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002, Basel, Switzerland.
| | - Peter Weber
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002, Basel, Switzerland
| | - M Hasan Mohajeri
- DSM Nutritional Products Ltd., R & D Human Nutrition and Health, P.O. Box 2676, CH-4002, Basel, Switzerland
| |
Collapse
|
3
|
Ferenczi S, Szegi K, Winkler Z, Barna T, Kovács KJ. Oligomannan Prebiotic Attenuates Immunological, Clinical and Behavioral Symptoms in Mouse Model of Inflammatory Bowel Disease. Sci Rep 2016; 6:34132. [PMID: 27658624 PMCID: PMC5034233 DOI: 10.1038/srep34132] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease shows increasing prevalence, however its pathomechanism and treatment is not fully resolved. Prebiotics are non-digestible carbohydrates which might provide an alternative to treat inflammatory conditions in the gut due to their positive effects either on the microbiome or through their direct effect on macrophages and mucosa. To test the protective effects of an oligomannan prebiotic, yeast cell wall mannooligosaccharide (MOS) was administered in dextran-sulphate-sodium (DSS)-induced mouse model of acute colitis. MOS reduced DSS-induced clinical- (weight loss, diarrhea) and histological scores (mucosal damage) as well as sickness-related anxiety. DSS treatment resulted in changes in colon microbiome with selective increase of Coliform bacteria. MOS administration attenuated colitis-related increase of Coliforms, normalized colonic muc2 expression and attenuated local expression of proinflammatory cytokines IL-1a, IL1b, IL6, KC, G-CSF and MCP1 as well as toll-like receptor TLR4 and NLRP3 inflammasome. Some of the protective effects of MOS were likely be mediated directly through local macrophages because MOS dose-dependently inhibited IL-1b and G-CSF induction following in vitro DSS challenge and IL1a, IL1b, G-SCF-, and IL6 increases after LPS treatment in mouse macrophage cell line RAW264.7. These results highlight oligomannan prebiotics as therapeutic functional food for testing in clinical trials.
Collapse
Affiliation(s)
- Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztián Szegi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsuzsanna Winkler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Teréz Barna
- Department of Genetics and Applied Biochemistry, University of Debrecen, Debrecen, Hungary
| | - Krisztina J Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
4
|
McDaniel DK, Eden K, Ringel VM, Allen IC. Emerging Roles for Noncanonical NF-κB Signaling in the Modulation of Inflammatory Bowel Disease Pathobiology. Inflamm Bowel Dis 2016; 22:2265-79. [PMID: 27508514 PMCID: PMC4992436 DOI: 10.1097/mib.0000000000000858] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Crohn's disease and ulcerative colitis are common and debilitating manifestations of inflammatory bowel disease (IBD). IBD is characterized by a radical imbalance in the activation of proinflammatory and anti-inflammatory signaling pathways in the gut. These pathways are controlled by NF-κB, which is a master regulator of gene transcription. In IBD patients, NF-κB signaling is often dysregulated resulting in overzealous inflammation. NF-κB activation occurs through 2 distinct pathways, defined as either canonical or noncanonical. Canonical NF-κB pathway activation is well studied in IBD and is associated with the rapid, acute production of diverse proinflammatory mediators, such as COX-2, IL-1β, and IL-6. In contrast to the canonical pathway, the noncanonical or "alternative" NF-κB signaling cascade is tightly regulated and is responsible for the production of highly specific chemokines that tend to be associated with less acute, chronic inflammation. There is a relative paucity of literature regarding all aspects of noncanonical NF-ĸB signaling. However, it is clear that this alternative signaling pathway plays a considerable role in maintaining immune system homeostasis and likely contributes significantly to the chronic inflammation underlying IBD. Noncanonical NF-κB signaling may represent a promising new direction in the search for therapeutic targets and biomarkers associated with IBD. However, significant mechanistic insight is still required to translate the current basic science findings into effective therapeutic strategies.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
| | - Veronica M. Ringel
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
5
|
Association of steroid use with complicated sigmoid diverticulitis: potential role of activated CD68+/CD163+ macrophages. Langenbecks Arch Surg 2011; 396:759-68. [DOI: 10.1007/s00423-011-0797-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 04/11/2011] [Indexed: 11/30/2022]
|
6
|
Lombardo E, DelaRosa O, Mancheño-Corvo P, Menta R, Ramírez C, Büscher D. Toll-like receptor-mediated signaling in human adipose-derived stem cells: implications for immunogenicity and immunosuppressive potential. Tissue Eng Part A 2009; 15:1579-89. [PMID: 19061425 DOI: 10.1089/ten.tea.2008.0340] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) are mesenchymal stem cells with reduced immunogenicity and the capability to modulate immune responses. These properties make hASCs of special interest as therapeutic agents in the settings of chronic inflammatory and autoimmune diseases. Exogenous and endogenous toll-like receptor (TLR) ligands have been linked with the perpetuation of inflammation in a number of chronic inflammatory diseases such as inflammatory bowel disease and rheumatoid arthritis because of the permanent exposure of the immune system to TLR-specific stimuli. Therefore, hASCs employed in therapy are potentially exposed to TLR ligands, which may result in the modulation of hASC activity and therapeutic potency. In this study, we demonstrate that hASCs possess active TLR2, TLR3, and TLR4, because activation with specific ligands resulted in induction of nuclear factor kappa B-dependent genes, such as manganese superoxide dismutase and the release of interleukin (IL)-6 and IL-8. TLR3 and TLR4 ligands increased osteogenic differentiation, but no effect on adipogenic differentiation or proliferation was observed. Moreover, we show that TLR activation does not impair the immunogenic and immunosuppressive properties of hASCs. These results may have important implications with respect to the safety and efficacy of hASC-based cell therapies.
Collapse
|
7
|
Weber B, Saurer L, Mueller C. Intestinal macrophages: differentiation and involvement in intestinal immunopathologies. Semin Immunopathol 2009; 31:171-84. [PMID: 19533135 DOI: 10.1007/s00281-009-0156-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Accepted: 05/11/2009] [Indexed: 12/11/2022]
Abstract
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent the largest pool of tissue macrophages in humans. As an adaptation to the local antigen- and bacteria-rich environment, intestinal macrophages exhibit several distinct phenotypic and functional characteristics. Notably, microbe-associated molecular pattern receptors, including the lipopolysaccharide (LPS) receptors CD14 and TLR4, and also the Fc receptors for IgA and IgG are absent on most intestinal macrophages under homeostatic conditions. Moreover, while macrophages in the intestinal mucosa are refractory to the induction of proinflammatory cytokine secretion, they still display potent phagocytic activity. These adaptations allow intestinal macrophages to comply with their main task, i.e., the efficient removal of microbes while maintaining local tissue homeostasis. In this paper, we review recent findings on the functional differentiation of monocyte subsets into distinct macrophage populations and on the phenotypic and functional adaptations that have evolved in intestinal macrophages in response to their antigen-rich environment. Furthermore, the involvement of intestinal macrophages in the pathogenesis of celiac disease and inflammatory bowel diseases is discussed.
Collapse
Affiliation(s)
- Benjamin Weber
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
8
|
Abstract
The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.
Collapse
Affiliation(s)
- Mirjam Schenk
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
9
|
Zhu Q, Thomson CW, Zhang G, Stämpfli M, McDermott MR, Collins SM, Gauldie J. Eosinophilia is induced in the colon of Th2-sensitized mice upon exposure to locally expressed antigen. Am J Physiol Gastrointest Liver Physiol 2007; 293:G383-90. [PMID: 17431215 DOI: 10.1152/ajpgi.00341.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Eosinophilic inflammation is a feature of a variety of gastrointestinal (GI) disorders including eosinophil-associated GI disorder, allergy, inflammatory bowel disease, and parasite infection. Elucidating the mechanisms of eosinophil infiltration into the GI tract is important to the understanding of multiple disease processes. We hypothesize that eosinophilia in the large intestine (colon) can be induced by an antigen in a host that is associated with Th2-skewed antigen-specific immune responses. To investigate the importance of antigenic triggering, we established polarized antigen-specific Th2 type responses in BALB/c mice, using ovalbumin in conjunction with aluminum hydroxide. Upon challenge at the colonic mucosa through transient (3-4 days) expression of the antigen gene encoded in an adenovirus vector, sensitized animals developed significant subepithelial colonic inflammation, characterized by marked eosinophilic infiltration, and the presence of enlarged and increased numbers of lymphoid follicles. The alterations peaked around day 5 and resolved over the next 5-10 days, and no epithelial cell damage was detected through the entire course. Administration of a control (empty) adenovirus vector did not lead to any pathological changes. These data suggest that colonic eosinophilia can be induced by exposure to an antigen associated with preexisting Th2-skewed responses. Thus the model established here may provide a useful tool to study GI and, in particular, colonic inflammation with respect to underlying mechanisms involved in the recruitment and the immediate function of eosinophils.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pathology and Molecular Medicine, Center for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
10
|
Schenk M, Mueller C. Adaptations of intestinal macrophages to an antigen-rich environment. Semin Immunol 2007; 19:84-93. [PMID: 17055292 DOI: 10.1016/j.smim.2006.09.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2006] [Accepted: 09/08/2006] [Indexed: 02/06/2023]
Abstract
Intestinal macrophages, preferentially located in the subepithelial lamina propria, represent in humans the largest pool of tissue macrophages. To comply with their main task, i.e. the efficient removal of microbes and particulate matter that might have gained access to the mucosa from the intestinal lumen while maintaining local tissue homeostasis, several phenotypic and functional adaptations evolved. Most notably, microbe-associated molecular pattern (MAMP) receptors, including the lipopolysaccharide receptors CD14 and TLR4, but also the Fc receptors for IgA and IgG are absent on most intestinal Mø. Here we review recent findings on the phenotypic and functional adaptations of intestinal Mø and their implications for the pathogenesis of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mirjam Schenk
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3010 Bern, Switzerland
| | | |
Collapse
|
11
|
Schenk M, Bouchon A, Birrer S, Colonna M, Mueller C. Macrophages expressing triggering receptor expressed on myeloid cells-1 are underrepresented in the human intestine. THE JOURNAL OF IMMUNOLOGY 2005; 174:517-24. [PMID: 15611278 DOI: 10.4049/jimmunol.174.1.517] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Triggering receptor expressed on myeloid cells (TREM)-1 is a cell surface molecule on neutrophils and monocytes/macrophages implicated in the amplification of inflammatory responses by enhancing degranulation and secretion of proinflammatory mediators. Macrophages play an important role in the intestinal mucosal immune system, because they are preferentially localized in the subepithelial region. Despite the presence of enormous numbers of bacteria in the colonic mucosa and the close proximity between mucosal macrophages and luminal bacteria, the intestinal mucosa normally displays minimal signs of inflammation. In this study, we show that the resident macrophage population in normal human small and large intestine contains only few TREM-1-expressing macrophages (<10%), whereas the overwhelming majority of monocytes (>90%) and macrophages from lymph nodes or tonsils (>80%) express TREM-1 on the cell surface. These findings were confirmed by FACS analysis and immunostainings of frozen tissue sections. The differential expression of TREM-1 greatly affects the functional capacities of monocytes and tissue macrophages. Although monocytes and macrophages from spleen, lymph nodes, or tonsils show a substantial increase in oxidative burst after TREM-1 cross-linking, no effect is seen in intestinal macrophages. Intriguingly, in contrast to monocytes, intestinal macrophages fail to up-regulate TREM-1 in response to TNF. This refractory state may be induced in intestinal macrophages by the local presence of IL-10 and TGF-beta, because these two immunoregulatory cytokines synergistically down-regulate TREM-1 expression on monocytes in vitro. The absence of TREM-1 expression on lamina propria macrophages is likely to prevent excessive inflammatory reactions, and thus, excessive tissue damage in the intestine.
Collapse
Affiliation(s)
- Mirjam Schenk
- Division of Immunopathology, Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|