1
|
Pan C, Zhang Y, Yan J, Zhou Y, Wang S, Liu X, Zhang P, Yang H. Extreme environments and human health: From the immune microenvironments to immune cells. ENVIRONMENTAL RESEARCH 2023; 236:116800. [PMID: 37527745 DOI: 10.1016/j.envres.2023.116800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 08/03/2023]
Abstract
Exposure to extreme environments causes specific acute and chronic physiological responses in humans. The adaptation and the physiological processes under extreme environments predominantly affect multiple functional systems of the organism, in particular, the immune system. Dysfunction of the immune system affected by several extreme environments (including hyperbaric environment, hypoxia, blast shock, microgravity, hypergravity, radiation exposure, and magnetic environment) has been observed from clinical macroscopic symptoms to intracorporal immune microenvironments. Therefore, simulated extreme conditions are engineered for verifying the main influenced characteristics and factors in the immune microenvironments. This review summarizes the responses of immune microenvironments to these extreme environments during in vivo or in vitro exposure, and the approaches of engineering simulated extreme environments in recent decades. The related microenvironment engineering, signaling pathways, molecular mechanisms, clinical therapy, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Chengwei Pan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinxiao Yan
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiru Liu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Pan Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; School of Food Science and Engineering, Shaanxi University of Science & Technology, 710021, China.
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, China; Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
2
|
Wang J, Liu S, Xie Y, Xu C. Association analysis of gut microbiota-metabolites-neuroendocrine changes in male rats acute exposure to simulated altitude of 5500 m. Sci Rep 2023; 13:9225. [PMID: 37286697 DOI: 10.1038/s41598-023-35573-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/20/2023] [Indexed: 06/09/2023] Open
Abstract
Hyperactivation of hypothalamic-pituitary-adrenal (HPA) axis and hypothalamic-pituitary-thyroid (HPT) axis were found in acute high altitude challenge, but the role of gut microbiota and metabolites is unknown. We utilized adult male Sprague-Dawley rats at a simulated altitude of 5500 m for 3 days in a hypobaric-hypoxic chamber. ELISA and metabolomic analyses of serum and 16S rRNA and metabolomic analyses of fecal samples were then performed. Compared with the normoxic group, serum corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), corticosterone (CORT), and thyroxine (tT4) were increased in the hypoxia group, whereas thyrotropin-releasing hormone (TRH) was decreased. Bacteroides, Lactobacillus, Parabacteroides, Butyricimonas, SMB53, Akkermansia, Phascolarctobacterium, and Aerococcus were enriched in hypoxia group, whereas [Prevotella], Prevotella, Kaistobacter, Salinibacterium, and Vogesella were enriched in normoxic group. Metabolomic analysis indicated that acute hypoxia significantly affected fecal and serum lipid metabolism. In addition, we found five fecal metabolites may mediate the cross-talk between TRH, tT4, and CORT with [Prevotella], Kaistobacter, Parabacteroides, and Aerococcus, and 6 serum metabolites may mediate the effect of TRH and tT4 on [Prevotella] and Kaistobacter by causal mediation analysis. In conclusion, this study provides new evidence that key metabolites mediate the cross-talk between gut microbiota with HPA and HPT axis under acute hypobaric hypoxia challenge.
Collapse
Affiliation(s)
- Jianan Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Shiying Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Yalei Xie
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China
| | - Chengli Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
- Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
3
|
Vélez-Páez JL, Aguayo-Moscoso SX, Castro-Bustamante C, Montalvo-Villagómez M, Jara-González F, Baldeón-Rojas L, Zubieta-DeUrioste N, Battaglini D, Zubieta-Calleja GR. Biomarkers as predictors of mortality in critically ill obese patients with COVID-19 at high altitude. BMC Pulm Med 2023; 23:112. [PMID: 37024861 PMCID: PMC10078096 DOI: 10.1186/s12890-023-02399-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Obesity is a common chronic comorbidity of patients with COVID-19, that has been associated with disease severity and mortality. COVID-19 at high altitude seems to be associated with increased rate of ICU discharge and hospital survival than at sea-level, despite higher immune levels and inflammation. The primary aim of this study was to investigate the survival rate of critically ill obese patients with COVID-19 at altitude in comparison with overweight and normal patients. Secondary aims were to assess the predictive factors for mortality, characteristics of mechanical ventilation setting, extubation rates, and analytical parameters. METHODS This is a retrospective cohort study in critically ill patients with COVID-19 admitted to a hospital in Quito-Ecuador (2,850 m) from Apr 1, 2020, to Nov 1, 2021. Patients were cathegorized as normal weight, overweight, and obese, according to body mass index [BMI]). RESULTS In the final analysis 340 patients were included, of whom 154 (45%) were obese, of these 35 (22.7%) were hypertensive and 25 (16.2%) were diabetic. Mortality in obese patients (31%) was lower than in the normal weight (48%) and overweight (40%) groups, but not statistically significant (p = 0.076). At multivariable analysis, in the overall population, older age (> 50 years) was independent risk factor for mortality (B = 0.93, Wald = 14.94, OR = 2.54 95%CI = 1.58-4.07, p < 0.001). Ferritin and the neutrophil/lymphocyte ratio were independent predictors of mortality in obese patients. Overweight and obese patients required more positive and-expiratory pressure compared to normal-weight patients. In obese patients, plateau pressure and mechanical power were significantly higher, whereas extubation failure was lower as compared to overweight and normal weight. CONCLUSIONS This preliminary study suggests that BMI was not associated with mortality in critically ill patients at high altitude. Age was associated with an increase in mortality independent of the BMI. Biomarkers such as ferritin and neutrophils/lymphocytes ratio were independent predictors of mortality in obese patients with COVID-19 at high altitude.
Collapse
Affiliation(s)
- Jorge Luis Vélez-Páez
- Centro de Investigación Clínica, Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva, Quito, Ecuador.
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador.
| | | | | | - Mario Montalvo-Villagómez
- Centro de Investigación Clínica, Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva, Quito, Ecuador
| | - Fernando Jara-González
- Centro de Investigación Clínica, Hospital Pablo Arturo Suárez, Unidad de Terapia Intensiva, Quito, Ecuador
| | - Lucy Baldeón-Rojas
- Facultad de Ciencias Médicas, Universidad Central del Ecuador, Quito, Ecuador
- Instituto de Investigación en Biomedicina, Universidad Central del Ecuador, Quito, Ecuador
| | | | | | | |
Collapse
|
4
|
Lafuente JV, Sharma A, Feng L, Muresanu DF, Nozari A, Tian ZR, Buzoianu AD, Sjöquist PO, Wiklund L, Sharma HS. Nanowired Delivery of Mesenchymal Stem Cells with Antioxidant Compound H-290/51 Reduces Exacerbation of Methamphetamine Neurotoxicity in Hot Environment. ADVANCES IN NEUROBIOLOGY 2023; 32:317-352. [PMID: 37480465 DOI: 10.1007/978-3-031-32997-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Military personnel are often exposed to hot environments either for combat operations or peacekeeping missions. Hot environment is a severe stressful situation leading to profound hyperthermia, fatigue and neurological impairments. To avoid stressful environment, some people frequently use methamphetamine (METH) or other psychostimulants to feel comfortable under adverse situations. Our studies show that heat stress alone induces breakdown of the blood-brain barrier (BBB) and edema formation associated with reduced cerebral blood flow (CBF). On the other hand, METH alone induces hyperthermia and neurotoxicity. These effects of METH are exacerbated at high ambient temperatures as seen with greater breakdown of the BBB and brain pathology. Thus, a combination of METH use at hot environment may further enhance the brain damage-associated behavioral dysfunctions. METH is well known to induce severe oxidative stress leading to brain pathology. In this investigation, METH intoxication at hot environment was examined on brain pathology and to explore suitable strategies to induce neuroprotection. Accordingly, TiO2-nanowired delivery of H-290/51 (150 mg/kg, i.p.), a potent chain-breaking antioxidant in combination with mesenchymal stem cells (MSCs), is investigated in attenuating METH-induced brain damage at hot environment in model experiments. Our results show that nanodelivery of H-290/51 with MSCs significantly enhanced CBF and reduced BBB breakdown, edema formation and brain pathology following METH exposure at hot environment. These observations are the first to point out that METH exacerbated brain pathology at hot environment probably due to enhanced oxidative stress, and MSCs attenuate these adverse effects, not reported earlier.
Collapse
Affiliation(s)
- José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan, Hebei Province, China
| | - Dafin F Muresanu
- Department Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Z Ryan Tian
- Department Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Czuba M, Płoszczyca K, Kaczmarczyk K, Langfort J, Gajda R. Chronic Exposure to Normobaric Hypoxia Increases Testosterone Levels and Testosterone/Cortisol Ratio in Cyclists. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095246. [PMID: 35564640 PMCID: PMC9102561 DOI: 10.3390/ijerph19095246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023]
Abstract
The aim of this study was to analyze the effects of the “live high, train low” method (LH−TL) and intermittent hypoxic training (IHT) on testosterone (T) and cortisol (C) levels in cyclists. Thirty cyclists participated in the experiment. The LH−TL group (n = 10) was exposed to normobaric hypoxia (FiO2 = 16.3%) for 11−12 h a day and trained in normoxia for 3 weeks. In the IHT group (n = 10), participants followed the IHT routine three times a week for 3 weeks in normobaric hypoxia (FiO2 = 16.3%). The control group (N; n = 10) followed the same training protocol in normoxia. The LH−TL training was found to significantly increase (p < 0.05) T levels and the testosterone/cortisol (T/C) ratio during the experiment. The area under the curve (AUC) calculated for T levels over 4 weeks was significantly (p < 0.05) higher in the LH−TL group, by 25.6%, compared to the N group. The results also indicated a significant correlation (r = 0.53; p < 0.05) between AUC for T levels over 4 weeks and ∆ values of hemoglobin (HGB) in the LH−TL group. Overall, the findings show that LH−TL training at a moderate simulated altitude contributes to an increase in T levels and T/C ratio in athletes, which is a beneficial change stimulating anabolic processes and erythropoiesis.
Collapse
Affiliation(s)
- Miłosz Czuba
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (M.C.); (K.K.)
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| | - Kamila Płoszczyca
- Department of Kinesiology, Institute of Sport, 01-982 Warsaw, Poland
- Correspondence:
| | - Katarzyna Kaczmarczyk
- Faculty of Rehabilitation, Józef Piłsudski University of Physical Education in Warsaw, 00-968 Warsaw, Poland; (M.C.); (K.K.)
| | - Józef Langfort
- Department of Sports Theory, Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland;
| | - Robert Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pultusk, 06-100 Pultusk, Poland;
- Department of Kinesiology and Health Prevention, Jan Dlugosz University in Czestochowa, 42-200 Czestochowa, Poland
| |
Collapse
|
6
|
Ottaviano G, Nardello E, Pendolino AL, Pozza MD, Russo M, Savietto E, Andrews PJ, Ermolao A. Nasal Function Changes at High Altitude. Am J Rhinol Allergy 2020; 34:618-625. [PMID: 32268779 DOI: 10.1177/1945892420916393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND An ever-increasing number of people are involved in sport activities at high altitude. OBJECTIVE This study aimed to evaluate the pulmonary and nasal functions, including nasal cytology, in healthy volunteers moving for 1 week from an altitude of 2000 m to another of 3400 m. METHODS Peak nasal inspiratory flow (PNIF), pulmonary function, including peak expiratory flow (PEF), mucociliary transport time (MCTt), nasal cytology, and oxygen saturation (O2 sat) were studied in 5 different occasions-T1: at base camp (2000 m); T2: at the mountain refuge (3400 m); T3: after 7 days at 3400 m; T4: after the return at the base camp (2000 m); and T5: at the base camp (2000 m) after 15 days. RESULTS With respect to T1, PEF values decreased at T2 (P = .004), T3 (P = .004), T4 (P = .000), and T5 (P = .001). Forced expiratory volume in the first second and forced vital capacity did not differ among the 5 different times of measurements. In regard to T1, PNIF values increased at T2 (P = .003) and T3 (P = .001). MCTt and O2 sat showed similar but opposite changes with MCTt increased at T2 and T3 in respect to T1 (P = .000 for both), while O2 sat decreased at T2 and T3 in respect to T1 (P = .000 for both). At nasal cytology, the number of neutrophils increased at T2 in respect to T1 (P = .008). At multivariate analysis, PNIF changed with altitude from T1 to T4 even accounting for the effect of all the other variables (T1 vs T2 PNIF, P = .009; T1 vs T3 PNIF, P = .007; T1 vs T4 PNIF, P = .021). CONCLUSIONS Although the study has some limitations, being conducted on a small cohort and at no controlled environmental conditions, data seem to support the utility of MCTt for studying nasal mucosa damage induced by high altitude. Nasal cytology seems to be able to identify the inflammation of the nasal mucosa exposed to hypoxia. Further investigations on larger series and possibly conducted in hypobaric chamber at controlled standardized conditions are necessary in order to confirm these results and, most importantly, the improvement of PNIF at high altitude.
Collapse
Affiliation(s)
- Giancarlo Ottaviano
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Ennio Nardello
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Alfonso Luca Pendolino
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy.,Department of ENT, Royal National Throat, Nose and Ear Hospital, London, UK
| | - Martino Dalla Pozza
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| | - Massimiliano Russo
- HARWARD- MIT Center For Regulatory Sciences, Harward Medical School & Department of Data Sciences Dana Darber Cancer Institute, Boston, Massachusetts
| | - Enrico Savietto
- Department of Neurosciences, Otolaryngology Section, University of Padova, Padova, Italy
| | - Peter J Andrews
- Department of ENT, Royal National Throat, Nose and Ear Hospital, London, UK.,Ear Institute, University College London, London, UK
| | - Andrea Ermolao
- Sport and Exercise Medicine Division, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Gatterer H, Bernatzky G, Burtscher J, Rainer M, Kayser B, Burtscher M. Are Pre-Ascent Low-Altitude Saliva Cortisol Levels Related to the Subsequent Acute Mountain Sickness Score? Observations from a Field Study. High Alt Med Biol 2019; 20:337-343. [DOI: 10.1089/ham.2019.0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Günther Bernatzky
- Department of Ecology and Evolution, University of Salzburg, Salzburg, Austria
| | - Johannes Burtscher
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
- Austrian Society for Alpine and Mountain Medicine, Austria
| |
Collapse
|
8
|
Caris AV, Santos RVT. Performance and altitude: Ways that nutrition can help. Nutrition 2018; 60:35-40. [PMID: 30529882 DOI: 10.1016/j.nut.2018.09.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/29/2018] [Indexed: 12/18/2022]
Abstract
High altitudes are a challenge for human physiology and for sports enthusiasts. Several reasons lead to deterioration in performance at high altitudes. Hypoxia owing to high altitude causes a breakdown of homeostasis with imbalance in several physiological systems, including the immune system. The reduction in mucosal immunity and inflammation and the predominance of the humoral immune response causes a condition of immunosuppression and an increased likelihood of infection. In addition, it is known that worsening of the immune response is associated with reduced performance. On the other hand, immunonutrition plays an important role in modulating the effects of physical exercise on the immune system. However, to our knowledge, few studies have evaluated the effect of nutrition on the immune system after exercise in hypoxia. Although the association between exercise and hypoxia has been shown to be more severe for the body owing to the sum of stressful agents, supplementation with carbohydrates and glutamine seems to play a relevant role in mitigating immunosuppressive effects. These findings, although limited by the fact that they are the result of very few studies, shed light on a relevant theme for sports physiology and nutrition and suggest that both supplements may be useful for athletes, visitors, and workers in high-altitude regions. The aim of this review was to discuss the effects of high-altitude hypoxia on the human body from the point of view of exercise immunology because it is known that transient immunosuppression after strenuous exercise and competition should be followed by reduction in training overload and worse performance.
Collapse
Affiliation(s)
- Aline V Caris
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Aguilar R, Martínez C, Alvero-Cruz JR. Cortisol awakening response and emotion at extreme altitudes on Mount Kangchenjunga. Int J Psychophysiol 2017; 131:81-88. [PMID: 29278692 DOI: 10.1016/j.ijpsycho.2017.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/21/2017] [Accepted: 12/17/2017] [Indexed: 11/20/2022]
Abstract
The cortisol awakening response (CAR) was examined over a 45days stay at extreme altitudes (above of about 5500m) on Mount Kangchenjunga. The CAR refers to a peak cortisol response during the waking period that is superimposed to the diurnal rhythmicity in cortisol secretion, whose function has been proposed to be the anticipation of demands of the upcoming day (the CAR anticipation hypothesis). According to this hypothesis, we distinguished between resting days on which the expedition team engaged in routine activities in the base camp, and ascent days on which it planned to climb up a very demanding track. We were also interested in examining the association of testosterone with emotional anticipation, given the role of this steroid hormone in reward-related processes in challenge situations. Results showed that the climber group had a bigger CAR on ascent days, relative to the Sherpa group at the same altitude and the non-climber group at sea level. Several methodological issues, however, made it difficult to interpret these group differences in terms of the CAR anticipation hypothesis (e.g. a seemingly influential covariate was awakening time). Although based on tentative results, correlational and regression analyses controlling for awakening time coherently showed that the CAR was associated with anticipation of a hard day and feelings of fear, and testosterone was associated with feelings of energy and positive affect. Whether or not the anticipation of a hard day played a key role in regulation of the CAR, the observation of an intact CAR in the climber group under hypobaric hypoxia conditions would require in-depth reflection from the perspective of human adaptive evolution.
Collapse
Affiliation(s)
- Raúl Aguilar
- Facultad de Psicología, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain.
| | - Carlos Martínez
- Facultad de Medicina, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain
| | - José R Alvero-Cruz
- Facultad de Medicina, Universidad de Málaga, Campus Teatinos s/n, 29071 Málaga, Spain
| |
Collapse
|
10
|
Nuñez D, Olavegoya P, Gonzales GF, Gonzales-Castañeda C. Red Maca (Lepidium meyenii), a Plant from the Peruvian Highlands, Promotes Skin Wound Healing at Sea Level and at High Altitude in Adult Male Mice. High Alt Med Biol 2017; 18:372-383. [PMID: 28846044 DOI: 10.1089/ham.2017.0038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nuñez, Denisse, Paola Olavegoya, Gustavo F. Gonzales, and Cynthia Gonzales-Castañeda. Red maca (Lepidium meyenii), a plant from the Peruvian highlands, promotes skin wound healing at sea level and at high altitude in adult male mice. High Alt Med Biol 18:373-383, 2017.-Wound healing consists of three simultaneous phases: inflammation, proliferation, and remodeling. Previous studies suggest that there is a delay in the healing process in high altitude, mainly due to alterations in the inflammatory phase. Maca (Lepidium meyenii) is a Peruvian plant with diverse biological properties, such as the ability to protect the skin from inflammatory lesions caused by ultraviolet radiation, as well as its antioxidant and immunomodulatory properties. The aim of this study was to determine the effect of high altitude on tissue repair and the effect of the topical administration of the spray-dried extract of red maca (RM) in tissue repair. Studies were conducted in male Balb/c mice at sea level and high altitude. Lesions were inflicted through a 10 mm-diameter excisional wound in the skin dorsal surface. Treatments consisted of either (1) spray-dried RM extract or (2) vehicle (VH). Animals wounded at high altitude had a delayed healing rate and an increased wound width compared with those at sea level. Moreover, wounding at high altitude was associated with an increase in inflammatory cells. Treatment with RM accelerated wound closure, decreased the level of epidermal hyperplasia, and decreased the number of inflammatory cells at the wound site. In conclusion, RM at high altitude generate a positive effect on wound healing, decreasing the number of neutrophils and increasing the number of macrophages in the wound healing at day 7 postwounding. This phenomenon is not observed at sea level.
Collapse
Affiliation(s)
- Denisse Nuñez
- 1 Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia , Lima, Peru .,2 Research Circle on Plants with Effects on Health , Lima, Peru
| | - Paola Olavegoya
- 1 Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia , Lima, Peru .,2 Research Circle on Plants with Effects on Health , Lima, Peru
| | - Gustavo F Gonzales
- 1 Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia , Lima, Peru .,2 Research Circle on Plants with Effects on Health , Lima, Peru .,3 Laboratory of Endocrinology and Reproduction, Instituto de Investigaciones de la Altura , Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Cynthia Gonzales-Castañeda
- 1 Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia , Lima, Peru .,2 Research Circle on Plants with Effects on Health , Lima, Peru
| |
Collapse
|
11
|
Machado P, Caris A, Santos S, Silva E, Oyama L, Tufik S, Santos R. Moderate exercise increases endotoxin concentration in hypoxia but not in normoxia: A controlled clinical trial. Medicine (Baltimore) 2017; 96:e5504. [PMID: 28121915 PMCID: PMC5287939 DOI: 10.1097/md.0000000000005504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hypoxia and high altitudes affect various organs, which impairs important physiological functions, such as a disruption of the intestinal barrier mediated by increased translocation of bacteria and increased circulating endotoxin levels. Physical exercise can alter endotoxin concentration in normoxia. The aim of this study is to evaluate the effects of moderate exercise on endotoxin concentration in normobaric hypoxia. METHODS Nine healthy male volunteers exercised on a treadmill for 60 minutes at an intensity of 50% VO2peak in normoxic or hypoxic conditions (4200 m). Blood was collected at rest, immediately after exercise and 1 hour after exercise to evaluate serum endotoxin levels. RESULTS Under hypoxic exercise conditions, SaO2% saturation was lower after exercise compared with resting levels (P < 0.05) and returned to the resting level during recovery in normoxia (P < 0.05). Endotoxin concentration increased after exercise in hypoxia (P < 0.05); it remained high 1 hour after exercise in hypoxia compared with normoxia (P < 0.05) and was higher after exercise and recovery compared with resting levels (P < 0.05). HR was higher during exercise in relation basal in both conditions (P < 0.05) and RPR increase after 60 minutes in comparison to 20 minutes in hypoxia (P < 0.05). CONCLUSION Moderate exercise performed in hypoxia equivalent to 4200 m increased endotoxin plasma concentration after exercise. One hour of rest in normoxic conditions was insufficient for the recovery of circulating endotoxins.
Collapse
Affiliation(s)
| | - Aline Caris
- Department of Physiology
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
12
|
Flaherty G, O'Connor R, Johnston N. Altitude training for elite endurance athletes: A review for the travel medicine practitioner. Travel Med Infect Dis 2016; 14:200-11. [PMID: 27040934 DOI: 10.1016/j.tmaid.2016.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
High altitude training is regarded as an integral component of modern athletic preparation, especially for endurance sports such as middle and long distance running. It has rapidly achieved popularity among elite endurance athletes and their coaches. Increased hypoxic stress at altitude facilitates key physiological adaptations within the athlete, which in turn may lead to improvements in sea-level athletic performance. Despite much research in this area to date, the exact mechanisms which underlie such improvements remain to be fully elucidated. This review describes the current understanding of physiological adaptation to high altitude training and its implications for athletic performance. It also discusses the rationale and main effects of different training models currently employed to maximise performance. Athletes who travel to altitude for training purposes are at risk of suffering the detrimental effects of altitude. Altitude illness, weight loss, immune suppression and sleep disturbance may serve to limit athletic performance. This review provides an overview of potential problems which an athlete may experience at altitude, and offers specific training recommendations so that these detrimental effects are minimised.
Collapse
Affiliation(s)
- Gerard Flaherty
- School of Medicine, National University of Ireland, Galway, Ireland; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| | - Rory O'Connor
- School of Biomedical Science, National University of Ireland, Galway, Ireland.
| | - Niall Johnston
- School of Medicine, National University of Ireland, Galway, Ireland.
| |
Collapse
|
13
|
Walsh NP, Oliver SJ. Exercise, immune function and respiratory infection: An update on the influence of training and environmental stress. Immunol Cell Biol 2015; 94:132-9. [PMID: 26563736 DOI: 10.1038/icb.2015.99] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Neil P Walsh
- Extremes Research Group, Bangor University Bangor UK
| | | |
Collapse
|
14
|
Morabito C, Lanuti P, Caprara GA, Guarnieri S, Verratti V, Ricci G, Catizone A, Marchisio M, Fanò-Illic G, Mariggiò MA. Responses of peripheral blood mononuclear cells to moderate exercise and hypoxia. Scand J Med Sci Sports 2015; 26:1188-99. [PMID: 26432186 DOI: 10.1111/sms.12557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to analyze the physiological features of peripheral blood mononuclear cells (PBMCs) isolated from healthy female trekkers before and after physical activity carried out under both normoxia (low altitude, < 2000 m a.s.l.) and hypobaric hypoxia (high altitude, > 3700 m a.s.l.). The experimental design was to differentiate effects induced by exercise and those related to external environmental conditions. PBMCs were isolated from seven female subjects before and after each training period. The PBMCs were phenotypically and functionally characterized using fluorimetric and densitometric analyses, to determine cellular activation, and their intracellular Ca(2+) levels and oxidative status. After a period of normoxic physical exercise, the PBMCs showed an increase in fully activated T lymphocytes (CD3(+) CD69(+) ) and a reduction in intracellular Ca(2+) levels. On the other hand, with physical exercise performed under hypobaric hypoxia, there was a reduction in T lymphocytes and an increase in nonactivated B lymphocytes, accompanied by a reduction in O2 (-) levels in the mitochondria. These outcomes reveal that in women, low- to moderate-intensity aerobic trekking induces CD69 T cell activation and promotes anti-stress effects on the high-altitude-induced impairment of the immune responses and the oxidative balance.
Collapse
Affiliation(s)
- C Morabito
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - P Lanuti
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G A Caprara
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - S Guarnieri
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - V Verratti
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Ricci
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - A Catizone
- Section of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic and Orthopaedic Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Marchisio
- Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.,Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - G Fanò-Illic
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy
| | - M A Mariggiò
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. .,Centre for Aging Sciences (Ce.S.I), "Università Gabriele d'Annunzio" Foundation, Chieti, Italy.
| |
Collapse
|
15
|
Li P, Zheng SJ, Jiang CH, Zhou SM, Tian HJ, Zhang G, Gao YQ. Th2 lymphocytes migrating to the bone marrow under high-altitude hypoxia promote erythropoiesis via activin A and interleukin-9. Exp Hematol 2014; 42:804-15. [PMID: 24769210 DOI: 10.1016/j.exphem.2014.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 12/01/2022]
Abstract
The mechanism of accelerated erythropoiesis under the hypoxic conditions of high altitude (HA) remains largely obscure. Here, we investigated the potential role of bone marrow (BM) T cells in the increased production of erythrocytes at HA. We found that mice exposed to a simulated altitude of 6,000 m for 1-3 weeks exhibited a significant expansion of BM CD4+ cells, mainly caused by increasing T helper 2 (Th2) cells. Using a coculture model of BM T cells and hematopoietic stem/progenitor cells, we observed that BM CD4+ cells from hypoxic mice induced erythroid output more easily, in agreement with the erythroid-enhancing effect observed for Th2-condition-cultured BM CD4+ cells. It was further demonstrated that elevated secretion of activin A and interleukin-9 by BM Th2 cells of hypoxic mice promoted erythroid differentiation of hematopoietic stem/progenitor cells and the growth of erythroblasts, respectively. Our study also provided evidence that the CXCL12-CXCR4 interaction played an important role in Th2 cell trafficking to the BM under HA conditions. These results collectively suggest that Th2 cells migrating to the BM during HA exposure have a regulatory role in erythropoiesis, which provides new insight into the mechanism of high altitude polycythemia.
Collapse
Affiliation(s)
- Peng Li
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Shan-jun Zheng
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Chun-hua Jiang
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Si-min Zhou
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Huai-jun Tian
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Gang Zhang
- Department of High Altitude Military Hygiene, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China
| | - Yu-qi Gao
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of High Altitude Medicine, Ministry of Education, Chongqing, China; The Key Laboratory of High Altitude Medicine, People's Liberation Army, Chongqing, China.
| |
Collapse
|
16
|
Oliver SJ, Macdonald JH, Harper Smith AD, Lawley JS, Gallagher CA, Di Felice U, Walsh NP. High altitude impairs in vivo immunity in humans. High Alt Med Biol 2014; 14:144-9. [PMID: 23795734 DOI: 10.1089/ham.2012.1070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim was to assess the effect of high altitude on the development of new immune memory (induction) using a contact sensitization model of in vivo immunity. We hypothesized that high-altitude exposure would impair induction of the in vivo immune response to a novel antigen, diphenylcyclopropenone (DPCP). DPCP was applied (sensitization) to the lower back of 27 rested controls at sea level and to ten rested mountaineers 28 hours after passive ascent to 3777 m. After sensitization, mountaineers avoided strenuous exercise for a further 24 hours, after which they completed alpine activities for 11-18 days. Exactly 4 weeks after sensitization, the strength of immune memory induction was quantified in rested mountaineers and controls at sea level, by measuring the response to a low, dose-series DPCP challenge, read at 48 hours as skin measures of edema (skinfold thickness) and redness (erythema). Compared with control responses, skinfold thickness and erythema were reduced in the mountaineers (skinfold thickness,-52%, p=0.01, d=0.86; erythema, -36%, p=0.02, d=0.77). These changes in skinfold thickness and erythema were related to arterial oxygen saturation (r=0.7, p=0.04), but not cortisol (r<0.1, p>0.79), at sensitization. In conclusion, this is the first study to show, using a contact sensitization model of in vivo immunity, that high altitude exposure impairs the development of new immunity in humans.
Collapse
Affiliation(s)
- Samuel J Oliver
- Extremes Research Group, School of Sport, Health and Exercise Sciences, Bangor University, Bangor, Gwynedd, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
17
|
Schultheiss M, Schommer K, Schatz A, Wilhelm B, Peters T, Fischer MD, Zrenner E, Bartz-Schmidt KU, Gekeler F, Willmann G. Pupillary light reaction during high altitude exposure. PLoS One 2014; 9:e87889. [PMID: 24503770 PMCID: PMC3913681 DOI: 10.1371/journal.pone.0087889] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/05/2014] [Indexed: 01/15/2023] Open
Abstract
PURPOSE This study aimed to quantify the pupillary light reaction during high altitude exposure using the state of the art Compact Integrated Pupillograph (CIP) and to investigate a potential correlation of altered pupil reaction with severity of acute mountain sickness (AMS). This work is related to the Tübingen High Altitude Ophthalmology (THAO) study. METHODS Parameters of pupil dynamics (initial diameter, amplitude, relative amplitude, latency, constriction velocity) were quantified in 14 healthy volunteers at baseline (341 m) and high altitude (4559 m) over several days using the CIP. Scores of AMS, peripheral oxygen saturation and heart rate were assessed for respective correlations with pupil dynamics. For statistical analysis JMP was used and data are shown in terms of intra-individual normalized values (value during exposure/value at baseline) and the 95% confidence interval for each time point. RESULTS During high altitude exposure the initial diameter size was significantly reduced (p<0.05). In contrast, the amplitude, the relative amplitude and the contraction velocity of the light reaction were significantly increased (p<0.05) on all days measured at high altitude. The latency did not show any significant differences at high altitude compared to baseline recordings. Changes in pupil parameters did not correlate with scores of AMS. CONCLUSIONS Key parameters of the pupillary light reaction are significantly altered at high altitude. We hypothesize that high altitude hypoxia itself as well as known side effects of high altitude exposure such as fatigue or exhaustion after ascent may account for an altered pupillogram. Interestingly, none of these changes are related to AMS.
Collapse
Affiliation(s)
| | - Kai Schommer
- Department of Sports Medicine of Medical Clinic, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schatz
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Katharinenhospital, Stuttgart, Germany
| | - Barbara Wilhelm
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Tobias Peters
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
| | - M. Dominik Fischer
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
- Nuffield Laboratory of Ophthalmology Oxford, University of Oxford, Oxford, United Kingdom
| | - Eberhart Zrenner
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Florian Gekeler
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Katharinenhospital, Stuttgart, Germany
| | - Gabriel Willmann
- Center of Ophthalmology, University of Tübingen, Tübingen, Germany
- Department of Ophthalmology, Katharinenhospital, Stuttgart, Germany
| |
Collapse
|
18
|
Smith JD, Cianflone K, Martin J, Poirier P, Broderick TL, Noël M. Plasma adipokine and hormone changes in mountaineers on ascent to 5300 meters. Wilderness Environ Med 2011; 22:107-14. [PMID: 21664558 DOI: 10.1016/j.wem.2011.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/06/2010] [Accepted: 01/13/2011] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The current study evaluated multiple metabolic and inflammatory hormone responses in recreational climbers (7 men and 3 women, age 26-49 years) over 9 days. In particular, acylation-stimulating protein (ASP), which influences fat storage in adipose tissue, has not been measured at high altitude. METHODS Serial measurements were taken at sea level (SL), or 353 m, on day 0, 4000 m on day 3, 4750 m on day 6, and 5300 m on day 9 of the expedition. RESULTS Body mass index (BMI) decreased upon ascent to 5300 m from SL (SL 23.2 ± 1.5 kg/m(2); 4000 m 23.2 ± 1.4 kg/m(2); 4750 m 22.9 ± 1.3 kg/m(2); 5300 m 22.3 ± 1.2 kg/m(2); P<.001). Similarly, plasma non-esterified fatty acids and triglycerides increased, while HDL cholesterol decreased (P<.05 to <.001) from SL to 5300 m. Acylation-stimulating protein (SL 42.2 ± 40.2 nm; 4000 m 117.0 ± 69.6 nm; 4750 m 107.9 ± 44.5 nm; 5300 m 82.2 ± 20.2 nm; P=.019) and adiponectin (SL 10.4 ± 6.5 ng/mL, 4000 m 13.9 ± 8.5 ng/mL, 4750 m 18.3 ± 8.3 ng/mL, 5300 m 14.7 ± 8.0 ng/mL; P=.015) increased, as did insulin and Interleukin-6 (IL-6) levels (up to 71% and 168%, respectively; P<.05) with no change in leptin, complement C3 (C3), high sensitivity C-reactive protein (hsCRP) or cortisol levels throughout the mountain ascent from SL to 5300 m. CONCLUSION Acylation-stimulating protein and adiponectin are increased during a 9-day period of high altitude (SL to 5300 m) exposure despite weight loss in healthy mountaineers.
Collapse
Affiliation(s)
- Jessica D Smith
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Québec, QC, Canada
| | | | | | | | | | | |
Collapse
|