1
|
Guan G, Du Y, Tang W, Chen M, Yu W, Li H, Cheng Q. Impacts of Prior Anti-Osteoporosis Treatments on Sequential Denosumab Responses in BMD Changes Among Postmenopausal Osteoporosis Women in East China: Real-World Data Analysis. Clin Interv Aging 2025; 20:573-586. [PMID: 40357344 PMCID: PMC12068388 DOI: 10.2147/cia.s511622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Purpose This study aimed to investigate the impacts of prior anti-osteoporosis treatments on bone mineral density (BMD) changes in Chinese postmenopausal women with osteoporosis following 1-year Denosumab (Dmab) therapy. Patients and Methods This retrospective cohort study enrolled 381 postmenopausal women, all receiving a 1-year Dmab treatment. Participants were stratified into five groups based on prior anti-osteoporosis treatments: no treatment (NT), alendronate (ALN), zoledronic acid (ZOL), teriparatide (TPT), and raloxifene (RAL). Potential factors influencing BMD changes were screened using least absolute shrinkage and selection operator (LASSO). The selected variables were then incorporated into a multivariate regression model to identify independent risk factors. Finally, after adjusting for confounders, the impacts of prior anti-osteoporosis treatment on sequential Dmab responses were evaluated. Results 1) Further BMD increases were observed after sequential 1-year Dmab with prior use of other anti-osteoporosis drugs; 2) Compared to the NT group, ZOL significantly reduced BMD changes at the lumbar spine (LS), femoral neck (FN), and total hip (TH) (LS: β = -0.01, P = 0.016; FN: β = -0.01, P = 0.010; TH: β = -0.01, P = 0.011); Significant negative associations with FN BMD changes were observed for the ALN group (β = -0.01, P< 0.001), and the RAL group (β = -0.01, P = 0.010) compared to the NT group; TPT showed no significant differences with the NT group at all sites; 3) Multiple analysis revealed baseline BMD were independently associated with changes in BMD (LS: β = -0.04, P = 0.009; FN: β = -0.19, P <0.001; TH: β = -0.14, P <0.001). Conclusion These findings indicated that prior anti-osteoporosis treatments differentially influenced BMD responses to 1-year Dmab therapy. While patients who had previously been treated with ZOL had limited subsequent BMD improvement, patients who had previously used TPT and had lower baseline BMD benefited more.
Collapse
Affiliation(s)
- Guoyu Guan
- Department of Geriatrics, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanping Du
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Huilin Li
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Park S, Heo HA, Kim KW, Pyo SW. Expression of osteogenic markers after administration of selective estrogen receptor modulators during implant placement in the osteoporotic rat maxilla. J Oral Sci 2021; 64:53-58. [PMID: 34955485 DOI: 10.2334/josnusd.21-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study examined the effects of raloxifene during bone formation around the dental implant in the ovariectomy-induced osteoporotic rat maxilla. METHODS Fifty-four female 10-week-old Sprague-Dawley rats were divided into three groups (n = 18 each); sham-operated (control), ovariectomized (OVX), and ovariectomized and raloxifene-administered (RAL). Eight weeks after ovariectomy, both upper first molars were extracted, and implants were placed 4 weeks post-extraction. The RAL group was given 1 mg/kg of raloxifene per day while the other groups received a vehicle. Six rats in each group were sacrificed at days 4, 7, and 14 and submitted for quantitative reverse transcription polymerase chain reaction and immunohistochemical staining, for evaluation of osteogenic genes expressions. RESULTS The alkaline phosphatase expression was upregulated in the RAL group compared to the OVX group at day 4. The osteocalcin expression was significantly higher between the RAL group and the OVX group at day 7. Immunohistochemical staining revealed increased expression during the initial bone-forming process and indicated more active bone formation in the RAL group than in the OVX group. CONCLUSION Raloxifene administration enhanced the osteogenic genes and proteins expression in the bone around the implant. Further studies are required to establish the long-term clinical effects of raloxifene administration.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hyun A Heo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Kyoung Wook Kim
- Department of Dentistry, Graduate School, The Catholic University of Korea
| | - Sung Woon Pyo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
3
|
Heo HA, Park S, Jeon YS, Pyo SW. Effect of Raloxifene Administration on Bone Response Around Implant in the Maxilla of Osteoporotic Rats. IMPLANT DENT 2019; 28:272-278. [DOI: 10.1097/id.0000000000000881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Pandey MK, Gupta SC, Karelia D, Gilhooley PJ, Shakibaei M, Aggarwal BB. Dietary nutraceuticals as backbone for bone health. Biotechnol Adv 2018; 36:1633-1648. [PMID: 29597029 DOI: 10.1016/j.biotechadv.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/11/2022]
|
5
|
Balsa JA, Lafuente C, Gómez-Martín JM, Galindo J, Peromingo R, García-Moreno F, Rodriguez-Velasco G, Martínez-Botas J, Gómez-Coronado D, Escobar-Morreale HF, Botella-Carretero JI. The role of serum osteoprotegerin and receptor-activator of nuclear factor-κB ligand in metabolic bone disease of women after obesity surgery. J Bone Miner Metab 2016; 34:655-661. [PMID: 26438320 DOI: 10.1007/s00774-015-0712-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/15/2015] [Indexed: 11/24/2022]
Abstract
Metabolic bone disease may appear as a complication of obesity surgery. Because an imbalance in the osteoprotegerin and receptor-activator of nuclear factor-κB ligand system may underlie osteoporosis, we aimed to study this system in humans in the metabolic bone disease occurring after obesity surgery. In this study we included sixty women with a mean age of 47 ± 10 years studied 7 ± 2 years after bariatric surgery. The variables studied were bone mineral density, β-isomer of C-terminal telopeptide of type I collagen cross-links (a bone resorption marker), the bone formation markers osteocalcin and N-terminal propeptide of procollagen 1, serum osteoprotegerin and receptor-activator of nuclear factor-κB ligand. Serum osteoprotegerin inversely correlated with the bone remodeling markers osteocalcin, β-isomer of C-terminal telopeptide of type I collagen cross-links and N-terminal propeptide of procollagen 1. The osteoprotegerin and receptor-activator of nuclear factor-κB ligand ratio also correlated inversely with serum parathormone and osteocalcin. Bone mineral density at the lumbar spine was associated with age (β = -0.235, P = 0.046), percentage of weight loss (β = 0.421, P = 0.001) and osteoprotegerin and receptor-activator of nuclear factor-κB ligand ratio (β = 0.259, P = 0.029) in stepwise multivariate analysis (R 2 = 0.29, F = 7.49, P < 0.001). Bone mineral density at the hip site was associated only with percentage of weight loss (β = 0.464, P < 0.001) in stepwise multivariate regression (R 2 = 0.21, F = 15.1, P < 0.001). These data show that the osteoprotegerin and receptor-activator of nuclear factor-κB ligand system is associated with bone markers and bone mineral density at the lumbar spine after obesity surgery.
Collapse
Affiliation(s)
- José A Balsa
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km. 9.1, 28034, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Infanta Sofía, Madrid, Spain
| | - Christian Lafuente
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km. 9.1, 28034, Madrid, Spain
| | - Jesús M Gómez-Martín
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km. 9.1, 28034, Madrid, Spain
| | - Julio Galindo
- Department of Digestive and General Surgery, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Roberto Peromingo
- Department of Digestive and General Surgery, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Francisca García-Moreno
- Department of Digestive and General Surgery, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Gloria Rodriguez-Velasco
- Department of Digestive and General Surgery, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Martínez-Botas
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de Obesidad y Nutrición (CIBERobn), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red-Fisiopatología de Obesidad y Nutrición (CIBERobn), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Héctor F Escobar-Morreale
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km. 9.1, 28034, Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - José I Botella-Carretero
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km. 9.1, 28034, Madrid, Spain.
- Centro de Investigación Biomédica en Red-Fisiopatología de Obesidad y Nutrición (CIBERobn), Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
6
|
Hermansen LL, Sørensen M, Barckman J, Bechtold JE, Søballe K, Baas J. Incorporation of raloxifene-impregnated allograft around orthopedic titanium implants impairs early fixation but improves new bone formation. Acta Orthop 2015; 86:127-33. [PMID: 25175661 PMCID: PMC4366660 DOI: 10.3109/17453674.2014.958808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The anti-osteoporotic drug raloxifene reduces the risk of vertebral fractures by increasing bone mass density. We investigated whether raloxifene offers any benefits in augmenting early fixation of orthopedic implants in the setting of impaction bone grafting. METHODS 24 non-weight-bearing grafted gap implants were inserted bilaterally into the tibia of 12 dogs. The 2.5-mm peri-implant gap was filled with either raloxifene-impregnated or untreated bone allograft. Implants were harvested after 28 days. Implant fixation was assessed by mechanical testing and histomorphometric evaluation. RESULTS Raloxifene-treated allograft reduced early implant fixation compared to untreated allograft, as measured by inferior maximum shear strength (p < 0.001) and apparent shear stiffness (p = 0.001). We found that the raloxifene group had more newly formed bone in the gap around the implant (p = 0.02), but also less allograft (p = 0.03). INTERPRETATION The accelerated allograft resorption in the raloxifene group explained the impaired early fixation, despite its stimulation of new bone formation. Our results with local and possible high-dose treatment are not consistent with current theory regarding the mechanism of how systemic raloxifene administration counteracts the decrease in BMD in postmenopausal women. Instead of being solely anti-resorptive as generally held, our results indicate a possible anabolic side of raloxifene.
Collapse
Affiliation(s)
- Lars L Hermansen
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Sørensen
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jeppe Barckman
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Joan E Bechtold
- Orthopedic Biomechanics Laboratory, Minneapolis Medical Research Foundation, University of Minnesota and Excelen Center for Bone and Joint Research and Education, Minneapolis, MN, USA
| | - Kjeld Søballe
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Baas
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
7
|
Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, Root A, Yan G, Warner L, Seeherman HJ, Yaworsky PJ. A myostatin and activin decoy receptor enhances bone formation in mice. Bone 2014; 60:162-71. [PMID: 24333131 DOI: 10.1016/j.bone.2013.12.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/25/2013] [Accepted: 12/03/2013] [Indexed: 01/11/2023]
Abstract
Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty.
Collapse
Affiliation(s)
- P Bialek
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA.
| | - J Parkington
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - X Li
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - D Gavin
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - C Wallace
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - J Zhang
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - A Root
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - G Yan
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - L Warner
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - H J Seeherman
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| | - P J Yaworsky
- Biotherapeutics Research and Development, Pfizer Inc., 200 CambridgePark Drive, Cambridge, MA 02140, USA
| |
Collapse
|
8
|
Karwowski W, Naumnik B, Szczepański M, Myśliwiec M. The mechanism of vascular calcification - a systematic review. Med Sci Monit 2012; 18:RA1-11. [PMID: 22207127 PMCID: PMC3560673 DOI: 10.12659/msm.882181] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcification of vessels reduces their elasticity, affecting hemodynamic parameters of the cardiovascular system. The development of arterial hypertension, cardiac hypertrophy, ischemic heart disease or peripheral arterial disease significantly increases mortality in patients over 60 years of age. Stage of advancement and the extent of accumulation of calcium deposits in vessel walls are key risk factors of ischemic events. Vascular calcification is an active and complex process that involves numerous mechanisms responsible for calcium depositions in arterial walls. They lead to increase in arterial stiffness and in pulse wave velocity, which in turn increases cardiovascular disease morbidity and mortality. In-depth study and thorough understanding of vascular calcification mechanisms may be crucial for establishing an effective vasculoprotective therapy. The aim of this study was to present a comprehensive survey of current state-of-the-art research into the impact of metabolic and hormonal disorders on development of vascular calcification. Due to strong resemblance to the processes occurring in bone tissue, drugs used for osteoporosis treatment (calcitriol, estradiol, bisphosphonates) may interfere with the processes occurring in the vessel wall. On the other hand, drugs used to treat cardiovascular problems (statins, angiotensin convertase inhibitors, warfarin, heparins) may have an effect on bone tissue metabolism. Efforts to optimally control calcium and phosphate concentrations are also beneficial for patients with end-stage renal disease, for whom vessel calcification remains a major problem.
Collapse
Affiliation(s)
- Wojciech Karwowski
- Department of Pathophysiology of Pregnancy, District Hospital in Bialystok, Bialystok, Poland.
| | | | | | | |
Collapse
|
9
|
Kulak CAM, Baz-Hecht M, Nieves J, Shen V, Lindsay R, Cosman F. Responses of urinary N-telopeptide and renal calcium handling to PTH infusion after treatment with estrogen, raloxifene, and tamoxifen. Calcif Tissue Int 2012; 90:263-71. [PMID: 22311517 DOI: 10.1007/s00223-012-9572-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
This prospective, randomized, placebo-controlled study investigated whether estrogen, tamoxifen, and raloxifene protect the skeleton from the acute catabolic effects of continuous PTH(1-34) infusion. It was infused over 24 h in 25 postmenopausal women both before and while on medication for 16-20 weeks (estrogen n = 7, raloxifene n = 5, tamoxifen n = 7, placebo n = 6). Blood and urine samples were collected at baseline and every 4 h during the PTH(1-34) infusion and analyzed for calcium homeostasis, bone remodeling, and specific cytokines. Data for the premedication PTH(1-34) infusions were pooled. During the premedication PTH(1-34) infusions, serum calcium and urine phosphorus increased, while serum phosphorus and urine calcium declined. Osteocalcin decreased (mean 18%), while urine NTX increased (mean 315%). Serum IL-6 increased 260%, but there were no other cytokine changes as a result of the PTH(1-34) infusion. On medication, the mean peak change in NTX with PTH(1-34) infusion was less (77, 59, and 31 nM/mM with raloxifene, tamoxifen, and estrogen, respectively). The reduction in urine calcium excretion was prolonged with each agent but only significantly with estrogen. There was no reduction in the IL-6 elevation induced by PTH(1-34) with any medication. The differential skeletal resorption response to PTH(1-34) infusion after the treatments may reflect different potencies of these agents or variability in interaction with the estrogen receptor. Renal calcium conservation and the blunted response of bone resorption to PTH(1-34) infusion may be mechanisms by which estrogen and estrogen agonist/antagonist agents preserve bone mass.
Collapse
Affiliation(s)
- Carolina A M Kulak
- Clinical Research/Regional Bone Center, Helen Hayes Hospital, West Haverstraw, NY 10993, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Swarnkar G, Sharan K, Siddiqui JA, Chakravarti B, Rawat P, Kumar M, Arya KR, Maurya R, Chattopadhyay N. A novel flavonoid isolated from the steam-bark of Ulmus Wallichiana Planchon stimulates osteoblast function and inhibits osteoclast and adipocyte differentiation. Eur J Pharmacol 2011; 658:65-73. [DOI: 10.1016/j.ejphar.2011.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
|
11
|
Alendronate and raloxifene affect the osteoprotegerin/RANKL system in human osteoblast primary cultures from patients with osteoporosis and osteoarthritis. Eur J Pharmacol 2011; 650:682-7. [DOI: 10.1016/j.ejphar.2010.10.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/06/2010] [Accepted: 10/16/2010] [Indexed: 01/06/2023]
|
12
|
Wagner D, Fahrleitner-Pammer A. Levels of osteoprotegerin (OPG) and receptor activator for nuclear factor kappa B ligand (RANKL) in serum: are they of any help? Wien Med Wochenschr 2010; 160:452-7. [PMID: 20714810 DOI: 10.1007/s10354-010-0818-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 12/14/2022]
Abstract
The coupling of bone formation and resorption is mediated through the OPG/RANK/RANKL system. OPG and RANKL are mainly produced by osteoblasts but also a variety of other tissues. The binding of RANKL to RANK, its natural receptor which is expressed by osteoclasts, accelerates bone resorption. OPG acts as decoy receptor and prevents the interaction of RANKL with RANK and therefore leads to a decrease in activity, survival and proliferation of osteoclasts. Since assays for measurements of serum OPG and RANKL have become commercially available, intense research focused on serum OPG/RANKL levels in context with underlying disease, age, co-morbidities, bone density, and fractures has derived. This review aims to provide an overview if and to which extent serum OPG and RANKL levels may reflect bone metabolism in patients with osteoporosis and metabolic bone disease.
Collapse
Affiliation(s)
- Doris Wagner
- Department of Surgery, Medical University of Graz, Graz, Austria
| | | |
Collapse
|
13
|
Inflammatory responses improve with milk ribonuclease-enriched lactoferrin supplementation in postmenopausal women. Inflamm Res 2010; 59:971-8. [DOI: 10.1007/s00011-010-0211-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/14/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022] Open
|
14
|
Anastasilakis AD, Toulis KA, Polyzos SA, Terpos E. RANKL inhibition for the management of patients with benign metabolic bone disorders. Expert Opin Investig Drugs 2010; 18:1085-102. [PMID: 19558335 DOI: 10.1517/13543780903048929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The receptor activator of NF-kappaB ligand (RANKL) is a member of the TNF receptor superfamily, essential for osteoclastogenesis. It binds to its receptor activator of NF-kappaB on the surface of osteoclast precursors and enhances their differentiation, survival and fusion, while it activates mature osteoclasts and inhibits their apoptosis. The effects of RANKL are counteracted by osteoprotegerin (OPG), a neutralizing decoy receptor. Derangement of the balance in RANKL/OPG action is implicated in the pathophysiology of metabolic bone diseases, including osteoporosis. Current therapies used to prevent or treat metabolic bone diseases are thought to act, at least in part, through modification of the RANKL/OPG dipole. The idea of using a molecule that could specifically bind and neutralize RANKL to decrease bone resorption and subsequent bone loss is appealing. Recombinant OPG was initially tested. Denosumab, a fully human monoclonal antibody against RANKL, is a promising antiresorptive agent under investigation. It rapidly decreases bone turnover markers resulting in a significant increase in bone mineral density and reduction in fracture risk. However, because receptor activator of NF-kappaB activation by RANKL is also essential for T-cell growth and dendritic-cell function, inhibition of its action could simultaneously affect the immune system, leading to susceptibility in infections or malignancies.
Collapse
|
15
|
LUVIZUTO ER, QUEIROZ TP, DIAS SMD, OKAMOTO T, DORNELLES RCM, GARCIA IR, OKAMOTO R. Histomorphometric analysis and immunolocalization of RANKL and OPG during the alveolar healing process in female ovariectomized rats treated with oestrogen or raloxifene. Arch Oral Biol 2010; 55:52-9. [DOI: 10.1016/j.archoralbio.2009.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/27/2009] [Accepted: 11/04/2009] [Indexed: 01/07/2023]
|