2
|
Jesus TT, Oliveira PF, Sousa M, Cheng CY, Alves MG. Mammalian target of rapamycin (mTOR): a central regulator of male fertility? Crit Rev Biochem Mol Biol 2017; 52:235-253. [PMID: 28124577 DOI: 10.1080/10409238.2017.1279120] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolic phenotype and is involved in virtually all aspects of cellular function. It integrates not only nutrient and energy-sensing pathways but also actin cytoskeleton organization, in response to environmental cues including growth factors and cellular energy levels. These events are pivotal for spermatogenesis and determine the reproductive potential of males. Yet, the molecular mechanisms by which mTOR signaling acts in male reproductive system remain a matter of debate. Here, we review the current knowledge on physiological and molecular events mediated by mTOR in testis and testicular cells. In recent years, mTOR inhibition has been explored as a prime strategy to develop novel therapeutic approaches to treat cancer, cardiovascular disease, autoimmunity, and metabolic disorders. However, the physiological consequences of mTOR dysregulation and inhibition to male reproductive potential are still not fully understood. Compelling evidence suggests that mTOR is an arising regulator of male fertility and better understanding of this atypical protein kinase coordinated action in testis will provide insightful information concerning its biological significance in other tissues/organs. We also discuss why a new generation of mTOR inhibitors aiming to be used in clinical practice may also need to include an integrative view on the effects in male reproductive system.
Collapse
Affiliation(s)
- Tito T Jesus
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,b CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| | - Pedro F Oliveira
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,c i3S - Instituto de Investigação e Inovação em Saúde, University of Porto , Porto , Portugal
| | - Mário Sousa
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,d Centre for Reproductive Genetics Prof. Alberto Barros , Porto , Portugal
| | - C Yan Cheng
- e The Mary M. Wohlford Laboratory for Male Contraceptive Research , Center for Biomedical Research, Population Council , New York , NY , USA
| | - Marco G Alves
- a Laboratory of Cell Biology, Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto , Porto , Portugal.,b CICS-UBI - Health Sciences Research Centre, University of Beira Interior , Covilhã , Portugal
| |
Collapse
|
3
|
Ni B, Lin Y, Sun L, Zhu M, Li Z, Wang H, Yu J, Guo X, Zuo X, Dong J, Xia Y, Wen Y, Wu H, Li H, Zhu Y, Ping P, Chen X, Dai J, Jiang Y, Xu P, Du Q, Yao B, Weng N, Lu H, Wang Z, Zhu X, Yang X, Xiong C, Ma H, Jin G, Xu J, Wang X, Zhou Z, Liu J, Zhang X, Conrad DF, Hu Z, Sha J. Low-frequency germline variants across 6p22.2-6p21.33 are associated with non-obstructive azoospermia in Han Chinese men. Hum Mol Genet 2015; 24:5628-5636. [PMID: 26199320 PMCID: PMC4902876 DOI: 10.1093/hmg/ddv257] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified several common loci contributing to non-obstructive azoospermia (NOA). However, a substantial fraction of NOA heritability remains undefined, especially those low-frequency [defined here as having a minor allele frequency (MAF) between 0.5 and 5%] and rare (MAF below 0.5%) variants. Here, we performed a 3-stage exome-wide association study in Han Chinese men to evaluate the role of low-frequency or rare germline variants in NOA development. The discovery stage included 962 NOA cases and 1348 healthy male controls genotyped by exome chips and was followed by a 2-stage replication with an additional 2168 cases and 5248 controls. We identified three low-frequency variants located at 6p22.2 (rs2298090 in HIST1H1E encoding p.Lys152Arg: OR = 0.30, P = 2.40 × 10(-16)) and 6p21.33 (rs200847762 in FKBPL encoding p.Pro137Leu: OR = 0.11, P = 3.77 × 10(-16); rs11754464 in MSH5: OR = 1.78, P = 3.71 × 10(-7)) associated with NOA risk after Bonferroni correction. In summary, we report an instance of newly identified signals for NOA risk in genes previously undetected through GWAS on 6p22.2-6p21.33 in a Chinese population and highlight the role of low-frequency variants with a large effect in the process of spermatogenesis.
Collapse
Affiliation(s)
- Bixian Ni
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Liangdan Sun
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230022, China, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui 230022, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Zheng Li
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Jun Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Xianbo Zuo
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230022, China, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui 230022, China
| | - Jing Dong
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Toxicology and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yang Wen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Hao Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Honggang Li
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Yong Zhu
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Ping Ping
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiangfeng Chen
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Yue Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Peng Xu
- Jinghua Hospital, Shenyang Dongfang Medical Group, Shenyang 110004, China
| | - Qiang Du
- Department of Reproduction, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Bing Yao
- Department of Andrology, Nanjing Jinling Hospital, Nanjing 210029, China
| | - Ning Weng
- Jinghua Hospital, Shenyang Dongfang Medical Group, Shenyang 110004, China
| | - Hui Lu
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhuqing Wang
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaobin Zhu
- Shanghai Human Sperm Bank, Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaoyu Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Chenliang Xiong
- Family Planning Research Institute, Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430032, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and
| | - Jianfeng Xu
- Department of Urology, Huashan Hospital, Shanghai 200052, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Toxicology and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuejun Zhang
- Institute of Dermatology and Department of Dermatology, No. 1 Hospital, Anhui Medical University, Hefei, Anhui 230022, China, Key Laboratory of Dermatology, Anhui Medical University, Ministry of Education, China, Hefei, Anhui 230022, China
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA, Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center For Cancer Personalized Medicine, School of Public Health and State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200052, China,
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, China, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China,
| |
Collapse
|