1
|
Krupenko D, Gonchar A, Krapivin V, Kremnev G, Skobkina O, Efeykin B. Complex species structure of Lecithaster salmonis (Digenea: Lecithasteridae), a fish parasite in the Arctic and Pacific Northwest. J Helminthol 2025; 99:e4. [PMID: 39803672 DOI: 10.1017/s0022149x24000890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode Lecithaster salmonis across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within L. salmonis through mitochondrial (cox1 and nad5 genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data. Mitochondrial markers showed that L. salmonis is likely divided into six lineages (referred to as operational taxonomic units, OTUs), which often occur in sympatry, sometimes in a single host specimen. Variation in rDNA was not consistent with that in the mitochondrial markers. Morphometric analysis of maritae was performed for four out of six OTUs; it showed that some OTUs had significant differences from the others, but some did not. The effect of host species on the morphometric characteristics cannot be excluded. Intramolluscan stages were identified for two OTUs; they differed clearly by the structure of cercariae and also by the species of the first intermediate host. The case of L. salmonis is instructive in how different criteria for species delimitation can contradict each other. We regard this as a sign of recent or ongoing speciation and suggest using the name Lecithaster cf. salmonis. The most promising criteria to differentiate genetic lineages within L. cf. salmonis are first intermediate hosts and morphological characteristics of the cercariae: shape of the delivery tube and caudal cyst, and length of the filamentous appendage.
Collapse
MESH Headings
- Animals
- Trematoda/genetics
- Trematoda/classification
- Trematoda/anatomy & histology
- Trematoda/isolation & purification
- Fish Diseases/parasitology
- Trematode Infections/parasitology
- Trematode Infections/veterinary
- Phylogeny
- Genetic Variation
- Arctic Regions
- DNA, Helminth/genetics
- DNA, Helminth/chemistry
- Fishes/parasitology
- RNA, Ribosomal, 28S/genetics
- DNA, Ribosomal/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal Spacer/genetics
- DNA, Ribosomal Spacer/chemistry
- Sequence Analysis, DNA
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/chemistry
- Pacific Ocean
Collapse
Affiliation(s)
- D Krupenko
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034, Saint Petersburg, Russia
- Department of Invertebrate Zoology, Saint Petersburg University, Universitetskaya nab. 7-9, 199034, Saint Petersburg, Russia
| | - A Gonchar
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034, Saint Petersburg, Russia
- Department of Invertebrate Zoology, Saint Petersburg University, Universitetskaya nab. 7-9, 199034, Saint Petersburg, Russia
| | - V Krapivin
- Department of Invertebrate Zoology, Saint Petersburg University, Universitetskaya nab. 7-9, 199034, Saint Petersburg, Russia
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, 117071, Moscow, Russia
| | - G Kremnev
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034, Saint Petersburg, Russia
| | - O Skobkina
- Laboratory of Parasitic Worms and Protists, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034, Saint Petersburg, Russia
| | - B Efeykin
- Center of Parasitology of A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii Prospect 33, 117071, Moscow, Russia
| |
Collapse
|
2
|
Chen J, Li Y, Wang Y, Wang H, Yang J, Pan X, Zhao Y, Xu H, Jiang P, Qian P, Wang H, Xie Z, Lei K. Fibrillarin homologs regulate translation in divergent cell lineages during planarian homeostasis and regeneration. EMBO J 2024; 43:6591-6625. [PMID: 39567829 PMCID: PMC11649923 DOI: 10.1038/s44318-024-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Tissue homeostasis and regeneration involve complex cellular changes. The role of rRNA modification-dependent translational regulation in these processes remains largely unknown. Planarians, renowned for their ability to undergo remarkable tissue regeneration, provide an ideal model for the analysis of differential rRNA regulation in diverse cell types during tissue homeostasis and regeneration. We investigated the role of RNA 2'-O-methyltransferase, Fibrillarin (FBL), in the planarian Schmidtea mediterranea and identified two FBL homologs: Smed-fbl-1 (fbl-1) and Smed-fbl-2 (fbl-2). Both are essential for planarian regeneration, but play distinct roles: fbl-1 is crucial for progenitor cell differentiation, while fbl-2 is important for late-stage epidermal lineage specification. Different 2'-O-methylation patterns were observed upon fbl-1 and fbl-2 knockdown, suggesting their roles in translation of specific mRNA pools during regeneration. Ribo-seq analysis further revealed differing impacts of fbl-1 and fbl-2 knockdown on gene translation. These findings indicate divergent roles of the duplicate fbl genes in specific cell lineage development in planarians and suggest a role of rRNA modifications in translational regulation during tissue maintenance and regeneration.
Collapse
Affiliation(s)
- Jiajia Chen
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yucong Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Hui Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Xue Pan
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
- Fudan University, Shanghai, China
| | - Hao Xu
- School of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Penglei Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Vision Science, Guangzhou, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Gastineau R, Lemieux C, Turmel M, Otis C, Boyle B, Coulis M, Gouraud C, Boag B, Murchie AK, Winsor L, Justine JL. The invasive land flatworm Arthurdendyus triangulatus has repeated sequences in the mitogenome, extra-long cox2 gene and paralogous nuclear rRNA clusters. Sci Rep 2024; 14:7840. [PMID: 38570596 PMCID: PMC10991399 DOI: 10.1038/s41598-024-58600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 04/05/2024] Open
Abstract
Using a combination of short- and long-reads sequencing, we were able to sequence the complete mitochondrial genome of the invasive 'New Zealand flatworm' Arthurdendyus triangulatus (Geoplanidae, Rhynchodeminae, Caenoplanini) and its two complete paralogous nuclear rRNA gene clusters. The mitogenome has a total length of 20,309 bp and contains repetitions that includes two types of tandem-repeats that could not be solved by short-reads sequencing. We also sequenced for the first time the mitogenomes of four species of Caenoplana (Caenoplanini). A maximum likelihood phylogeny associated A. triangulatus with the other Caenoplanini but Parakontikia ventrolineata and Australopacifica atrata were rejected from the Caenoplanini and associated instead with the Rhynchodemini, with Platydemus manokwari. It was found that the mitogenomes of all species of the subfamily Rhynchodeminae share several unusual structural features, including a very long cox2 gene. This is the first time that the complete paralogous rRNA clusters, which differ in length, sequence and seemingly number of copies, were obtained for a Geoplanidae.
Collapse
Affiliation(s)
- Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland.
| | - Claude Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Monique Turmel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Christian Otis
- Plateforme d'Analyse Génomique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Brian Boyle
- Plateforme d'Analyse Génomique, Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec, QC, Canada
| | - Mathieu Coulis
- CIRAD, UPR GECO, 97285, Le Lamentin, Martinique, France
- GECO, CIRAD, University Montpellier, Montpellier, France
| | - Clément Gouraud
- UMR CNRS 6553 Ecobio, Université de Rennes, 263 Avenue du Gal Leclerc, CS 74205, CEDEX, 35042, Rennes, France
| | - Brian Boag
- The James Hutton Institute, Invergowrie, DD2 5DA, Scotland
| | - Archie K Murchie
- Sustainable Agri-Food Sciences Division, Agri-Food and Biosciences Institute, Belfast, BT9 5PX, Northern Ireland
| | - Leigh Winsor
- College of Science and Engineering, James Cook University of North Queensland, Townsville, QLD, Australia
| | - Jean-Lou Justine
- ISYEB, Institut de Systématique, Évolution, Biodiversité (UMR7205 CNRS, EPHE, MNHN, UPMC, Université des Antilles), Muséum National d'Histoire Naturelle, CP 51, 55 Rue Buffon, 75231, Paris Cedex 05, France
| |
Collapse
|
4
|
Soo OYM, Gastineau R, Verdon G, Winsor L, Justine JL. Rediscovery of Bipalium admarginatum de Beauchamp, 1933 (Platyhelminthes, Tricladida, Geoplanidae) in Malaysia, with molecular characterisation including the mitogenome. Zootaxa 2023; 5277:585-599. [PMID: 37518300 DOI: 10.11646/zootaxa.5277.3.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 08/01/2023]
Abstract
We present here the first observation of Bipalium admarginatum de Beauchamp, 1933 since its original description 90 years ago. Three specimens were found on Perhentian Kecil Island, off Terengganu State, Malaysia and photographed in the field, and two were collected. This report thus includes the first colour photographs published for this species, from a locality close to the type-locality, Tioman Island (which is ca. 200 km south of the locality in this study, on the east coast of Peninsula Malaysia). We describe the external morphology and colour pattern of the species, which correspond well to the original description, itself based only on two preserved specimens. We performed an in-depth molecular characterisation of the species, including its complete mitochondrial genome, the 18S sequence and elongation 1-alpha (EF1-α) sequence. In addition, EF1-α sequences were also retrieved for 5 additional geoplanid species. No tRNA-Thr could be detected in the mitogenome of B. admarginatum, a lack already reported in several species of geoplanids, but we found a 13 bp sequence that contains the anticodon loop and seems to be conserved among geoplanids and might thus possibly represent a non-canonical undetected tRNA. We discuss the difficulties encountered in trying to reconstruct the cluster of nuclear ribosomal genes, a problem already mentioned for other Triclads. Three phylogenies, based respectively on all mitochondrial proteins, 18S, and EF1-α, were computed; the position of B. admarginatum within the Bipaliinae was confirmed in each tree, as sister-group to various bipaliine species according to the sequences available for each tree. In the mitochondrial proteins tree, which had high support, B. admarginatum was sister to Bipalium kewense and Diversibipalium multilineatum.
Collapse
Affiliation(s)
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences; University of Szczecin; Szczecin; Poland.
| | | | - Leigh Winsor
- James Cook University; Townsville; Queensland; Australia..
| | - Jean-Lou Justine
- ISYEB; Institut de Systématique; Évolution; Biodiversité (UMR7205 CNRS; EPHE; MNHN; UPMC; Université des Antilles); Muséum National d'Histoire Naturelle; CP 51; 55 rue Buffon; 75231 Paris Cedex 05; France.
| |
Collapse
|
5
|
Polymorphism of 16s rRNA Gene: Any Effect on the Biomolecular Quantitation of the Honey Bee (Apis mellifera L., 1758) Pathogen Nosema ceranae? APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12010422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The microsporidian Nosema ceranae is a severe threat to the western honey bee Apis mellifera, as it is responsible for nosemosis type C, which leads the colonies to dwindle and collapse. Infection quantification is essential to clinical and research aims. Assessment is made often with molecular assays based on rRNA genes, which are present in the N. ceranae genome as multiple and polymorphic copies. This study aims to compare two different methods of Real-Time PCR (qPCR), respectively relying on the 16S rRNA and Hsp70 genes, the first of which is described as a multiple and polymorphic gene. Young worker bees, hatched in the laboratory and artificially inoculated with N. ceranae spores, were incubated at 33 °C and subject to different treatment regimens. Samples were taken post-infection and analyzed with both qPCR methods. Compared to Hsp70, the 16S rRNA method systematically detected higher abundance. Straightforward conversion between the two methods is made impossible by erratic 16s rRNA/Hsp70 ratios. The 16s rRNA polymorphism showed an increase around the inoculated dose, where a higher prevalence of ungerminated spores was expected due to the treatment effects. The possible genetic background of that irregular distribution is discussed in detail. The polymorphic nature of 16S rRNA showed to be a limit in the infection quantification. More reliably, the N. ceranae abundance can be assessed in honey bee samples with methods based on the single-copy gene Hsp70.
Collapse
|
6
|
Sims J, Rabanal FA, Elgert C, von Haeseler A, Schlögelhofer P. It Is Just a Matter of Time: Balancing Homologous Recombination and Non-homologous End Joining at the rDNA Locus During Meiosis. FRONTIERS IN PLANT SCIENCE 2021; 12:773052. [PMID: 34777453 PMCID: PMC8580885 DOI: 10.3389/fpls.2021.773052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/04/2021] [Indexed: 05/17/2023]
Abstract
Ribosomal RNA genes (rDNAs) are located in large domains of hundreds of rDNA units organized in a head-to-tail manner. The proper and stable inheritance of rDNA clusters is of paramount importance for survival. Yet, these highly repetitive elements pose a potential risk to the genome since they can undergo non-allelic exchanges. Here, we review the current knowledge of the organization of the rDNA clusters in Arabidopsis thaliana and their stability during meiosis. Recent findings suggest that during meiosis, all rDNA loci are embedded within the nucleolus favoring non-homologous end joining (NHEJ) as a repair mechanism, while DNA repair via homologous recombination (HR) appears to be a rare event. We propose a model where (1) frequent meiotic NHEJ events generate abundant single nucleotide polymorphisms and insertions/deletions within the rDNA, resulting in a heterogeneous population of rDNA units and (2) rare HR events dynamically change rDNA unit numbers, only to be observed in large populations over many generations. Based on the latest efforts to delineate the entire rDNA sequence in A. thaliana, we discuss evidence supporting this model. The results compiled so far draw a surprising picture of rDNA sequence heterogeneity between individual units. Furthermore, rDNA cluster sizes have been recognized as relatively stable when observing less than 10 generations, yet emerged as major determinant of genome size variation between different A. thaliana ecotypes. The sequencing efforts also revealed that transcripts from the diverse rDNA units yield heterogenous ribosome populations with potential functional implications. These findings strongly motivate further research to understand the mechanisms that maintain the metastable state of rDNA loci.
Collapse
Affiliation(s)
- Jason Sims
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- *Correspondence: Jason Sims,
| | - Fernando A. Rabanal
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christiane Elgert
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna BioCenter, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Peter Schlögelhofer,
| |
Collapse
|
7
|
Kim IV, Ross EJ, Dietrich S, Döring K, Sánchez Alvarado A, Kuhn CD. Efficient depletion of ribosomal RNA for RNA sequencing in planarians. BMC Genomics 2019; 20:909. [PMID: 31783730 PMCID: PMC6884822 DOI: 10.1186/s12864-019-6292-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The astounding regenerative abilities of planarian flatworms prompt steadily growing interest in examining their molecular foundation. Planarian regeneration was found to require hundreds of genes and is hence a complex process. Thus, RNA interference followed by transcriptome-wide gene expression analysis by RNA-seq is a popular technique to study the impact of any particular planarian gene on regeneration. Typically, the removal of ribosomal RNA (rRNA) is the first step of all RNA-seq library preparation protocols. To date, rRNA removal in planarians was primarily achieved by the enrichment of polyadenylated (poly(A)) transcripts. However, to better reflect transcriptome dynamics and to cover also non-poly(A) transcripts, a procedure for the targeted removal of rRNA in planarians is needed. RESULTS In this study, we describe a workflow for the efficient depletion of rRNA in the planarian model species S. mediterranea. Our protocol is based on subtractive hybridization using organism-specific probes. Importantly, the designed probes also deplete rRNA of other freshwater triclad families, a fact that considerably broadens the applicability of our protocol. We tested our approach on total RNA isolated from stem cells (termed neoblasts) of S. mediterranea and compared ribodepleted libraries with publicly available poly(A)-enriched ones. Overall, mRNA levels after ribodepletion were consistent with poly(A) libraries. However, ribodepleted libraries revealed higher transcript levels for transposable elements and histone mRNAs that remained underrepresented in poly(A) libraries. As neoblasts experience high transposon activity this suggests that ribodepleted libraries better reflect the transcriptional dynamics of planarian stem cells. Furthermore, the presented ribodepletion procedure was successfully expanded to the removal of ribosomal RNA from the gram-negative bacterium Salmonella typhimurium. CONCLUSIONS The ribodepletion protocol presented here ensures the efficient rRNA removal from low input total planarian RNA, which can be further processed for RNA-seq applications. Resulting libraries contain less than 2% rRNA. Moreover, for a cost-effective and efficient removal of rRNA prior to sequencing applications our procedure might be adapted to any prokaryotic or eukaryotic species of choice.
Collapse
Affiliation(s)
- Iana V Kim
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.
| | - Eric J Ross
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Sascha Dietrich
- Core Unit Systems Medicine, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Kristina Döring
- Core Unit Systems Medicine, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Alejandro Sánchez Alvarado
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Claus-D Kuhn
- Gene regulation by Non-coding RNA, Elite Network of Bavaria and University of Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany.
| |
Collapse
|
8
|
Xu J, Xu Y, Yonezawa T, Li L, Hasegawa M, Lu F, Chen J, Zhang W. Polymorphism and evolution of ribosomal DNA in tea (Camellia sinensis, Theaceae). Mol Phylogenet Evol 2015; 89:63-72. [DOI: 10.1016/j.ympev.2015.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/22/2015] [Accepted: 03/25/2015] [Indexed: 01/18/2023]
|
9
|
Sagastume S, Martín-Hernández R, Higes M, Henriques-Gil N. Ribosomal gene polymorphism in small genomes: analysis of different 16S rRNA sequences expressed in the honeybee parasite Nosema ceranae (Microsporidia). J Eukaryot Microbiol 2013; 61:42-50. [PMID: 24102764 DOI: 10.1111/jeu.12084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 08/14/2013] [Indexed: 01/10/2023]
Abstract
To date, few organisms have been shown to possess variable ribosomal RNA, otherwise considered a classic example of uniformity by concerted evolution. The polymorphism for the 16S rRNA in Nosema ceranae analysed here is striking as Microsporidia are intracellular parasites which have suffered a strong reduction in their genomes and cellular organization. Moreover, N. ceranae infects the honeybee Apis mellifera, and has been associated with the colony-loss phenomenon during the last decade. The variants of 16S rRNA include single nucleotide substitutions, one base insertion-deletion, plus a tetranucleotide indel. We show that different gene variants are expressed. The polymorphic sites tend to be located in particular regions of the rRNA molecule, and the comparison to the Escherichia coli 16S rRNA secondary structure indicates that most variations probably do not preclude ribosomal activity. The fact that the polymorphisms in such a minimal organism as N. ceranae are maintained in samples collected worldwide suggest that the existence of differently expressed rRNA may play an adaptive role in the microsporidian.
Collapse
Affiliation(s)
- Soledad Sagastume
- Centro Apícola Regional, Bee Pathology Laboratory, Marchamalo, Guadalajara, 19180, Spain
| | | | | | | |
Collapse
|
10
|
Bik HM, Fournier D, Sung W, Bergeron RD, Thomas WK. Intra-genomic variation in the ribosomal repeats of nematodes. PLoS One 2013; 8:e78230. [PMID: 24147124 PMCID: PMC3795665 DOI: 10.1371/journal.pone.0078230] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 09/18/2013] [Indexed: 12/25/2022] Open
Abstract
Ribosomal loci represent a major tool for investigating environmental diversity and community structure via high-throughput marker gene studies of eukaryotes (e.g. 18S rRNA). Since the estimation of species' abundance is a major goal of environmental studies (by counting numbers of sequences), understanding the patterns of rRNA copy number across species will be critical for informing such high-throughput approaches. Such knowledge is critical, given that ribosomal RNA genes exist within multi-copy repeated arrays in a genome. Here we measured the repeat copy number for six nematode species by mapping the sequences from whole genome shotgun libraries against reference sequences for their rRNA repeat. This revealed a 6-fold variation in repeat copy number amongst taxa investigated, with levels of intragenomic variation ranging from 56 to 323 copies of the rRNA array. By applying the same approach to four C. elegans mutation accumulation lines propagated by repeated bottlenecking for an average of ~400 generations, we find on average a 2-fold increase in repeat copy number (rate of increase in rRNA estimated at 0.0285-0.3414 copies per generation), suggesting that rRNA repeat copy number is subject to selection. Within each Caenorhabditis species, the majority of intragenomic variation found across the rRNA repeat was observed within gene regions (18S, 28S, 5.8S), suggesting that such intragenomic variation is not a product of selection for rRNA coding function. We find that the dramatic variation in repeat copy number among these six nematode genomes would limit the use of rRNA in estimates of organismal abundance. In addition, the unique pattern of variation within a single genome was uncorrelated with patterns of divergence between species, reflecting a strong signature of natural selection for rRNA function. A better understanding of the factors that control or affect copy number in these arrays, as well as their rates and patterns of evolution, will be critical for informing estimates of global biodiversity.
Collapse
Affiliation(s)
- Holly M. Bik
- Union Council Davis Genome Center, University of California Davis, Davis, California, United States of America
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
| | - David Fournier
- Department of Computer Science, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Way Sung
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - R. Daniel Bergeron
- Department of Computer Science, University of New Hampshire, Durham, New Hampshire, United States of America
| | - W. Kelley Thomas
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, New Hampshire, United States of America
| |
Collapse
|
11
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
12
|
Shen PP, Zhou H, Gu JG. Novel polymorphism of internal transcribed spacers (ITS) and their utilization in phylogenetic analysis of Neanthes glandicincta (Annelida: Polychaeta: Nereididae). ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1717-1725. [PMID: 22711549 DOI: 10.1007/s10646-012-0959-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 06/01/2023]
Abstract
Sequences of internal transcribed spacers (ITS1 and ITS2) are increasingly being used to infer phylogenetic relationships at or below species levels. Here we report a novel case of ITS polymorphism within Neanthes glandicincta (Annelida: Polychaeta: Nereididae). Two types of ITS sequence (Type I and Type II) were cloned and sequenced, which showed significant differences both in nucleotide composition and length. Variations of these two types sequences also differed from each other with Type I was highly divergent while Type II was highly conserved. Phylogenetic trees inferred from ITS1 and ITS2 sequences showed striking discrepancy in N. glandicincta. Non-concerted evolution of multi-gene is suggested to be responsible for the high degree of polymorphism in ITS regions. Due to the two divergent types of ITS presented within a single N. glandicincta individual, the utilization of ITS regions for delineation of population or closely related species cannot be substantiated. The finding of different types of ITS in a single individual also stresses the need for analyzing a large number of clones whenever ITS sequences obtained by PCR amplification and cloning are being used in phylogenetic reconstruction.
Collapse
Affiliation(s)
- Ping-Ping Shen
- Key Laboratory of Marine-Bioresources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.
| | | | | |
Collapse
|
13
|
Breugelmans K, Cardona JQ, Artois T, Jordaens K, Backeljau T. First report of the exotic blue land planarian, Caenoplana coerulea (Platyhelminthes, Geoplanidae), on Menorca (Balearic Islands, Spain). Zookeys 2012:91-105. [PMID: 22711997 PMCID: PMC3368283 DOI: 10.3897/zookeys.199.3215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/15/2012] [Indexed: 12/04/2022] Open
Abstract
In April 2009 two specimens of a terrestrial flatworm were collected from under a rock in an orchard at Ciutadella de Menorca on the easternmost Balearic island of Menorca (Spain). Their external morphology suggested that both specimens belonged to the invasive blue planarian Caenoplana coerulea, a species which is native to eastern Australia. Sequence data of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) and of the entire 18S ribosomal RNA confirm its identification. This is one of the first records of the species in Europe where it has only been found in one locality in the United Kingdom, France and NE Spain.
Collapse
Affiliation(s)
- Karin Breugelmans
- Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | | | | | | | | |
Collapse
|
14
|
Van Wormhoudt A, Gaume B, Le Bras Y, Roussel V, Huchette S. Two different and functional nuclear rDNA genes in the abalone Haliotis tuberculata: tissue differential expression. Genetica 2011; 139:1217-27. [PMID: 22210151 DOI: 10.1007/s10709-011-9623-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 12/20/2011] [Indexed: 12/22/2022]
Abstract
Analysis of the 18S rDNA sequences of Haliotis tuberculata tuberculata and H. t. coccinea subtaxa identified two different types of 18S rDNA genes and ITS1 regions. These two different genes were also detected in H. marmorata, H. rugosa and H. diversicolor that are separated from H. tuberculata by 5-65 mya. The mean divergence value between type I and type II sequences ranged from 7.25% for 18S to 80% for ITS1. ITS1 type II is homologous with the ITS1 consensus sequences published for many abalone species, whereas ITS1 type I presented only minor homology with a unique database entry for H. iris ITS1. A phylogenetic analysis makes a clear separation between type I and type II ITS1 sequences and supports grouping H. t. tuberculata, H. t. coccinea and H. marmorata together. The two subtaxa do not show any significant differences between the homologous 18S rDNA sequences. A general structure of the ITS1 transcript was proposed, with four major helices for the two types. The two genes were expressed and, for the first time, a putative differential expression of ITS1 type I was detected in the gills, digestive gland and gonads whereas ITS1 type II was expressed in all tissues.
Collapse
Affiliation(s)
- Alain Van Wormhoudt
- CNRS UMR 7208, Station de Biologie Marine du Muséum National d'Histoire Naturelle, 29900 Concarneau, France.
| | | | | | | | | |
Collapse
|
15
|
Mukha DV, Mysina V, Mavropulo V, Schal C. Structure and molecular evolution of the ribosomal DNA external transcribed spacer in the cockroach genus Blattella. Genome 2011; 54:222-34. [PMID: 21423285 DOI: 10.1139/g10-112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosomal DNA (rDNA) cluster of insects contains several hundred repeating structural-functional units and, therefore, is a typical example of a multigene family. Eukaryotic ribosomal RNA (rRNA) genes (18S, 5.8S, and 28S like) are arranged in tandemly repeated clusters in the nucleolus organizers, separated by several spacers, namely the nontranscribed spacer, the external transcribed spacer (ETS), and the internal transcribed spacers. The nucleotide sequences of the ETS of the three closely related Blattella cockroach species, Blattella germanica (Linnaeus, 1767), Blattella asahinai (Mizukubo, 1981), and Blattella lituricollis (Walker, 1868), were determined and compared. The three species had relatively similar ETS lengths, and sequence differences among them could be explained by two types of rearrangements, namely deletions of subrepeats and nucleotide substitutions. Minor ETS variants in B. germanica differed from the major variant in the same way that the major ETS variants of the three Blattella species differed from each other. Concerted evolution and the birth-and-death models, which are often invoked to explain the diversity and evolution of the multigene families of rDNA clusters, are discussed in the light of our data. A new model is proposed to explain the evolutionary reorganization of the ETS region: evolution of rDNA by "magnification-and-fixation" is characterized by magnification of minor subrepeats, which become adaptive in a new rapidly changed environment, and subsequent fixation of this variant type as a major component of the multigene family of a new species.
Collapse
Affiliation(s)
- Dmitry V Mukha
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkin 3, Moscow, Russia.
| | | | | | | |
Collapse
|
16
|
Sagastume S, Del Águila C, Martín-Hernández R, Higes M, Henriques-Gil N. Polymorphism and recombination for rDNA in the putatively asexual microsporidian Nosema ceranae, a pathogen of honeybees. Environ Microbiol 2011; 13:84-95. [PMID: 21199250 DOI: 10.1111/j.1462-2920.2010.02311.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nosema ceranae is currently one of the major pathogens of honeybees, related to the worldwide colony losses phenomenon. The genotyping of strains based on ribosomal DNA (rDNA) can be misleading if the repeated units are not identical. The analysis of cloned rDNA fragments containing the intergenic spacer (IGS) and part of the rDNA small-subunit (SSU) gene, from N. ceranae isolates from different European and Central Asia populations, revealed a high diversity of sequences. The variability involved single-nucleotide polymorphisms and insertion/deletions, resulting in 79 different haplotypes. Two sequences from the same isolate could be as different as any pair of sequences from different samples; in contrast, identical haplotypes were also found in very different geographical origins. Consequently, haplotypes cannot be organized in a consistent phylogenetic tree, clearly indicating that rDNA is not a reliable marker for the differentiation of N. ceranae strains. The results indicate that recombination between different sequences may produce new variants, which is quite surprising in microsporidia, usually considered to have an asexual mode of reproduction. The diversity of sequences and their geographical distribution indicate that haplotypes of different lineages may occasionally be present in a same cell and undergo homologue recombination, therefore suggesting a sexual haplo-diploid cycle.
Collapse
Affiliation(s)
- Soledad Sagastume
- Universidad San Pablo-CEU, Biology Department, 28668 Montepríncipe, Spain.Centro Apícola Regional, Bee Pathology Laboratory, 19180 Marchamalo, Guadalajara, Spain
| | - Carmen Del Águila
- Universidad San Pablo-CEU, Biology Department, 28668 Montepríncipe, Spain.Centro Apícola Regional, Bee Pathology Laboratory, 19180 Marchamalo, Guadalajara, Spain
| | - Raquel Martín-Hernández
- Universidad San Pablo-CEU, Biology Department, 28668 Montepríncipe, Spain.Centro Apícola Regional, Bee Pathology Laboratory, 19180 Marchamalo, Guadalajara, Spain
| | - Mariano Higes
- Universidad San Pablo-CEU, Biology Department, 28668 Montepríncipe, Spain.Centro Apícola Regional, Bee Pathology Laboratory, 19180 Marchamalo, Guadalajara, Spain
| | - Nuno Henriques-Gil
- Universidad San Pablo-CEU, Biology Department, 28668 Montepríncipe, Spain.Centro Apícola Regional, Bee Pathology Laboratory, 19180 Marchamalo, Guadalajara, Spain
| |
Collapse
|
17
|
Vizoso M, Vierna J, González-Tizón AM, Martínez-Lage A. The 5S rDNA Gene Family in Mollusks: Characterization of Transcriptional Regulatory Regions, Prediction of Secondary Structures, and Long-Term Evolution, with Special Attention to Mytilidae Mussels. J Hered 2011; 102:433-47. [DOI: 10.1093/jhered/esr046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
18
|
Orosová M, Ivica KH, Eva B, Marta Š. Karyotype, chromosomal characteristics of multiple rDNA clusters and intragenomic variability of ribosomal ITS2 in Caryophyllaeides fennica (Cestoda). Parasitol Int 2010; 59:351-7. [DOI: 10.1016/j.parint.2010.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/30/2022]
|
19
|
Intra-individual internal transcribed spacer 1 (ITS1) and ITS2 ribosomal sequence variation linked with multiple rDNA loci: A case of triploid Atractolytocestus huronensis, the monozoic cestode of common carp. Int J Parasitol 2010; 40:175-81. [DOI: 10.1016/j.ijpara.2009.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/06/2009] [Indexed: 11/17/2022]
|
20
|
Mateos E, Cabrera C, Carranza S, Riutort M. Molecular analysis of the diversity of terrestrial planarians (Platyhelminthes, Tricladida, Continenticola) in the Iberian Peninsula. ZOOL SCR 2009. [DOI: 10.1111/j.1463-6409.2009.00398.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Veltsos P, Keller I, Nichols RA. Geographically localised bursts of ribosomal DNA mobility in the grasshopper Podisma pedestris. Heredity (Edinb) 2009; 103:54-61. [PMID: 19384343 DOI: 10.1038/hdy.2009.32] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We report extraordinary variation in the number and the chromosomal location of ribosomal DNA (rDNA) arrays within populations of the alpine grasshopper Podisma pedestris; even greater differences were found between populations. The sites were detected by in situ hybridisation of labelled rDNA to chromosomal preparations. The total number of rDNA sites in an individual varied from three to thirteen. In the most extreme case, individuals from populations only 10 km apart had no rDNA loci in common. A survey of the geographical distribution of this variation identified clusters of populations with relatively similar chromosomal distribution of rDNA loci. These clusters correspond to those identified earlier by analysis of rDNA sequences. To explain this geographical clustering, we reconstructed the post-glacial colonisation of the region by assuming that the species' distribution has ascended to its current altitudinal range as the climate warmed. The reconstruction suggests that each cluster is descended from a colonisation route up a different alpine valley. That history would imply rapid establishment of rDNA differences, conceivably during the last 10,000 years since the last glaciation. The proposal for rapid change is consistent with the extensive within-population variation, which indicates that the processes responsible for the change in rDNA's chromosomal location continue to occur at a higher rate. We discuss whether our reconstruction of colonisation routes implies movement of the hybrid zone, which would indicate that a neo-XY sex chromosome system has spread through extant populations.
Collapse
Affiliation(s)
- P Veltsos
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | | | | |
Collapse
|
22
|
Moran Y, Gordon D, Gurevitz M. Sea anemone toxins affecting voltage-gated sodium channels--molecular and evolutionary features. Toxicon 2009; 54:1089-101. [PMID: 19268682 DOI: 10.1016/j.toxicon.2009.02.028] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The venom of sea anemones is rich in low molecular weight proteinaceous neurotoxins that vary greatly in structure, site of action, and phyletic (insect, crustacean or vertebrate) preference. This toxic versatility likely contributes to the ability of these sessile animals to inhabit marine environments co-habited by a variety of mobile predators. Among these toxins, those that show prominent activity at voltage-gated sodium channels and are critical in predation and defense, have been extensively studied for more than three decades. These studies initially focused on the discovery of new toxins, determination of their covalent and folded structures, understanding of their mechanisms of action on different sodium channels, and identification of the primary sites of interaction of the toxins with their channel receptors. The channel binding site for Type I and the structurally unrelated Type III sea anemone toxins was identified as neurotoxin receptor site 3, a site previously shown to be targeted by scorpion alpha-toxins. The bioactive surfaces of toxin representatives from these two sea anemone types have been characterized by mutagenesis. These analyses pointed to heterogeneity of receptor site 3 at various sodium channels. A turning point in evolutionary studies of sea anemone toxins was the recent release of the genome sequence of Nematostella vectensis, which enabled analysis of the genomic organization of the corresponding genes. This analysis demonstrated that Type I toxins in Nematostella and other species are encoded by gene families and suggested that these genes developed by concerted evolution. The current review provides a brief historical description of the discovery and characterization of sea anemone toxins that affect voltage-gated sodium channels and delineates recent advances in the study of their structure-activity relationship and evolution.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| | | | | |
Collapse
|
23
|
Álvarez-Presas M, Baguñà J, Riutort M. Molecular phylogeny of land and freshwater planarians (Tricladida, Platyhelminthes): From freshwater to land and back. Mol Phylogenet Evol 2008; 47:555-68. [DOI: 10.1016/j.ympev.2008.01.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 01/10/2008] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
|
24
|
Moran Y, Weinberger H, Sullivan JC, Reitzel AM, Finnerty JR, Gurevitz M. Concerted Evolution of Sea Anemone Neurotoxin Genes Is Revealed through Analysis of the Nematostella vectensis Genome. Mol Biol Evol 2008; 25:737-47. [DOI: 10.1093/molbev/msn021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Stage DE, Eickbush TH. Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 2007; 17:1888-97. [PMID: 17989256 DOI: 10.1101/gr.6376807] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Concerted evolution maintains at near identity the hundreds of tandemly arrayed ribosomal RNA (rRNA) genes and their spacers present in any eukaryote. Few comprehensive attempts have been made to directly measure the identity between the rDNA units. We used the original sequencing reads (trace archives) available through the whole-genome shotgun sequencing projects of 12 Drosophila species to locate the sequence variants within the 7.8-8.2 kb transcribed portions of the rDNA units. Three to 18 variants were identified in >3% of the total rDNA units from 11 species. Species where the rDNA units are present on multiple chromosomes exhibited only minor increases in sequence variation. Variants were 10-20 times more abundant in the noncoding compared with the coding regions of the rDNA unit. Within the coding regions, variants were three to eight times more abundant in the expansion compared with the conserved core regions. The distribution of variants was largely consistent with models of concerted evolution in which there is uniform recombination across the transcribed portion of the unit with the frequency of standing variants dependent upon the selection pressure to preserve that sequence. However, the 28S gene was found to contain fewer variants than the 18S gene despite evolving 2.5-fold faster. We postulate that the fewer variants in the 28S gene is due to localized gene conversion or DNA repair triggered by the activity of retrotransposable elements that are specialized for insertion into the 28S genes of these species.
Collapse
Affiliation(s)
- Deborah E Stage
- University of Rochester, Department of Biology, Rochester, New York 14627, USA
| | | |
Collapse
|
26
|
Barthélémy RM, Grino M, Pontarotti P, Casanova JP, Faure E. The differential expression of ribosomal 18S RNA paralog genes from the chaetognath Spadella cephaloptera. Cell Mol Biol Lett 2007; 12:573-83. [PMID: 17588220 PMCID: PMC6275777 DOI: 10.2478/s11658-007-0026-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 04/18/2007] [Indexed: 11/20/2022] Open
Abstract
Chaetognaths constitute a small marine phylum of approximately 120 species. Two classes of both 18S and 28S rRNA gene sequences have been evidenced in this phylum, even though significant intraindividual variation in the sequences of rRNA genes is unusual in animal genomes. These observations led to the hypothesis that this unusual genetic characteristic could play one or more physiological role(s). Using in situ hybridization on the frontal sections of the chaetognath Spadella cephaloptera, we found that the 18S Class I genes are expressed in the whole body, with a strong expression throughout the gut epithelium, whereas the expression of the 18S Class II genes is restricted to the oocytes. Our results could suggest that the paralog products of the 18S Class I genes are probably the "housekeeping" 18S rRNAs, whereas those of class II would only be essential in specific tissues. These results provide support for the idea that each type of 18S paralog is important for specific cellular functions and is under the control of selective factors.
Collapse
Affiliation(s)
- Roxane-Marie Barthélémy
- Biodiversity and Environment, Université de Provence, case 18, 3 Place V. Hugo, 13331, Marseille cedex 3, France.
| | | | | | | | | |
Collapse
|
27
|
Abstract
Evolution of the tandemly repeated ribosomal RNA (rRNA) genes is intriguing because in each species all units within the array are highly uniform in sequence but that sequence differs between species. In this review we summarize the origins of the current models to explain this process of concerted evolution, emphasizing early studies of recombination in yeast and more recent studies in Drosophila and mammalian systems. These studies suggest that unequal crossover is the major driving force in the evolution of the rRNA genes with sister chromatid exchange occurring more often than exchange between homologs. Gene conversion is also believed to play a role; however, direct evidence for its involvement has not been obtained. Remarkably, concerted evolution is so well orchestrated that even transposable elements that insert into a large fraction of the rRNA genes appear to have little effect on the process. Finally, we summarize data that suggest that recombination in the rDNA locus of higher eukaryotes is sufficiently frequent to monitor changes within a few generations.
Collapse
Affiliation(s)
- Thomas H Eickbush
- Department of Biology, University of Rochester, Rochester, New York 14627, USA.
| | | |
Collapse
|
28
|
Barthelemy R, . FP, . JV, . JC, . EF. Evolutionary History of the Chaetognaths Inferred from Actin and 18S-28S rRNA Paralogous Genes. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/ijzr.2006.284.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Krieger J, Hett AK, Fuerst PA, Birstein VJ, Ludwig A. Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae. ACTA ACUST UNITED AC 2006; 97:218-25. [PMID: 16714428 DOI: 10.1093/jhered/esj035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significant intraindividual variation in the sequence of the 18S rRNA gene is unusual in animal genomes. In a previous study, multiple 18S rRNA gene sequences were observed within individuals of eight species of sturgeon from North America but not in the North American paddlefish, Polyodon spathula, in two species of Polypterus (Polypterus delhezi and Polypterus senegalus), in other primitive fishes (Erpetoichthys calabaricus, Lepisosteus osseus, Amia calva) or in a lungfish (Protopterus sp.). These observations led to the hypothesis that this unusual genetic characteristic arose within the Acipenseriformes after the presumed divergence of the sturgeon and paddlefish families. In the present study, a survey of nearly all Eurasian acipenseriform species was conducted to examine 18S rDNA variation. Intraindividual variation was not found in the polyodontid species, the Chinese paddlefish, Psephurus gladius, but variation was detected in all Eurasian acipenserid species. The comparison of sequences from two major segments of the 18S rRNA gene and identification of sites where insertion/deletion events have occurred are placed in the context of evolutionary relationships within the Acipenseriformes and the evolution of rDNA variation in this group.
Collapse
Affiliation(s)
- Jeannette Krieger
- Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA.
| | | | | | | | | |
Collapse
|
30
|
Papillon D, Perez Y, Caubit X, Le Parco Y. Systematics of Chaetognatha under the light of molecular data, using duplicated ribosomal 18S DNA sequences. Mol Phylogenet Evol 2006; 38:621-34. [PMID: 16434216 DOI: 10.1016/j.ympev.2005.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Revised: 11/11/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
While the phylogenetic position of Chaetognatha has became central to the question of early bilaterian evolution, the internal systematics of the phylum are still not clear. The phylogenetic relationships of the chaetognaths were investigated using newly obtained small subunit ribosomal RNA nuclear 18S (SSU rRNA) sequences from 16 species together with 3 sequences available in GenBank. As previously shown with the large subunit ribosomal RNA 28S gene, two classes of Chaetognatha SSU rRNA gene can be identified, suggesting a duplication of the whole ribosomal cluster; allowing the rooting of one class of genes by another in phylogenetic analyses. Maximum Parsimony, Maximum Likelihood and Bayesian analyses of the molecular data, and statistical tests showed (1) that there are three main monophyletic groups: Sagittidae/Krohnittidae, Spadellidae/Pterosagittidae, and Eukrohniidae/Heterokrohniidae, (2) that the group of Aphragmophora without Pterosagittidae (Sagittidae/Krohnittidae) is monophyletic, (3) the Spadellidae/Pterosagittidae and Eukrohniidae/Heterokrohniidae families are very likely clustered, (4) the Krohnittidae and Pterosagittidae groups should no longer be considered as families as they are included in other groups designated as families, (5) suborder Ctenodontina is not monophyletic and the Flabellodontina should no longer be considered as a suborder, and (6) the Syngonata/Chorismogonata and the Monophragmophora/Biphragmophora hypotheses are rejected. Such conclusions are considered in the light of morphological characters, several of which are shown to be prone to homoplasy.
Collapse
Affiliation(s)
- Daniel Papillon
- Centre d'Océanologie de Marseille UMR 6540 CNRS DIMAR, Rue batterie des lions, 13007 Marseille, France.
| | | | | | | |
Collapse
|
31
|
Willems WR, Wallberg A, Jondelius U, Littlewood DTJ, Backeljau T, Schockaert ER, Artois TJ. Filling a gap in the phylogeny of flatworms: relationships within the Rhabdocoela (Platyhelminthes), inferred from 18S ribosomal DNA sequences. ZOOL SCR 2006. [DOI: 10.1111/j.1463-6409.2005.00216.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Bunikis J, Barbour AG. Ticks have R2 retrotransposons but not the consensus transposon target site of other arthropods. INSECT MOLECULAR BIOLOGY 2005; 14:465-74. [PMID: 16164602 DOI: 10.1111/j.1365-2583.2005.00577.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Some copies of the large subunit rRNA genes (LSU rDNA) of most arthropods studied to date are inactivated by R-element retrotransposons at a specific target region that is highly conserved in sequence across all kingdoms of organisms. Here we report finding R2 elements in low copy numbers in the LSU rDNA of hard and soft ticks. Although the elements were inserted at the same LSU rDNA location as in insects, there were substitutions in the consensus R2 endonuclease cleavage site in the ticks and some other parasitiform mites. The substituted region comprises a critical contact point with small subunit rRNA, but in vitro structure probing analysis revealed novel, presumably stabilizing base-pairing.
Collapse
Affiliation(s)
- J Bunikis
- Department of Microbiology, University of California Irvine, Irvine, CA 92697-4025, USA.
| | | |
Collapse
|
33
|
Rooney AP, Ward TJ. Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci U S A 2005; 102:5084-9. [PMID: 15784739 PMCID: PMC555991 DOI: 10.1073/pnas.0409689102] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the primary components of the ribosome are encoded by multicopy nuclear ribosomal RNA (rRNA) genes: 28/26S, 18S, 5.8S, and 5S. Copies of these genes are typically localized within tandem arrays and homogenized within a genome. As a result, nuclear rRNA gene families have become a paradigm of concerted evolution. In filamentous fungi of the subphylum Pezizomycotina, 5S rRNA genes exist as a large and dispersed multigene family, with between 50 and 100 copies per genome. To determine whether these genes defy the concerted evolution paradigm, we examined the patterns of evolution of these genes by using sequences from the complete genomes of four species. Analyses of these sequences revealed (i) multiple 5S gene types within a genome, (ii) interspecies clustering of gene types, (iii) multiple identical gene types shared among species, (iv) multiple pseudogenes within a genome, and (v) presence/absence variation of individual 5S copies in comparisons of closely related species. These results demonstrate that the 5S family in these species is characterized by birth-and-death evolution under strong purifying selection. Furthermore, our results suggest that birth-and-death evolution occurs at different rates in the genera examined, and that the multiplication and movement of 5S genes across the genome are highly dynamic. As such, we hypothesize that a mechanism resembling retroposition controls 5S rRNA gene amplification, dispersal, and integration in the genomes of filamentous fungi.
Collapse
Affiliation(s)
- Alejandro P Rooney
- Microbial Genomics and Bioprocessing Research Unit, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA.
| | | |
Collapse
|
34
|
Ko KS, Jung HS. Three nonorthologous ITS1 types are present in a polypore fungus Trichaptum abietinum. Mol Phylogenet Evol 2002; 23:112-22. [PMID: 12069544 DOI: 10.1016/s1055-7903(02)00009-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To explore phylogenetic relationships of Trichaptum species, internal transcribed spacer (ITS) regions of nuclear ribosomal DNAs were sequenced and analyzed. Gene trees from ITS1 and ITS2 sequences showed striking discrepancy in relationships of eight T. abietinum strains. All strains of T. abietinum had a single orthologous ITS2 type, but there were three paralogous types in the ITS1 region, which were designated Types I, II, and III. PCR amplification tests using type-specific primers showed that Types I and II are present in all strains of T. abietinum. The results suggest that gene duplication of the ancestral ITS1 region might have occurred prior to evolutionary radiation of Trichaptum and both types have been maintained in Trichaptum. However, Type III was amplified only in three T. abietinum strains collected from Korea, indicating that a new local geographic subtype has arisen in Korean strains.
Collapse
Affiliation(s)
- Kwan Soo Ko
- School of Biological Sciences, Seoul National University, San 56-1 Shinrim-dong, Kwanag-gu, Seoul 151-742, Republic of Korea.
| | | |
Collapse
|
35
|
Gómez-Zurita J, Juan C, Petitpierre E. Sequence, secondary structure and phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) in the Timarcha leaf beetles (Coleoptera: Chrysomelidae). INSECT MOLECULAR BIOLOGY 2000; 9:591-604. [PMID: 11122468 DOI: 10.1046/j.1365-2583.2000.00223.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Internal transcribed spacer 2 (ITS2) sequences of the nuclear rDNA in forty-seven specimens (thirty-four species) of the leaf beetle genus Timarcha have been studied. Timarcha ITS2 (523 bp on average) share some sequence features with other Chrysomeloidea relatives (Chrysolina, Diabrotica and Bruchus) but have no clear similarity with any other arthropod ITS2 sequences. Interspecific divergences are in the range 0.002-0.166, and 0.124-0.206 in the comparisons between subgenera. No evidence of intragenomic divergent ITS2 sequences has been found. Secondary structures are concordant with the four-domain model proposed for vertebrates and yeast, but differs from those proposed for dipterans. Phylogenetic analysis of the ITS2 data confirms the results of a previous study based on mitochondrial sequences, as the basality of the Metallotimarcha subgenus and the absence of phylogenetic support for the Timarchostoma subgenus.
Collapse
Affiliation(s)
- J Gómez-Zurita
- Laboratori de Genètica, Departament de Biologia, Universitat de les Illes Balears (UIB), Palma de Mallorca, Balearic Islands, Spain.
| | | | | |
Collapse
|
36
|
|