1
|
Zhang Y, Schmidt JW, Arthur TM, Wheeler TL, Zhang Q, Wang B. A Farm-to-Fork Quantitative Microbial Exposure Assessment of β-Lactam-Resistant Escherichia coli among U.S. Beef Consumers. Microorganisms 2022; 10:661. [PMID: 35336235 PMCID: PMC8952336 DOI: 10.3390/microorganisms10030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022] Open
Abstract
Integrated quantitative descriptions of the transmission of β-lactam-resistant Escherichia coli (BR-EC) from commercial beef products to consumers are not available. Here, a quantitative microbial exposure assessment model was established to simulate the fate of BR-EC in a farm-to-fork continuum and provide an estimate of BR-EC exposure among beef consumers in the U.S. The model compared the per-serving exposures from the consumption of intact beef cuts, non-intact beef cuts, and ground beef. Additionally, scenario analysis was performed to evaluate the relative contribution of antibiotic use during beef cattle production to the level of human exposure to BR-EC. The model predicted mean numbers of BR-EC of 1.7 × 10-4, 8.7 × 10-4, and 6.9 × 10-1 CFU/serving for intact beef cuts, non-intact beef cuts, and ground beef, respectively, at the time of consumption. Sensitivity analyses using the baseline model suggested that factors related to sectors along the supply chain, i.e., feedlots, processing plants, retailers, and consumers, were all important for controlling human exposure to BR-EC. Interventions at the processing and post-processing stages are expected to be most effective. Simulation results showed that a decrease in antibiotic use among beef cattle might be associated with a reduction in exposure to BR-EC from beef consumption. However, the absolute reduction was moderate, indicating that the effectiveness of restricting antibiotic use as a standalone strategy for mitigating human exposure to BR-EC through beef consumption is still uncertain. Good cooking and hygiene practices at home and advanced safety management practices in the beef processing and post-processing continuum are more powerful approaches for reducing human exposure to antibiotic-resistant bacteria in beef products.
Collapse
Affiliation(s)
- Yangjunna Zhang
- Institute of Food Science and Engineering, Hangzhou Medical College, Hangzhou 310013, China;
| | - John W. Schmidt
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Terrance M. Arthur
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Tommy L. Wheeler
- United States Department of Agriculture, Agricultural Research Service, Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE 68933, USA; (J.W.S.); (T.M.A.); (T.L.W.)
| | - Qi Zhang
- Department of Mathematics and Statistics, College of Engineering and Physical Sciences, University of New Hampshire, Durham, NH 03824, USA;
| | - Bing Wang
- Department of Food Science and Technology, College of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
2
|
Botta C, Coisson JD, Ferrocino I, Colasanto A, Pessione A, Cocolin L, Arlorio M, Rantsiou K. Impact of Electrolyzed Water on the Microbial Spoilage Profile of Piedmontese Steak Tartare. Microbiol Spectr 2021; 9:e0175121. [PMID: 34787437 PMCID: PMC8597643 DOI: 10.1128/spectrum.01751-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
A low initial contamination level of the meat surface is the sine qua non to extend the subsequent shelf life of ground beef for as long as possible. Therefore, the short- and long-term effects of a pregrinding treatment with electrolyzed water (EW) on the microbiological and physicochemical features of Piedmontese steak tartare were here assessed on site, by following two production runs through storage under vacuum packaging conditions at 4°C. The immersion of muscle meat in EW solution at 100 ppm of free active chlorine for 90 s produced an initial surface decontamination with no side effects or compositional modifications, except for an external color change that was subsequently masked by the grinding step. However, the initially measured decontamination was no longer detectable in ground beef, perhaps due to a quick recovery by bacteria during the grinding step from the transient oxidative stress induced by the EW. We observed different RNA-based metataxonomic profiles and metabolomic biomarkers (volatile organic compounds [VOCs], free amino acids [FAA], and biogenic amines [BA]) between production runs. Interestingly, the potentially active microbiota of the meat from each production run, investigated through operational taxonomic unit (OTU)-, oligotyping-, and amplicon sequence variant (ASV)-based bioinformatic pipelines, differed as soon as the early stages of storage, whereas microbial counts and biomarker dynamics were significantly distinguishable only after the expiration date. Higher diversity, richness, and abundance of Streptococcus organisms were identified as the main indicators of the faster spoilage observed in one of the two production runs, while Lactococcus piscium development was the main marker of shelf life end in both production runs. IMPORTANCE Treatment with EW prior to grinding did not result in an effective intervention to prolong the shelf life of Piedmontese steak tartare. Our RNA-based approach clearly highlighted a microbiota that changed markedly between production runs but little during the first shelf life stages. Under these conditions, an early metataxonomic profiling might provide the best prediction of the microbiological fate of each batch of the product.
Collapse
Affiliation(s)
- C. Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - J. D. Coisson
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - I. Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - A. Colasanto
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - A. Pessione
- Laemmegroup S.r.l. a Tentamus Company, Moncalieri, Italy
| | - L. Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| | - M. Arlorio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Novara, Italy
| | - K. Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Turin, Italy
| |
Collapse
|
3
|
James C, Dixon R, Talbot L, James SJ, Williams N, Onarinde BA. Assessing the Impact of Heat Treatment of Food on Antimicrobial Resistance Genes and Their Potential Uptake by Other Bacteria-A Critical Review. Antibiotics (Basel) 2021; 10:1440. [PMID: 34943652 PMCID: PMC8698031 DOI: 10.3390/antibiotics10121440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The dissemination of antibiotic resistance genes (ARGs) is a global health concern. This study identifies and critically reviews the published evidence on whether cooking (heating) food to eliminate bacterial contamination induces sufficient damage to the functionality of ARGs. Overall, the review found that there is evidence in the literature that Antimicrobial Resistant (AMR) bacteria are no more heat resistant than non-AMR bacteria. Consequently, recommended heat treatments sufficient to kill non-AMR bacteria in food (70 °C for at least 2 min, or equivalent) should be equally effective in killing AMR bacteria. The literature shows there are several mechanisms through which functional genes from AMR bacteria could theoretically persist in heat-treated food and be transferred to other bacteria. The literature search found sparce published evidence on whether ARGs may actually persist in food after effective heat treatments, and whether functional genes can be transferred to other bacteria. However, three publications have demonstrated that functional ARGs in plasmids may be capable of persisting in foods after effective heat treatments. Given the global impact of AMR, there is clearly a need for further practical research on this topic to provide sufficient evidence to fully assess whether there is a risk to human health from the persistence of functional ARGs in heat-treated and cooked foods.
Collapse
Affiliation(s)
- Christian James
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| | - Ronald Dixon
- Joseph Banks Laboratories, School of Life Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | - Luke Talbot
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
| | - Stephen J. James
- Food Refrigeration & Process Engineering Research Centre (FRPERC), Grimsby Institute, Nuns Corner, Grimsby DN34 5BQ, UK; (L.T.); (S.J.J.)
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| | - Nicola Williams
- Institute of Infection, Veterinary and Ecological Sciences, Leahurst Campus, University of Liverpool, Neston CH64 7TE, UK;
| | - Bukola A. Onarinde
- National Centre for Food Manufacturing (NCFM), University of Lincoln, Park Road, Holbeach PE12 7PT, UK;
| |
Collapse
|
4
|
Zhang Y, Schmidt JW, Arthur TM, Wheeler TL, Wang B. A Comparative Quantitative Assessment of Human Exposure to Various Antimicrobial-Resistant Bacteria among U.S. Ground Beef Consumers. J Food Prot 2021; 84:736-759. [PMID: 33270822 DOI: 10.4315/jfp-20-154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Consumption of animal-derived meat products is suspected as an important exposure route to antimicrobial resistance, as the presence of antimicrobial-resistant bacteria (ARB) along the beef supply chain is well documented. A retail-to-fork quantitative exposure assessment was established to compare consumers' exposure to various ARB due to the consumption of ground beef with and without "raised without antibiotics" claims and to inform potential exposure mitigation strategies related to consumer practices. The microbial agents evaluated included Escherichia coli, tetracycline-resistant (TETr) E. coli, third-generation cephalosporin-resistant E. coli,Salmonella enterica, TETrS. enterica, third-generation cephalosporin-resistant S. enterica, nalidixic acid-resistant S. enterica, Enterococcus spp., TETrEnterococcus spp., erythromycin-resistant Enterococcus spp., Staphylococcus aureus, and methicillin-resistant S. aureus. The final model outputs were the probability of exposure to at least 0 to 6 log CFU microorganisms per serving of ground beef at the time of consumption. It was estimated that tetracycline resistance was more prevalent in ground beef compared with other types of resistance, among which the predicted average probability of ingesting TETrEnterococcus was highest (6.2% of ingesting at least 0 log CFU per serving), followed by TETrE. coli (3.1%) and TETrSalmonella (0.0001%), given common product purchase preferences and preparation behaviors among beef consumers in the United States. The effectiveness of consumer-related interventions was estimated by simulating the differences in exposure as a result of changes in consumer practices in purchasing, handling, and preparing ground beef. The results indicated that proper use of recommended safe cooking and food preparation practices mitigates ARB exposure more effectively than choosing raised without antibiotics compared with conventional beef. HIGHLIGHTS
Collapse
Affiliation(s)
- Yangjunna Zhang
- Department of Food Science and Technology, Institute of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
| | - John W Schmidt
- Roman L. Hruska U.S. Meat Animal Research Center, U.S. Department of Agriculture, Clay Center, Nebraska 68933, USA
| | - Terrance M Arthur
- Roman L. Hruska U.S. Meat Animal Research Center, U.S. Department of Agriculture, Clay Center, Nebraska 68933, USA
| | - Tommy L Wheeler
- Roman L. Hruska U.S. Meat Animal Research Center, U.S. Department of Agriculture, Clay Center, Nebraska 68933, USA
| | - Bing Wang
- Department of Food Science and Technology, Institute of Agricultural Sciences and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska 68588.,(ORCID: https://orcid.org/0000-0003-0174-2252 [B.W.])
| |
Collapse
|