1
|
Mohammed S, Koekkoek J, Hodgson IOA, de Boer J, Lamoree M. Silicone wristband as a sampling tool for insecticide exposure assessment of vegetable farmers. ENVIRONMENTAL RESEARCH 2023; 237:117094. [PMID: 37683782 DOI: 10.1016/j.envres.2023.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
The use of passive sampling devices (PSDs) as an appropriate alternative to conventional methods of assessing human exposure to environmental toxicants was studied. One-time purposive sampling by a silicone wristband was used to measure insecticide residues in 35 volunteer pepper farmers in the Vea irrigation scheme in the Guinea savannah and the Weija irrigation scheme in the coastal savannah ecological zones of Ghana. A GC-MS/MS method was developed and validated for quantifying 18 insecticides used by farmers in Ghana. Limits of detection (LODs) and quantitation (LOQs) ranged from 0.64 to 67 and 2.2-222 ng per wristband, respectively. The selected insecticides showed a range of concentrations in the various silicone wristbands from not detected to 27 μg/wristband. The concentrations of 13 insecticides were above their LOQs. Chlorpyrifos had the highest detection frequencies and concentrations, followed by cyhalothrin and then allethrin. This study shows that silicone wristbands can be used to detect individual insecticide exposures, providing a valuable tool for future exposure studies. Ghanaian vegetable farmers are substantially exposed to insecticides. Hence, the use of appropriate personal protective equipment is recommended.
Collapse
Affiliation(s)
- Saada Mohammed
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands; CSIR Water Research Institute, P.O. Box 38, Achimota, Ghana.
| | - Jacco Koekkoek
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | | | - Jacob de Boer
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Marja Lamoree
- Vrije Universiteit, Amsterdam Institute for Life and Environment, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Li BY, Zhang JW, Zheng Y, Wang D, Wan CF, Du SS. Insecticidal and Repellent Effects of the Essential Oils Extract from Zanthoxylum myriacanthum against Three Storage Pests. Chem Biodivers 2023; 20:e202200493. [PMID: 36627746 DOI: 10.1002/cbdv.202200493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
The co-storage of two or more Chinese herbal medicines can effectively prevent the herbs from the damage by pests. Thus, it is important to protect herbs and crops to study Chinese herbal medicines and their medicinal components against storage pests. This study aimed to assess the insecticidal activities and repellent effect of essential oils (EOs) extracted from fruits at different periods from Zanthoxylum myriacanthum Wall. ex Hook. f. (1 h, 2 h, 3-5 h and 5-7 h), and their major compounds against three kinds of pests (Tribolium castaneum, Lasioderma serricorne, and Liposcelis bostrychophila). The results of gas chromatography-mass spectrometer analysis revealed homomyrtenol (22.56 %, 28.01 %, 28.48 % and 28.41 %, respectively) and p-cymene (30.58 %, 13.95 %, 24.97 % and 6.85 %, respectively) were the common major compounds of the EOs at 1 h, 2 h, 3-5 h, and 5-7 h. m-Cymene contents in EOs of fruits, 1 h, 2 h and 3-5 h were 3.85 %, 0.95 %, 6.71 %, and 6.15 %, respectively. According to Principal component analysis (PCA), the composition of fruits' EO was significantly different from other EOs due to the different collection times. The bio-assays showed that EOs and major compounds were toxic to all three pests, but the fumigation effect on L. bostrychophila was not noticeable. EOs extracted at different times had a repellent effect on the three pests at the highest concentration (78.63 nL/cm2 ), but the attractive effects of the EOs of 3-5 h, 5-7 h, and p-cymene were observed at the low concentrations (3.15, 0.63 and 0.13 nL/cm2 ). Our results suggest that Z. myriacanthum have the potential to be developed as biological insecticides.
Collapse
Affiliation(s)
- Bo-Ya Li
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100091, P. R. China
- Department of Biomedical Science, Beijing City University, No. 269 North 4th Ring Middle Road, Haidian District, Beijing, 100191, P. R. China
| | - Jia-Wei Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100091, P. R. China
| | - Yu Zheng
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100091, P. R. China
| | - Dan Wang
- Department of Biomedical Science, Beijing City University, No. 269 North 4th Ring Middle Road, Haidian District, Beijing, 100191, P. R. China
| | - Cheng-Fang Wan
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, 2 Xinkang Street, Dewai, Beijing, 100088, P. R. China
| | - Shu-Shan Du
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100091, P. R. China
| |
Collapse
|
3
|
Samare-Najaf M, Samareh A, Namavar Jahromi B, Jamali N, Vakili S, Mohsenizadeh M, Clark CCT, Abbasi A, Khajehyar N. Female infertility caused by organophosphates: an insight into the latest biochemical and histomorphological findings. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2120897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Sina Vakili
- Infertility Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Cain C. T. Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Ali Abbasi
- Department of Biochemistry and Biophysics, Babol University of Medical Sciences, Babol, Iran
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| |
Collapse
|
4
|
Suwannarin N, Prapamontol T, Isobe T, Nishihama Y, Mangklabruks A, Pantasri T, Chantara S, Naksen W, Nakayama SF. Association between Haematological Parameters and Exposure to a Mixture of Organophosphate and Neonicotinoid Insecticides among Male Farmworkers in Northern Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10849. [PMID: 34682593 PMCID: PMC8535230 DOI: 10.3390/ijerph182010849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Exposure to insecticides may result in various health problems. This study investigated the association between haematological parameters and exposure to a mixture of organophosphate (OP) and neonicotinoid (NEO) insecticides among male farmworkers in Fang district, Chiang Mai province, northern Thailand. Concentrations of urinary dialkylphosphates, non-specific metabolites of OPs, and NEOs and their metabolites and haematological parameters were measured in 143 male farmworkers. The Bayesian kernel machine regression model was employed to evaluate the associations. Exposure to a mixture of insecticides was significantly associated with the mean corpuscular haemoglobin concentration (MCHC) when the concentrations of all the compounds and their metabolites were at the 60th percentile or higher compared with the 50th percentile. Furthermore, exposure to clothianidin (CLO) showed a decreasing association with MCHC when all the other insecticides were at their mean concentrations. CLO was the most likely compound to reduce MCHC, and this was confirmed by sensitivity analysis. These findings suggest that exposure to NEO insecticides, especially CLO, affects the haematological status relating to haemoglobin parameters.
Collapse
Affiliation(s)
- Neeranuch Suwannarin
- Ph.D. Degree Program in Environmental Science, Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Environmental and Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| | - Tippawan Prapamontol
- Environmental and Occupational Health Sciences and Non-Communicable Diseases Center of Excellence, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tomohiko Isobe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| | - Yukiko Nishihama
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| | - Ampica Mangklabruks
- Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Tawiwan Pantasri
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Shoji F. Nakayama
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan; (T.I.); (Y.N.)
| |
Collapse
|
5
|
Bhatt P, Huang Y, Zhan H, Chen S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front Microbiol 2019; 10:1778. [PMID: 31428072 PMCID: PMC6687851 DOI: 10.3389/fmicb.2019.01778] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrethroids are broad-spectrum insecticides and presence of chiral carbon differentiates among various forms of pyrethroids. Microbial approaches have emerged as a popular solution to counter pyrethroid toxicity to marine life and mammals. Bacterial and fungal strains can effectively degrade pyrethroids into non-toxic compounds. Different strains of bacteria and fungi such as Bacillus spp., Raoultella ornithinolytica, Psudomonas flourescens, Brevibacterium sp., Acinetobactor sp., Aspergillus sp., Candida sp., Trichoderma sp., and Candia spp., are used for the biodegradation of pyrethroids. Hydrolysis of ester bond by enzyme esterase/carboxyl esterase is the initial step in pyrethroid biodegradation. Esterase is found in bacteria, fungi, insect and mammalian liver microsome cells that indicates its hydrolysis ability in living cells. Biodegradation pattern and detected metabolites reveal microbial consumption of pyrethroids as carbon and nitrogen source. In this review, we aim to explore pyrethroid degrading strains, enzymes and metabolites produced by microbial strains. This review paper covers in-depth knowledge of pyrethroids and recommends possible solutions to minimize their environmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|