1
|
Li JY, Xiao J, Gao M, Zhou HF, Fan H, Sun F, Cui DD. IRF/Type I IFN signaling serves as a valuable therapeutic target in the pathogenesis of inflammatory bowel disease. Int Immunopharmacol 2021; 92:107350. [PMID: 33444921 DOI: 10.1016/j.intimp.2020.107350] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 01/03/2023]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by unresolved colitis and epithelial injury. Intestinal microbiota and its interaction with immune system are critical etiologic factors. In response to gut virome and bacteria derived nucleic acid, interferon regulatory factors (IRFs) are activated to promote the production of cytokines, including type I interferons (IFN-Is), to help maintain intestinal homeostasis under both physiological and pathophysiological conditions. However, derailed IRF/IFN-I pathway other-wisely contributes to the progression of IBD with distinct IRF member exerting differential regulatory effect. Here, we summarize the recent advances regarding the role of IRF/IFN-I pathway in the development of IBD. We emphasize that IFN-I is a double-edged sword in IBD pathogenesis, as IFN-Is are protective in acute colitis while becoming pro-inflammatory during the chronic recovery phase. Besides, the functional outcome of IRFs is diverse and complex, which hinges on the cell types affected and the presence of other immune mediators. All in all, IRF/IFN-I pathway serves as a versatile regulator in IBD pathogenesis and holds the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Gao
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Dan-Dan Cui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Mammadli M, Huang W, Harris R, Sultana A, Cheng Y, Tong W, Pu J, Gentile T, Dsouza S, Yang Q, Bah A, August A, Karimi M. Targeting Interleukin-2-Inducible T-Cell Kinase (ITK) Differentiates GVL and GVHD in Allo-HSCT. Front Immunol 2020; 11:593863. [PMID: 33324410 PMCID: PMC7726260 DOI: 10.3389/fimmu.2020.593863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/29/2020] [Indexed: 01/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence via graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication. Novel treatment strategies are needed which allow preservation of GVL effects without causing GVHD. Using murine models, we show that targeting IL-2-inducible T cell kinase (ITK) in donor T cells reduces GVHD while preserving GVL effects. Both CD8+ and CD4+ donor T cells from Itk-/- mice produce less inflammatory cytokines and show decrease migration to GVHD target organs such as the liver and small intestine, while maintaining GVL efficacy against primary B-cell acute lymphoblastic leukemia (B-ALL). Itk-/- T cells exhibit reduced expression of IRF4 and decreased JAK/STAT signaling activity but upregulating expression of Eomesodermin (Eomes) and preserve cytotoxicity, necessary for GVL effect. Transcriptome analysis indicates that ITK signaling controls chemokine receptor expression during alloactivation, which in turn affects the ability of donor T cells to migrate to GVHD target organs. Our data suggest that inhibiting ITK could be a therapeutic strategy to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States.,Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Aisha Sultana
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ying Cheng
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jeffery Pu
- Department of Hematology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Teresa Gentile
- Department of Hematology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Shanti Dsouza
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Qi Yang
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Lorenz G, Moschovaki-Filippidou F, Würf V, Metzger P, Steiger S, Batz F, Carbajo-Lozoya J, Koziel J, Schnurr M, Cohen CD, Schmaderer C, Anders HJ, Lindenmeyer M, Lech M. IFN Regulatory Factor 4 Controls Post-ischemic Inflammation and Prevents Chronic Kidney Disease. Front Immunol 2019; 10:2162. [PMID: 31632388 PMCID: PMC6781770 DOI: 10.3389/fimmu.2019.02162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/28/2019] [Indexed: 01/21/2023] Open
Abstract
Ischemia reperfusion injury (IRI) of the kidney results in interferon regulatory factor 4 (IRF4)–mediated counter-regulation of the acute inflammatory response. Beyond that, IRF4 exerts important functions in controlling the cytokine milieu, T-cell differentiation, and macrophage polarization. The latter has been implicated in tissue remodeling. It therefore remains elusive what the role of IRF4 is in terms of long-term outcome following IRI. We hypothesized that an inability to resolve chronic inflammation in Irf4−/− mice would promote chronic kidney disease (CKD) progression. To evaluate the effects of IRF4 in chronic upon acute injury in vivo, a mouse model of chronic injury following acute IRI was employed. The expression of Irf4 increased within 10 days after IRI in renal tissue. Both mRNA and protein levels remained high up to 5 weeks upon IRI, suggesting a regulatory function in the chronic phase. Mice deficient in IRF4 display increased tubular cell loss and defective clearance of infiltrating macrophages. These phenomena were associated with increased expression of pro-inflammatory macrophage markers together with reduced expression of alternatively activated macrophage markers. In addition, IRF4-deficient mice showed defective development of alternatively activated macrophages. Hints of a residual M1 macrophage signature were further observed in human biopsy specimens of patients with hypertensive nephropathy vs. living donor specimens. Thus, IRF4 restricts CKD progression and kidney fibrosis following IRI, potentially by enabling M2 macrophage polarization and restricting a Th1 cytokine response. Deteriorated alternative macrophage subpopulations in Irf4−/− mice provoke chronic intrarenal inflammation, tubular epithelial cell loss, and renal fibrosis in the long course after IRI in mice. The clinical significance of these finding for human CKD remains uncertain at present and warrants further studies.
Collapse
Affiliation(s)
- Georg Lorenz
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany.,Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Foteini Moschovaki-Filippidou
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Vivian Würf
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Philipp Metzger
- Division of Clinical Pharmacology, Department of Medicine IV, Center of Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Stefanie Steiger
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Falk Batz
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Javier Carbajo-Lozoya
- Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Joanna Koziel
- Microbiology Department, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Max Schnurr
- Division of Clinical Pharmacology, Department of Medicine IV, Center of Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Clemens D Cohen
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Hans-Joachim Anders
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| | - Maja Lindenmeyer
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maciej Lech
- Department of Nephrology, Klinikum der Ludwig-Maximilians-Universität München, Medizinische Klinik und Poliklinik IV, Munich, Germany
| |
Collapse
|
4
|
Lee T, Lee E, Irwin R, Lucas PC, McCabe LR, Parameswaran N. β-Arrestin-1 deficiency protects mice from experimental colitis. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1114-23. [PMID: 23395087 DOI: 10.1016/j.ajpath.2012.12.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 12/10/2012] [Accepted: 12/24/2012] [Indexed: 12/31/2022]
Abstract
β-Arrestins are intracellular scaffolding proteins that modulate specific cell signaling pathways. Recent studies, in both cell culture and in vivo models, have demonstrated an important role for β-arrestin-1 in inflammation. However, the role of β-arrestin-1 in the pathogenesis of inflammatory bowel disease (IBD) is not known. Our goal was to investigate the role of β-arrestin-1 in IBD using mouse models of colitis. To this end, we subjected wild-type (WT) and β-arrestin-1 knockout (β-arr-1(-/-)) mice to colitis induced by trinitrobenzenesulfonic acid or dextran sulfate sodium and examined the clinical signs, gross pathology, and histopathology of the colon, as well as inflammatory components. The β-arr-1(-/-) mice displayed significantly attenuated colitis, compared with WT mice, in both models. Consistent with the phenotypic observations, histological examination of the colon revealed attenuated disease pathology in the β-arr-1(-/-) mice. Our results further demonstrate that β-arr-1(-/-) mice are deficient in IL-6 expression in the colon, but have higher expression of the anti-inflammatory IL-10 family of cytokines. Our results also demonstrate diminished ERK and NFκB pathways in the colons of β-arr-1(-/-) mice, compared with WT mice. Taken together, our results demonstrate that decreased IL-6 production and enhanced IL-10 and IL-22 production in β-arrestin-1-deficient mice likely lead to attenuated gut inflammation.
Collapse
Affiliation(s)
- Taehyung Lee
- Division of Human Pathology, Department of Physiology, Michigan State University, East Lansing, Michigan, USA
| | | | | | | | | | | |
Collapse
|
5
|
Xu WD, Pan HF, Ye DQ, Xu Y. Targeting IRF4 in autoimmune diseases. Autoimmun Rev 2012; 11:918-24. [DOI: 10.1016/j.autrev.2012.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
|
6
|
Xia C, Ya-dong G, Jiong Y. Elevated Interferon Regulatory Factor 4 Levels in Patients with Allergic Asthma. J Asthma 2012; 49:441-9. [DOI: 10.3109/02770903.2012.674998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Hundorfean G, Neurath MF, Mudter J. Functional relevance of T helper 17 (Th17) cells and the IL-17 cytokine family in inflammatory bowel disease. Inflamm Bowel Dis 2012; 18:180-6. [PMID: 21381156 DOI: 10.1002/ibd.21677] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 01/16/2011] [Indexed: 12/09/2022]
Abstract
The recent discovery and characterization of T helper 17 cells (Th17) and their signature cytokines (IL-17) represents a hallmark in T-cell immunobiology by providing a new distinctive pathway for the communication between adaptive and innate immunity. From the six members of the IL-17 cytokine family presently known, at least two have evident proinflammatory qualities and are involved in several chronic inflammatory disorders, including inflammatory bowel disease (IBD). IL-17A and IL-17F are abundantly found in inflamed IBD mucosa, suggesting their pivotal role in IBD. However, the precise implication of IL-17 cytokine family members in IBD pathogenesis and the mechanisms regulating their secretion are incompletely understood. Importantly, recent findings suggest that beyond IL-17 production-Th17 cells may secret a plethora of other effector cytokines such as IL-21, IL-22, and IL-9- which is in part induced by its own IL-9 production. However, the use of anti-IL-17 therapeutic strategies in experimental models of chronic inflammation results in disease-ameliorating effects suggesting their potential use in IBD patients. In this review article we discuss the latest findings on the role of Th17 cells and IL-17 family members in IBD immunopathology, as well as research perspectives.
Collapse
|
8
|
Latella G, Fiocchi C, Caprili R. News from the "5th International Meeting on Inflammatory Bowel Diseases" CAPRI 2010. J Crohns Colitis 2010; 4:690-702. [PMID: 21122584 DOI: 10.1016/j.crohns.2010.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 08/22/2010] [Indexed: 02/06/2023]
Abstract
At the "5th International Meeting on Inflammatory Bowel Diseases selected topics of inflammatory bowel disease (IBD), including the environment, genetics, the gut flora, the cell response and immunomodulation were discussed in order to better understand specific clinical and therapeutic aspects. The incidence of IBD continues to rise, both in low and in high-incidence areas. It is believed that factors associated with 'Westernization' may be conditioning the expression of these disorders. The increased incidence of IBD among migrants from low-incidence to high-incidence areas within the same generation suggests a strong environmental influence. The development of genome-wide association scanning (GWAS) technologies has lead to the discovery of more than 100 IBD loci. Some, as the Th 17 pathway genes, are shared between Crohn's disease (CD) and ulcerative colitis (UC), while other are IBD subtype-specific (autophagy genes, epithelial barrier genes). Disease-specific therapies targeting these pathways should be developed. Epigenetic regulation of the inflammatory response also appears to play an important role in the pathogenesis of IBD. The importance of gut flora in intestinal homeostasis and inflammation was reinforced, the concepts of eubiosis and dysbiosis were introduced, and some strategies for reverting dysbiosis to a homeostatic state of eubiosis were proposed. The current status of studies on the human gut microbiota metagenome, metaprotome, and metabolome was also presented. The cell response in inflammation, including endoplasmic reticulum (ER) stress responses, autophagy and inflammasome-dependent events were related to IBD pathogenesis. It was suggested that inflammation-associated ER stress responses may be a common trait in the pathogenesis of various chronic immune and metabolic diseases. How innate and adaptive immunity signaling events can perpetuate chronic inflammation was discussed extensively. Signal transduction pathways provide intracellular mechanisms by which cells respond and adapt to multiple environmental stresses. The identification of these signals has led to a greater mechanistic understanding of IBD pathogenesis and pointed to potentially new therapeutic targets. A critical analysis of clinical trials and of risk-benefit of biological therapy was presented. The problem of Epstein-Barr virus (EBV) and lymphoma in IBD was extensively discussed. Lymphomas can develop in intestinal segments affected by IBD and are in most cases associated with EBV. The reasons of treatment failure were also analyzed both from basic and clinical points of view. Two very interesting presentations on the integration of research and clinical care in the near future closed the meeting. These presentations were focused on macrotrends affecting healthcare delivery and research, and the need to innovate traditional infrastructures to deal with these changing trends as well as new opportunities to accelerate scientific knowledge.
Collapse
Affiliation(s)
- Giovanni Latella
- Department of Internal Medicine, GI Unit, University of L'Aquila, L'Aquila, Italy.
| | | | | |
Collapse
|