1
|
Lin G, Wang J, Yang YG, Zhang Y, Sun T. Advances in dendritic cell targeting nano-delivery systems for induction of immune tolerance. Front Bioeng Biotechnol 2023; 11:1242126. [PMID: 37877041 PMCID: PMC10593475 DOI: 10.3389/fbioe.2023.1242126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Dendritic cells (DCs) are the major specialized antigen-presenting cells (APCs), play a key role in initiating the body's immune response, maintain the balance of immunity. DCs can also induce immune tolerance by rendering effector T cells absent and anergy, and promoting the expansion of regulatory T cells. Induction of tolerogenic DCs has been proved to be a promising strategy for the treatment of autoimmune diseases, organ transplantation, and allergic diseases by various laboratory researches and clinical trials. The development of nano-delivery systems has led to advances in situ modulation of the tolerance phenotype of DCs. By changing the material composition, particle size, zeta-potential, and surface modification of nanoparticles, nanoparticles can be used for the therapeutic payloads targeted delivery to DCs, endowing them with great potential in the induction of immune tolerance. This paper reviews how nano-delivery systems can be modulated for targeted delivery to DCs and induce immune tolerance and reviews their potential in the treatment of autoimmune diseases, organ transplantation, and allergic diseases.
Collapse
Affiliation(s)
- Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, China
| |
Collapse
|
2
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
3
|
Li Y, Liu J, Zhou H, Liu J, Xue X, Wang L, Ren S. Liquid chromatography-mass spectrometry method for discovering the metabolic markers to reveal the potential therapeutic effects of naringin on osteoporosis. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1194:123170. [DOI: 10.1016/j.jchromb.2022.123170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
4
|
Han L, Du M, Ren F, Mao X. Milk Polar Lipids Supplementation to Obese Rats During Pregnancy and Lactation Benefited Skeletal Outcomes of Male Offspring. Mol Nutr Food Res 2021; 65:e2001208. [PMID: 34008920 DOI: 10.1002/mnfr.202001208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/17/2021] [Indexed: 01/14/2023]
Abstract
SCOPE Dietary intervention to obese dams during pregnancy and lactation period provides avenues for improving metabolic profiles of the offspring. In the current study, the effects of polar lipids-enriched milk fat globule membrane (MFGM-PL) supplementation to obese dams during pregnancy and lactation on the skeletal outcomes of male offspring are investigated. METHODS AND RESULTS MFGM-PL is supplemented to obese rats induced by high-fat diet during pregnancy and lactation at a dose of 400 mg kg-1 body weight. Results show that maternal MFGM-PL supplementation significantly ameliorates the stunted skeletal growth of male offspring at weaning. In adulthood offspring, maternal MFGM-PL supplementation protects against high-fat diet (HFD)-induced bone microstructure degeneration and bone marrow adipocyte accumulation. Further investigation shows that maternal supplementation of MFGM-PL significantly ameliorates insulin resistance and increases the mRNA expression of growth hormone releasing hormone (GHRH) in the hypothalamus of HFD offspring. The growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis is subsequently enhanced in MFGM-PL + HFD offspring, contributing to the beneficial skeletal outcomes. CONCLUSION The findings suggest that maternal MFGM-PL supplementation of HFD dam during pregnancy and lactation shows desirable effects on fetal skeletal development, with lasting beneficial programming impacts on skeletal outcomes of offspring.
Collapse
Affiliation(s)
- Lihua Han
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Fazheng Ren
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xueying Mao
- Key Laboratory of Precision, Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
5
|
Morini R, Bizzotto M, Perrucci F, Filipello F, Matteoli M. Strategies and Tools for Studying Microglial-Mediated Synapse Elimination and Refinement. Front Immunol 2021; 12:640937. [PMID: 33708226 PMCID: PMC7940197 DOI: 10.3389/fimmu.2021.640937] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/01/2021] [Indexed: 01/14/2023] Open
Abstract
The role of microglia in controlling synapse homeostasis is becoming increasingly recognized by the scientific community. In particular, the microglia-mediated elimination of supernumerary synapses during development lays the basis for the correct formation of neuronal circuits in adulthood, while the possible reactivation of this process in pathological conditions, such as schizophrenia or Alzheimer's Disease, provides a promising target for future therapeutic strategies. The methodological approaches to investigate microglial synaptic engulfment include different in vitro and in vivo settings. Basic in vitro assays, employing isolated microglia and microbeads, apoptotic membranes, liposomes or synaptosomes allow the quantification of the microglia phagocytic abilities, while co-cultures of microglia and neurons, deriving from either WT or genetically modified mice models, provide a relatively manageable setting to investigate the involvement of specific molecular pathways. Further detailed analysis in mice brain is then mandatory to validate the in vitro assays as representative for the in vivo situation. The present review aims to dissect the main technical approaches to investigate microglia-mediated phagocytosis of neuronal and synaptic substrates in critical developmental time windows.
Collapse
Affiliation(s)
- Raffaella Morini
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Matteo Bizzotto
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabio Perrucci
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Fabia Filipello
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neurocenter, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.,Consiglio Nazionale Delle Ricerche (CNR), Institute of Neuroscience - URT Humanitas, Rozzano, Italy
| |
Collapse
|
6
|
Hatakeyama J, Anan H, Hatakeyama Y, Matsumoto N, Takayama F, Wu Z, Matsuzaki E, Minakami M, Izumi T, Nakanishi H. Induction of bone repair in rat calvarial defects using a combination of hydroxyapatite with phosphatidylserine liposomes. J Oral Sci 2019; 61:111-118. [DOI: 10.2334/josnusd.17-0488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Junko Hatakeyama
- Section of Operative Dentistry and Endodontology, Fukuoka Dental College
| | - Hisashi Anan
- Section of Operative Dentistry and Endodontology, Fukuoka Dental College
| | - Yuji Hatakeyama
- Section of Molecular Cell Biology and Oral Anatomy, Fukuoka Dental College
| | | | - Fumiko Takayama
- Departments of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University
| | - Zhou Wu
- Departments of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University
| | - Etsuko Matsuzaki
- Section of Operative Dentistry and Endodontology, Fukuoka Dental College
| | - Masahiko Minakami
- Section of Operative Dentistry and Endodontology, Fukuoka Dental College
| | - Toshio Izumi
- Section of Operative Dentistry and Endodontology, Fukuoka Dental College
| | - Hiroshi Nakanishi
- Departments of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University
| |
Collapse
|
7
|
Kao YF, Wu YHS, Chou CH, Fu SG, Liu CW, Chai HJ, Chen YC. Manufacture and characterization of anti-inflammatory liposomes from jumbo flying squid (Dosidicus gigas) skin phospholipid extraction. Food Funct 2018; 9:3986-3996. [PMID: 29974091 DOI: 10.1039/c8fo00767e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anti-inflammation properties of marine phospholipids enriched with n-3 fatty acids contribute to anti-inflammatory and inflammation-resolving mediators. Functional squid-skin (SQ) liposomes were manufactured from squid-skin phospholipids, and their anti-inflammatory effects were investigated. SQ liposomes included phosphatidylinositol (PI), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and lysophosphatidylcholine (Lyso-PC), and had an approximate diameter of 100 mm. When RAW264.7 cells were treated with the SQ liposome, no (p > 0.05) cytotoxicity was observed below a concentration of 7.5 mg mL-1. An SQ-liposome pretreatment of lipopolysaccharide (LPS)-induced RAW 264.7 cells showed decreased (p < 0.05) prostaglandin E2 (PGE2), nitric oxide (NO), interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α). The engulfment of SQ liposomes by the RAW264.7 cells resulted in lower (p < 0.05) LPS-induced intracellular levels of reactive oxygen species. Furthermore, an SQ-liposome administration ameliorated (p < 0.05) carrageenan-induced paw edema in mice. SQ liposomes may act via apoptotic mimicry to elicit the resolution of inflammation and prevent chronic inflammation-related diseases.
Collapse
Affiliation(s)
- Yi-Feng Kao
- Seafood Technology Division, Fisheries Research Institute, Council of Agriculture, Executive Yuan, Keelung City 202, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Gómez-Ramírez S, Brilli E, Tarantino G, Muñoz M. Sucrosomial ® Iron: A New Generation Iron for Improving Oral Supplementation. Pharmaceuticals (Basel) 2018; 11:E97. [PMID: 30287781 PMCID: PMC6316120 DOI: 10.3390/ph11040097] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 01/28/2023] Open
Abstract
Iron deficiency (ID) is usually treated with oral iron salts, but up to 50% of patients complain of gastrointestinal side effects, leading to reduced treatment compliance. Intravenous (IV) iron formulations are increasingly safer, but there is still a risk of infusion and hypersensitivity reactions and the need for a venous access and infusion monitoring. Sucrosomial® iron (SI) is an innovative oral iron formulation in which ferric pyrophosphate is protected by a phospholipid bilayer plus a sucrester matrix (sucrosome), which is absorbed through para-cellular and trans-cellular routes (M cells). This confers SI unique structural, physicochemical and pharmacokinetic characteristics, together with high iron bioavailability and excellent gastrointestinal tolerance. The analysis of available evidence supports oral SI iron as a valid option for ID treatment, which is more efficacious and better tolerated than oral iron salts. SI has also demonstrated similar effectiveness, with lower risks, in patients usually receiving IV iron (e.g., chronic kidney disease, cancer, bariatric surgery). Thus, oral SI emerges as a most valuable first option for treating ID, even more for subjects with intolerance to or inefficacy of iron salts. Moreover, SI should be also considered as an alternative to IV iron for initial and/or maintenance treatment in different patient populations.
Collapse
Affiliation(s)
- Susana Gómez-Ramírez
- Department of Internal Medicine, University Hospital Virgen de la Victoria. Campus de Teatinos, 2010 Málaga, Spain.
| | - Elisa Brilli
- Scientific Department, Alesco S.r.l. Via delle Lenze, 216/B, 56122 Pisa, Italy.
| | - Germano Tarantino
- Scientific Department, Pharmanutra S.p.A. Via delle Lenze, 216/B, 56122 Pisa, Italy.
| | - Manuel Muñoz
- Perioperative Transfusion Medicine, Department of Surgical Specialties, Biochemistry and Immunology, School of Medicine, Campus de Teatinos, 29071 Málaga, Spain.
| |
Collapse
|
9
|
Margolis MJ, Martinez M, Valencia J, Lee RK, Bhattacharya SK. Phospholipid secretions of organ cultured ciliary body. J Cell Biochem 2017; 119:2556-2566. [PMID: 28981155 DOI: 10.1002/jcb.26419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/03/2017] [Indexed: 12/24/2022]
Abstract
Homeostasis of intraocular pressure (IOP) is important for the maintenance of anterior eye anatomic integrity, minimizing pressure-associated damage to the optic nerve, and maintaining a pressure gradient for blood flow to the eye. IOP is regulated by equilibrium between aqueous humor (AH) production and its outflow. The ciliary body (CB) is thought to actively secrete AH. However, whether AH composition and in particular, its phospholipids are entirely due to CB secretion remains uncertain. Comparison of phospholipids released by cultured CB, phospholipids present within CB tissue, within AH, and within blood and serum are consistent with release of most phospholipids into the AH by the CB. Treatment of CB in culture with timolol, a non-specific beta-adrenergic antagonist, alters the release of phospholipids by CB into the media. However, dorzalamide, a carbonic anhydrase inhibitor that reduces production of AH, does not affect phospholipid release thereby suggesting timolol, which also decreases IOP through decreased AH outflow, affects other physiological homeostatic mechanisms regulating aqueous outflow. These outflow changes also affect the composition of secreted phospholipids. We present evidence that release of lipids by the CB has a prolonged survival effect on cultured primary TM cells and TM tissue.
Collapse
Affiliation(s)
- Michael J Margolis
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Mitchell Martinez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Jeffrey Valencia
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Richard K Lee
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjoy K Bhattacharya
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
10
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
11
|
Vives-Pi M, Pujol-Autonell I. What potential is there for liposomal-based nanotherapy for the treatment of Type 1 diabetes? Nanomedicine (Lond) 2015; 10:2955-2958. [PMID: 26419917 DOI: 10.2217/nnm.15.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marta Vives-Pi
- Immunology Department, CIBER of Diabetes & Associated Metabolic Diseases (CIBERDEM), Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Department, CIBER of Diabetes & Associated Metabolic Diseases (CIBERDEM), Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona, Spain
| |
Collapse
|
12
|
Affiliation(s)
- L Temmerman
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - E A L Biessen
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Debyelaan 25, Maastricht 6229 HX, The Netherlands
| |
Collapse
|
13
|
Yeo Y, Kim BK. Drug Carriers: Not an Innocent Delivery Man. AAPS JOURNAL 2015; 17:1096-104. [PMID: 26017163 DOI: 10.1208/s12248-015-9789-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/12/2015] [Indexed: 01/11/2023]
Abstract
Biomaterials used as drug carriers are often considered inactive and assumed to have no other roles than modifying pharmacokinetics and biodistribution of a drug. On the other hand, there are several examples in which the carrier materials show bioactivities in the body, which may have been underestimated or inadvertently ignored. This review highlights several examples where biomaterials used as drug carriers bring biological effects, known or newly discovered, and discusses their implications in development of new drug delivery systems.
Collapse
Affiliation(s)
- Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana, 47907, USA,
| | | |
Collapse
|
14
|
Stevenson EV, Collins-McMillen D, Kim JH, Cieply SJ, Bentz GL, Yurochko AD. HCMV reprogramming of infected monocyte survival and differentiation: a Goldilocks phenomenon. Viruses 2014; 6:782-807. [PMID: 24531335 PMCID: PMC3939482 DOI: 10.3390/v6020782] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 12/14/2022] Open
Abstract
The wide range of disease pathologies seen in multiple organ sites associated with human cytomegalovirus (HCMV) infection results from the systemic hematogenous dissemination of the virus, which is mediated predominately by infected monocytes. In addition to their role in viral spread, infected monocytes are also known to play a key role in viral latency and life-long persistence. However, in order to utilize infected monocytes for viral spread and persistence, HCMV must overcome a number of monocyte biological hurdles, including their naturally short lifespan and their inability to support viral gene expression and replication. Our laboratory has shown that HCMV is able to manipulate the biology of infected monocytes in order to overcome these biological hurdles by inducing the survival and differentiation of infected monocytes into long-lived macrophages capable of supporting viral gene expression and replication. In this current review, we describe the unique aspects of how HCMV promotes monocyte survival and differentiation by inducing a “finely-tuned” macrophage cell type following infection. Specifically, we describe the induction of a uniquely polarized macrophage subset from infected monocytes, which we argue is the ideal cellular environment for the initiation of viral gene expression and replication and, ultimately, viral spread and persistence within the infected host.
Collapse
Affiliation(s)
- Emily V Stevenson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Donna Collins-McMillen
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Jung Heon Kim
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Stephen J Cieply
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gretchen L Bentz
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Andrew D Yurochko
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|
15
|
Takayama F, Wu Z, Ma HM, Okada R, Hayashi Y, Nakanishi H. Possible involvement of aiPLA2 in the phosphatidylserine-containing liposomes induced production of PGE2 and PGD2 in microglia. J Neuroimmunol 2013; 262:121-4. [PMID: 23850486 DOI: 10.1016/j.jneuroim.2013.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 11/19/2022]
Abstract
Liposomes containing phosphatidylserine (PSL) produce PGE2 after being phagocytosed by microglia, but the precise underlying mechanism behind it still remains unclear. Here, we showed that liposomes consisting of phosphatidylserine and lysophosphatidylcholine, a lipolysis product of phosphatidylcholine by PLA2, were phagocytosed by microglia, but failed to induce secretion of PGE2. Furthermore, PSL-induced PGE2 secretion was significantly inhibited by MJ33, an aiPLA2 inhibitor, but not by AACOCF3, a cPLA2 inhibitor. PSL also produced PGD2 and 15d-PGJ2 in microglia. We thus hypothesize that free arachidonic acid is supplied through aiPLA2-mediated lipolysis of phagocytosed phosphatidylcholine, leading to the production of PGH2 and its downstream metabolites.
Collapse
Affiliation(s)
- Fumiko Takayama
- Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Hulsmans M, Holvoet P. MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease. Cardiovasc Res 2013; 100:7-18. [PMID: 23774505 DOI: 10.1093/cvr/cvt161] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In addition to intracellular organelles, eukaryotic cells contain extracellular organelles which are released, or shed, into the microenvironment. In practice, most human studies have examined mixed populations containing both exosomes and shedding microvesicles (also called ectosomes or microparticles); only a few studies have rigorously distinguished between the two. Accordingly, in this review, exosomes and shedding microvesicles are collectively called microvesicles. The first aim of this review was to discuss the role of microvesicles in cell-to-cell communication in general and in specific interactions between cells in chronic inflammation associated with atherosclerotic disease. Hereby, we focused on cell-specific microvesicles derived from platelets, endothelial cells and monocyte and monocyte-derived cells. The latter were also found to be associated with inflammation in obesity and type 2 diabetes prior to atherosclerotic disease, and cancer. Our second aim was to discuss specific changes in microvesicle content in relation with inflammation associated with metabolic and atherosclerotic disease, and cancer. Because many studies supported the putative diagnostic value of microRNAs, we emphasized therein changes in microRNA content rather than protein or lipid content. The most interesting microRNAs in inflammatory microvesicles in association with metabolic and cardiovascular diseases were found to be the let-7 family, miR-17/92 family, miR-21, miR-29, miR-126, miR-133, miR-146, and miR-155. These data warrant further investigation of the potential of microvesicles as putative biomarkers and as novel carriers for the cell-specific transfer of microRNAs and other therapeutic agents.
Collapse
Affiliation(s)
- Maarten Hulsmans
- Atherosclerosis and Metabolism Unit, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, PB 705, Leuven B-3000, Belgium
| | | |
Collapse
|
17
|
Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012; 7:1525-41. [PMID: 22619510 PMCID: PMC3356169 DOI: 10.2147/ijn.s29661] [Citation(s) in RCA: 230] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Allon N, Saxena A, Chambers C, Doctor BP. A new liposome-based gene delivery system targeting lung epithelial cells using endothelin antagonist. J Control Release 2011; 160:217-24. [PMID: 22079949 DOI: 10.1016/j.jconrel.2011.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 11/30/2022]
Abstract
We formulated a new gene delivery system based on targeted liposomes. The efficacy of the delivery system was demonstrated in in vitro and in vivo models. The targeting moiety consists of a high-affinity 7-amino-acid peptide, covalently and evenly conjugated to the liposome surface. The targeting peptide acts as an endothelin antagonist, and accelerates liposome binding and internalization. It is devoid of other biological activity. Liposomes with high phosphatidyl serine (PS) were specially formulated to help their fusion with the endosomal membrane at low pH and enable release of the liposome payload into the cytoplasm. A DNA payload, pre-compressed by protamine, was encapsulated into the liposomes, which directed the plasmid into the cell's nucleus. Upon exposure to epithelial cells, binding of the liposomes occurred within 5-10 min, followed by facilitated internalization of the complex. Endosomal escape was complete within 30 min, followed by DNA accumulation in the nucleus 2h post-transfection. A549 lung epithelial cells transfected with plasmid encoding for GFP encapsulated in targeted liposomes expressed significantly more protein than those transfected with plasmid complexed with Lipofectamine. The intra-tracheal instillation of plasmid encoding for GFP encapsulated in targeted liposomes into rat lungs resulted in the expression of GFP in bronchioles and alveoli within 5 days. These results suggest that this delivery system has great potential in targeting genes to lungs.
Collapse
Affiliation(s)
- Nahum Allon
- Division of Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|