1
|
El Masri J, Fadlallah H, Al Sabsabi R, Afyouni A, Al-Sayegh M, Abou-Kheir W. Adipose-Derived Stem Cell Therapy in Spinal Cord Injury. Cells 2024; 13:1505. [PMID: 39273075 PMCID: PMC11394073 DOI: 10.3390/cells13171505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Spinal cord injury (SCI) is a serious condition accompanied by severe adverse events that affect several aspects of the patient's life, such as motor, sensory, and functional impairment. Despite its severe consequences, definitive treatment for these injuries is still missing. Therefore, researchers have focused on developing treatment strategies aimed at ensuring full recovery post-SCI. Accordingly, attention has been drawn toward cellular therapy using mesenchymal stem cells. Considering their wide availability, decreased immunogenicity, wide expansion capacity, and impressive effectiveness in many therapeutic approaches, adipose-derived stem cell (ADSC) injections in SCI cases have been investigated and showed promising results. In this review, SCI pathophysiology and ADSC transplantation benefits are discussed independently, together with SCI animal models and adipose stem cell preparation and application techniques. The mechanisms of healing in an SCI post-ADSC injection, the outcomes of this therapeutic approach, and current clinical trials are also deliberated, in addition to the challenges and future perspectives, aiming to encourage further research in this field.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Hiba Fadlallah
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Ahmad Afyouni
- Faculty of Medical Sciences, Lebanese University, Beirut 1533, Lebanon; (R.A.S.); (A.A.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon; (J.E.M.); (H.F.)
| |
Collapse
|
2
|
Xing WB, Wu ST, Wang XX, Li FY, Wang RX, He JH, Fu J, He Y. Potential of dental pulp stem cells and their products in promoting peripheral nerve regeneration and their future applications. World J Stem Cells 2023; 15:960-978. [PMID: 37970238 PMCID: PMC10631371 DOI: 10.4252/wjsc.v15.i10.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/07/2023] [Accepted: 10/23/2023] [Indexed: 10/26/2023] Open
Abstract
Peripheral nerve injury (PNI) seriously affects people's quality of life. Stem cell therapy is considered a promising new option for the clinical treatment of PNI. Dental stem cells, particularly dental pulp stem cells (DPSCs), are adult pluripotent stem cells derived from the neuroectoderm. DPSCs have significant potential in the field of neural tissue engineering due to their numerous advantages, such as easy isolation, multidifferentiation potential, low immunogenicity, and low transplant rejection rate. DPSCs are extensively used in tissue engineering and regenerative medicine, including for the treatment of sciatic nerve injury, facial nerve injury, spinal cord injury, and other neurodegenerative diseases. This article reviews research related to DPSCs and their advantages in treating PNI, aiming to summarize the therapeutic potential of DPSCs for PNI and the underlying mechanisms and providing valuable guidance and a foundation for future research.
Collapse
Affiliation(s)
- Wen-Bo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Shu-Ting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Xin-Xin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Fen-Yao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ruo-Xuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ji-Hui He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- First Clinical College, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Department of Stomatology, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan 430000, Hubei Province, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, Hubei Province, China.
| |
Collapse
|
3
|
Amin KR, Fildes JE. Bionic Prostheses: The Emerging Alternative to Vascularised Composite Allotransplantation of the Limb. Front Surg 2022; 9:873507. [PMID: 35599802 PMCID: PMC9122218 DOI: 10.3389/fsurg.2022.873507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Twenty years have surpassed since the first vascularised composite allotransplantation (VCA) of the upper limb. This is an opportunity to reflect on the position of VCA as the gold standard in limb reconstruction. The paucity of recipients, tentative clinical outcomes, and insufficient scientific progress question whether VCA will remain a viable treatment option for the growing numbers of amputees. Bionic technology is advancing at a rapid pace. The prospect of widely available, affordable, safely applied prostheses with long-standing functional benefit is appealing. Progress in the field stems from the contributions made by engineering, electronic, computing and material science research groups. This review will address the ongoing reservations surrounding VCA whilst acknowledging the future impact of bionic technology as a realistic alternative for limb reconstruction.
Collapse
Affiliation(s)
- Kavit R. Amin
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Correspondence: Kavit R. Amin ;
| | - James E. Fildes
- The Ex-Vivo Research Centre CIC, Alderley Park, Macclesfield, United Kingdom
- The Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Shen G. Strategies for Improving Text Reading Ability Based on Human-Computer Interaction in Artificial Intelligence. Front Psychol 2022; 13:853066. [PMID: 35360634 PMCID: PMC8963353 DOI: 10.3389/fpsyg.2022.853066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/09/2022] [Indexed: 12/03/2022] Open
Abstract
In order to improve text reading ability, a human-computer interaction method based on artificial intelligence (AI) human-computer interaction is proposed. Firstly, the design of the AI human-computer interaction model is constructed, which includes the Stanford Question Answering Dataset (SQuAD) and the designed baseline model. There are three components: the coding layer is based on a cyclic neural network (recurrent neural network [RNN] encoder layer), which aims to encode the problem and text into a hidden state; the interaction layer is used to integrate problems and text representation; the output layer connects two independent soft Max layers after a fully connected layer, one is used to obtain the starting position of the answer in the text and the other is used to obtain the ending position. In the interaction layer of the model, this manuscript uses hierarchical attention and aggregation mechanism to improve text coding. The traditional model interaction layer has a simple structure, which leads to weak relevance between text and problems, and poor understanding ability of the model. Finally, the self-attention model is used to further enhance the feature representation of text. The experimental results show that the improved model in this manuscript is compared with the public AI human-computer interaction reading comprehension model. According to the data in the table, the accuracy of the model in this manuscript is better than that of the baseline model, in which the exact match (EM) value is increased by 1.4% and the F1 value is increased by 2.7%. However, compared with improvement point 2, the EM and F1 values of the model have decreased by 0.7%. It shows that the output layer has a certain impact on the effect of the model, and the improvement and optimization of the output layer can also improve the performance of the model. It is proved that AI human-computer interaction can effectively improve text reading ability.
Collapse
Affiliation(s)
- Guorong Shen
- School of Foreign Languages, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
5
|
Dong S, Feng S, Chen Y, Chen M, Yang Y, Zhang J, Li H, Li X, Ji L, Yang X, Hao Y, Chen J, Wo Y. Nerve Suture Combined With ADSCs Injection Under Real-Time and Dynamic NIR-II Fluorescence Imaging in Peripheral Nerve Regeneration in vivo. Front Chem 2021; 9:676928. [PMID: 34336784 PMCID: PMC8317167 DOI: 10.3389/fchem.2021.676928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/13/2021] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injury gives rise to devastating conditions including neural dysfunction, unbearable pain and even paralysis. The therapeutic effect of current treatment for peripheral nerve injury is unsatisfactory, resulting in slow nerve regeneration and incomplete recovery of neural function. In this study, nerve suture combined with ADSCs injection was adopted in rat model of sciatic nerve injury. Under real-time visualization of the injected cells with the guidance of NIR-II fluorescence imaging in vivo, a spatio-temporal map displaying cell migration from the proximal injection site (0 day post-injection) of the nerve to the sutured site (7 days post-injection), and then to the distal section (14 days post-injection) was demonstrated. Furthermore, the results of electromyography and mechanical pain threshold indicated nerve regeneration and functional recovery after the combined therapy. Therefore, in the current study, the observed ADSCs migration in vivo, electrophysiological examination results and pathological changes all provided robust evidence for the efficacy of the applied treatment. Our approach of nerve suture combined with ADSCs injection in treating peripheral nerve injury under real-time NIR-II imaging monitoring in vivo added novel insights into the treatment for peripheral nerve injury, thus further enhancing in-depth understanding of peripheral nerve regeneration and the mechanism behind.
Collapse
Affiliation(s)
- Shixian Dong
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sijia Feng
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuzhou Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Mo Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimeng Yang
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Zhang
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Huizhu Li
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaotong Li
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Ji
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Yang
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yuefeng Hao
- Department of Orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jun Chen
- Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Wo
- Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Laloze J, Fiévet L, Desmoulière A. Adipose-Derived Mesenchymal Stromal Cells in Regenerative Medicine: State of Play, Current Clinical Trials, and Future Prospects. Adv Wound Care (New Rochelle) 2021; 10:24-48. [PMID: 32470315 PMCID: PMC7698876 DOI: 10.1089/wound.2020.1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Significance: Wound healing is a complex process involving pain and inflammation, where innervation plays a central role. Managing wound healing and pain remains an important issue, especially in pathologies such as excessive scarring (often leading to fibrosis) or deficient healing, leading to chronic wounds. Recent Advances: Advances in therapies using mesenchymal stromal cells offer new insights for treating indications that previously lacked options. Adipose-derived mesenchymal stromal cells (AD-MSCs) are now being used to a much greater extent in clinical trials for regenerative medicine. However, to be really valid, these randomized trials must imperatively follow strict guidelines such as consolidated standards of reporting trials (CONSORT) statement. Indeed, AD-MSCs, because of their paracrine activities and multipotency, have potential to cure degenerative and/or inflammatory diseases. Combined with their relatively easy access (from adipose tissue) and proliferation capacity, AD-MSCs represent an excellent candidate for allogeneic treatments. Critical Issues: The success of AD-MSC therapy may depend on the robustness of the biological functions of AD-MSCs, which requires controlling source heterogeneity and production processes, and development of biomarkers that predict desired responses. Several studies have investigated the effect of AD-MSCs on innervation, wound repair, or pain management separately, but systematic evaluation of how those effects could be combined is lacking. Future Directions: Future studies that explore how AD-MSC therapy can be used to treat difficult-to-heal wounds, underlining the need to thoroughly characterize the cells used, and standardization of preparation processes are needed. Finally, how this a priori easy-to-use cell therapy treatment fits into clinical management of pain, improvement of tissue healing, and patient quality of life, all need to be explored.
Collapse
Affiliation(s)
- Jérôme Laloze
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
- Department of Maxillo-Facial and Reconstructive Surgery and Stomatology, University Hospital Dupuytren, Limoges, France
| | - Loïc Fiévet
- STROMALab, Etablissement Français du Sang (EFS)-Occitanie, INSERM 1031, National Veterinary School of Toulouse (ENVT), ERL5311 CNRS, University of Toulouse, Toulouse, France
| | - Alexis Desmoulière
- Faculties of Medicine and Pharmacy, University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Limoges, France
| |
Collapse
|
7
|
Saffari S, Saffari TM, Ulrich DJO, Hovius SER, Shin AY. The interaction of stem cells and vascularity in peripheral nerve regeneration. Neural Regen Res 2021; 16:1510-1517. [PMID: 33433464 PMCID: PMC8323682 DOI: 10.4103/1673-5374.303009] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The degree of nerve regeneration after peripheral nerve injury can be altered by the microenvironment at the site of injury. Stem cells and vascularity are postulated to be a part of a complex pathway that enhances peripheral nerve regeneration; however, their interaction remains unexplored. This review aims to summarize current knowledge on this interaction, including various mechanisms through which trophic factors are promoted by stem cells and angiogenesis. Angiogenesis after nerve injury is stimulated by hypoxia, mediated by vascular endothelial growth factor, resulting in the growth of pre-existing vessels into new areas. Modulation of distinct signaling pathways in stem cells can promote angiogenesis by the secretion of various angiogenic factors. Simultaneously, the importance of stem cells in peripheral nerve regeneration relies on their ability to promote myelin formation and their capacity to be influenced by the microenvironment to differentiate into Schwann-like cells. Stem cells can be acquired through various sources that correlate to their differentiation potential, including embryonic stem cells, neural stem cells, and mesenchymal stem cells. Each source of stem cells serves its particular differentiation potential and properties associated with the promotion of revascularization and nerve regeneration. Exosomes are a subtype of extracellular vesicles released from cell types and play an important role in cell-to-cell communication. Exosomes hold promise for future transplantation applications, as these vesicles contain fewer membrane-bound proteins, resulting in lower immunogenicity. This review presents pre-clinical and clinical studies that focus on selecting the ideal type of stem cell and optimizing stem cell delivery methods for potential translation to clinical practice. Future studies integrating stem cell-based therapies with the promotion of angiogenesis may elucidate the synergistic pathways and ultimately enhance nerve regeneration.
Collapse
Affiliation(s)
- Sara Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tiam M Saffari
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Dietmar J O Ulrich
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Steven E R Hovius
- Department of Plastic and Reconstructive Surgery, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexander Y Shin
- Division of Hand and Microvascular Surgery, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Mi R, Tammia M, Shinn D, Li Y, Martin R, Mao HQ, Höke A. Oligodendrocyte precursors gain Schwann cell-like phenotype and remyelinate axons upon engraftment into peripheral nerves. J Tissue Eng Regen Med 2019; 13:1854-1860. [PMID: 31306565 DOI: 10.1002/term.2935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 11/08/2022]
Abstract
The ability to treat large peripheral nerve injuries may be greatly advanced if an accessible source of human myelinating cells is identified, as it overcomes one of the major limitations of acellular or synthetic nerve guides compared with autografts, the gold standard for large defect repair. Methods to derive oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells have advanced to the point where they have been shown capable of myelination and are being evaluated in clinical trials. Here, we test the hypothesis that OPCs can survive and remyelinate axons in the peripheral nervous system during a repair process. Using freshly isolated OPCs from mouse post-natal brains, we engrafted these OPCs into the tibial nerve immediately after it being subjected to cryolesioning. At 1-month postengraftment, we found numerous graft-derived cells that survived in this environment, and many transplanted cells expressed Schwann cell markers such as periaxin and S100β coexpressed with myelin basic protein, whereas oligodendrocyte markers O4 and Olig2 were virtually absent. Our results demonstrate that OPCs can survive in a peripheral nervous system micro-environment and undergo niche-dependent transdifferentiation into Schwann cell-like cells as has previously been observed in central nervous system focal demyelination models, suggesting that OPCs constitute an accessible source of cells for peripheral nerve cell therapies.
Collapse
Affiliation(s)
- Ruifa Mi
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Markus Tammia
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel Shinn
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ying Li
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell Martin
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Stem cell-based approaches to enhance nerve regeneration and improve functional outcomes in vascularized composite allotransplantation. Curr Opin Organ Transplant 2018; 23:577-581. [PMID: 30138147 DOI: 10.1097/mot.0000000000000569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW The current review will discuss the current understanding of nerve regeneration in vascularized composite allotransplantation (VCA). The success of proximal arm and leg transplants has been hampered by the limitations of nerve regrowth across long distances resulting in poor regeneration and functional recovery. Relevant research in stem-cell therapies to overcome these issues will be reviewed. RECENT FINDINGS The effect of rejection on nerve regeneration in the VCA may be unpredictable and may be quite different for the nerve allograft. The issues that limit functional outcome are likely common to both VCA and proximal nerve injuries or replantation. Stem-cell therapies have focused on augmenting Schwann cell function and appear promising. SUMMARY A better understanding of the effects of transplant rejection on nerve regeneration and function, as well as the factors that affect regeneration over long distances may inform further therapeutic approaches for improvement.
Collapse
|
10
|
D’Arpa S, Zabbia G, Cannizzaro C, Salimbeni G, Plescia F, Mariolo AV, Cassata G, Cicero L, Puleio R, Martorana A, Moschella F, Cordova A. Seeding nerve sutures with minced nerve-graft (MINE-G): a simple method to improve nerve regeneration in rats. Acta Chir Belg 2018; 118:27-35. [PMID: 28738725 DOI: 10.1080/00015458.2017.1353237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of this study was to assess the effect of seeding the distal nerve suture with nerve fragments in rats. METHODS On 20 rats, a 15 mm sciatic nerve defect was reconstructed with a nerve autograft. In the Study Group (10 rats), a minced 1 mm nerve segment was seeded around the nerve suture. In the Control Group (10 rats), a nerve graft alone was used. At 4 and 12 weeks, a walking track analysis with open field test (WTA), hystomorphometry (number of myelinated fibers (n), fiber density (FD) and fiber area (FA) and soleus and gastrocnemius muscle weight ratios (MWR) were evaluated. The Student t-test was used for statistical analysis. RESULTS At 4 and 12 weeks the Study Group had a significantly higher n and FD (p = .043 and .033). The SMWR was significantly higher in the Study Group at 12 weeks (p = .0207). CONCLUSIONS Seeding the distal nerve suture with nerve fragments increases the number of myelinated fibers, the FD and the SMWR. The technique seems promising and deserves further investigation to clarify the mechanisms involved and its functional effects.
Collapse
Affiliation(s)
- Salvatore D’Arpa
- Plastische Heelkunde, Universitair Ziekenhuis Gent, Gent, Belgium
| | - Giovanni Zabbia
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care ‘GIUSEPPE D’ALESSANDRO’, University of Palermo, Palermo, Italy
| | | | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care ‘GIUSEPPE D’ALESSANDRO’, University of Palermo, Palermo, Italy
| | - Alessio Vincenzo Mariolo
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giovanni Cassata
- Laboratory Animal House/Unit, Institute of Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Luca Cicero
- Laboratory Animal House/Unit, Institute of Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Roberto Puleio
- Histopathology and Immunohistochemistry Laboratory, Institute Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Anna Martorana
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Francesco Moschella
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
Naderi N, Combellack EJ, Griffin M, Sedaghati T, Javed M, Findlay MW, Wallace CG, Mosahebi A, Butler PEM, Seifalian AM, Whitaker IS. The regenerative role of adipose-derived stem cells (ADSC) in plastic and reconstructive surgery. Int Wound J 2017; 14:112-124. [PMID: 26833722 PMCID: PMC7949873 DOI: 10.1111/iwj.12569] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift in plastic and reconstructive surgery. The use of either embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) in clinical situations is limited because of regulations and ethical considerations even though these cells are theoretically highly beneficial. Adult mesenchymal stem cells appear to be an ideal stem cell population for practical regenerative medicine. Among these cells, adipose-derived stem cells (ADSC) have the potential to differentiate the mesenchymal, ectodermal and endodermal lineages and are easy to harvest. Additionally, adipose tissue yields a high number of ADSC per volume of tissue. Based on this background knowledge, the purpose of this review is to summarise and describe the proliferation and differentiation capacities of ADSC together with current preclinical data regarding the use of ADSC as regenerative tools in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Naghmeh Naderi
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Emman J Combellack
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michelle Griffin
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Tina Sedaghati
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Muhammad Javed
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| | - Michael W Findlay
- Plastic & Reconstructive SurgeryStanford University Medical CentreStanfordCAUSA
| | | | - Afshin Mosahebi
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Peter EM Butler
- Department of Plastic SurgeryRoyal Free NHS Foundation TrustLondonUK
| | - Alexander M Seifalian
- UCL Centre for Nanotechnology and Regenerative MedicineUniversity College LondonLondonUK
| | - Iain S Whitaker
- Reconstructive Surgery & Regenerative Medicine Group, Institute of Life Sciences (ILS)Swansea University Medical SchoolSwanseaUK
- Welsh Centre for Burns & Plastic SurgeryABMU Health BoardSwanseaUK
| |
Collapse
|
12
|
Hu Y, Wu Y, Gou Z, Tao J, Zhang J, Liu Q, Kang T, Jiang S, Huang S, He J, Chen S, Du Y, Gou M. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration. Sci Rep 2016; 6:32184. [PMID: 27572698 PMCID: PMC5004136 DOI: 10.1038/srep32184] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/02/2016] [Indexed: 02/05/2023] Open
Abstract
Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.
Collapse
Affiliation(s)
- Yu Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Yao Wu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Zhiyuan Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Jiumeng Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Qianqi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Tianyi Kang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| | - Shu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Siqing Huang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Jiankang He
- State key laboratory for manufacturing systems engineering, Xi'an Jiaotong University, Xi'an, 710049,China
| | - Shaochen Chen
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, USA
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan province, China
| |
Collapse
|
13
|
Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M, Drewa T. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies. Arch Immunol Ther Exp (Warsz) 2016; 64:443-454. [PMID: 27178663 PMCID: PMC5085986 DOI: 10.1007/s00005-016-0394-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/20/2016] [Indexed: 02/06/2023]
Abstract
Recent development in stem cell isolation methods and expansion under laboratory conditions create an opportunity to use those aforementioned cells in tissue engineering and regenerative medicine. Particular attention is drawn towards mesenchymal stem cells (MSCs) being multipotent progenitors exhibiting several unique characteristics, including high proliferation potential, self-renewal abilities and multilineage differentiation into cells of mesodermal and non-mesodermal origin. High abundance of MSCs found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications. Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. Lack of a single, universal stem cell marker, patient-to-patient variability, heterogeneity of ASC population combined with multiple widely different protocols of cell isolation and expansion hinder the ability to precisely identify and analyze biological properties of stem cells. The above issues contribute to conflicting data reported in literature. We will review the comprehensive information concerning characteristic features of ASCs. We will also review the regenerative potential and clinical application based on various clinical trials.
Collapse
Affiliation(s)
- Anna Bajek
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.
| | - Natalia Gurtowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Joanna Olkowska
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Lukasz Kazmierski
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Malgorzata Maj
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland
| | - Tomasz Drewa
- Department of Tissue Engineering, Nicolaus Copernicus University, Karłowicza 24, 85-092, Bydgoszcz, Poland.,Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
14
|
Kueckelhaus M, Turk M, Kumamaru KK, Wo L, Bueno EM, Lian CG, Alhefzi M, Aycart MA, Fischer S, De Girolami U, Murphy GF, Rybicki FJ, Pomahac B. Transformation of Face Transplants: Volumetric and Morphologic Graft Changes Resemble Aging After Facial Allotransplantation. Am J Transplant 2016; 16:968-78. [PMID: 26639618 DOI: 10.1111/ajt.13544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 01/25/2023]
Abstract
Facial allotransplantation restores normal anatomy to severely disfigured faces. Although >30 such operations performed worldwide have yielded promising short-term results, data on long-term outcomes remain scarce. Three full-face transplant recipients were followed for 40 months. Severe changes in volume and composition of the facial allografts were noted. Data from computed tomography performed 6, 18 and 36 months after transplantation were processed to separate allograft from recipient tissues and further into bone, fat and nonfat soft tissues. Skin and muscle biopsies underwent diagnostic evaluation. All three facial allografts sustained significant volume loss (mean 19.55%) between 6 and 36 months after transplant. Bone and nonfat soft tissue volumes decreased significantly over time (17.22% between months 6 and 18 and 25.56% between months 6 and 36, respectively), whereas fat did not. Histological evaluations showed atrophy of muscle fibers. Volumetric and morphometric changes in facial allografts have not been reported previously. The transformation of facial allografts in this study resembled aging through volume loss but differed substantially from regular aging. These findings have implications for risk-benefit assessment, donor selection and measures counteracting muscle and bone atrophy. Superior long-term outcomes of facial allotransplantation will be crucial to advance toward future clinical routine.
Collapse
Affiliation(s)
- M Kueckelhaus
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - M Turk
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - K K Kumamaru
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - L Wo
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - E M Bueno
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - C G Lian
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - M Alhefzi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - M A Aycart
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - S Fischer
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Plastic Surgery, BG University Hospital Ludwigshafen, Heidelberg University, Ludwigshafen, Germany
| | - U De Girolami
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - G F Murphy
- Division of Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - F J Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - B Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
15
|
Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation. Stem Cells Int 2016; 2016:1541823. [PMID: 26839554 PMCID: PMC4709778 DOI: 10.1155/2016/1541823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation.
Collapse
|
16
|
Fryer M, Grahammer J, Khalifian S, Furtmüller GJ, Lee WPA, Raimondi G, Brandacher G. Exploring cell-based tolerance strategies for hand and face transplantation. Expert Rev Clin Immunol 2015; 11:1189-204. [DOI: 10.1586/1744666x.2015.1078729] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|