1
|
Kahler JP, Ji S, Speelman-Rooms F, Vanhoutte R, Verhelst SHL. Phosphinate Esters as Novel Warheads for Quenched Activity-Based Probes Targeting Serine Proteases. ACS Chem Biol 2024; 19:1409-1415. [PMID: 38913607 DOI: 10.1021/acschembio.3c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Quenched activity-based probes (qABP) are invaluable tools to visualize aberrant protease activity. Unfortunately, most studies so far have only focused on cysteine proteases, and only a few studies describe the synthesis and use of serine protease qABPs. We recently used phosphinate ester electrophiles as a novel type of reactive group to construct ABPs for serine proteases. Here, we report on the construction of qABPs based on the phosphinate warhead, exemplified by probes for the neutrophil serine proteases. The most successful probes show sub-stoichiometric reaction with human neutrophil elastase, efficient fluorescence quenching, and rapid unquenching of fluorescence upon reaction with target proteases.
Collapse
Affiliation(s)
- Jan Pascal Kahler
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Femke Speelman-Rooms
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- Laboratory of Molecular & Cellular Signaling, Department of Cellular and Molecular Medicine, Herestraat 49 box 802, 3000 Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49 box 901b, 3000 Leuven, Belgium
- AG Chemical Proteomics, Leibniz Institute for Analytical Sciences - ISAS, Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Skorenski M, Ji S, Verhelst SHL. Covalent activity-based probes for imaging of serine proteases. Biochem Soc Trans 2024; 52:923-935. [PMID: 38629725 DOI: 10.1042/bst20231450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Serine proteases are one of the largest mechanistic classes of proteases. They regulate a plethora of biochemical pathways inside and outside the cell. Aberrant serine protease activity leads to a wide variety of human diseases. Reagents to visualize these activities can be used to gain insight into the biological roles of serine proteases. Moreover, they may find future use for the detection of serine proteases as biomarkers. In this review, we discuss small molecule tools to image serine protease activity. Specifically, we outline different covalent activity-based probes and their selectivity against various serine protease targets. We also describe their application in several imaging methods.
Collapse
Affiliation(s)
- Marcin Skorenski
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Shanping Ji
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology, KU Leuven - University of Leuven, Herestraat 49 Box 901b, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Espadinha M, De Loose J, Corthaut S, Thys S, Van Rymenant Y, Verhulst E, Benramdane S, Filippi N, Augustyns K, Van Wielendaele P, Pintelon I, De Meester I, Van der Veken P. Active site-directed probes targeting dipeptidyl peptidases 8 and 9. Eur J Med Chem 2024; 270:116389. [PMID: 38593588 DOI: 10.1016/j.ejmech.2024.116389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Dipeptidyl peptidases (DPP) 8 and 9 are intracellular serine proteases that play key roles in various biological processes and recent findings highlight DPP8 and DPP9 as potential therapeutic targets for hematological and inflammasome-related diseases. Despite the substantial progress, the precise biological functions of these proteases remain elusive, and the lack of selective chemical tools hampers ongoing research. In this paper, we describe the synthesis and biochemical evaluation of the first active site-directed DPP8/9 probes which are derived from DPP8/9 inhibitors developed in-house. Specifically, we synthesized fluorescent inhibitors containing nitrobenzoxadiazole (NBD), dansyl (DNS) and cyanine-3 (Cy3) reporters to visualize intracellular DPP8/9. We demonstrate that the fluorescent inhibitors have high affinity and selectivity towards DPP8/9 over related S9 family members. The NBD-labeled DPP8/9 inhibitors were nominated as the best in class compounds to visualize DPP8/9 in human cells. Furthermore, a method has been developed for selective labeling and visualization of active DPP8/9 in vitro by fluorescence microscopy. A collection of potent and selective biotinylated DPP8/9-targeting probes was also prepared by replacing the fluorescent reporter with a biotin group. The present work provides the first DPP8/9-targeting fluorescent compounds as useful chemical tools for the study of DPP8 and DPP9's biological functions.
Collapse
Affiliation(s)
| | - Joni De Loose
- Laboratory of Medical Biochemistry, University of Antwerp, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry, University of Antwerp, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | | | - Emile Verhulst
- Laboratory of Medical Biochemistry, University of Antwerp, Belgium
| | - Siham Benramdane
- Laboratory of Medicinal Chemistry, University of Antwerp, Belgium
| | - Nicolò Filippi
- Laboratory of Medicinal Chemistry, University of Antwerp, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, University of Antwerp, Belgium
| | | | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, University of Antwerp, Belgium
| | | | | |
Collapse
|
4
|
Kim Y, Kim J, An JM, Park CK, Kim D. All-Nontoxic Fluorescent Probe for Biothiols and Its Clinical Applications for Real-Time Glioblastoma Visualization. ACS Sens 2023; 8:1723-1732. [PMID: 36967520 DOI: 10.1021/acssensors.3c00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fluorescence-guided surgery (FSG) is a surgical method to selectively visualize the tumor site using fluorescent materials with instrumental setups in the operation rooms. It has been widely used in the surgery of brain tumors, such as glioblastoma (GBM), which is difficult to distinguish from normal tissue. Although FSG is crucial for GBM surgery, the commercially available fluorescent materials for FSG have shown serious adverse effects. To satisfy the clinical demand, we recently reported reaction-based fluorescent probes based on a 4-chloro-7-nitrobenzofurazan (NBD) fluorophore that can detect cysteine (Cys) and homocysteine (Hcy), a biomarker of GBM, and their applications for the GBM diagnosis and FSG. However, our probes have cellular toxicity issues arising from the leaving group (LG) that is generated after the reaction of the fluorescent probe and the analytes. In this study, we disclosed a nontoxic fluorescent probe for sensing biothiols and their clinical applications for real-time human glioblastoma visualization. Systematic toxicity analysis of several LGs was conducted on several cell lines. Among the LGs, 2-hydroxy-pyridine showed negligible toxicity, and its fluorescent probe derivative (named NPO-o-Pyr) showed high specificity and sensitivity (LOD: 0.071 ppm for Cys; 0.189 ppm for Hcy), a fast response time (<5 min) to Cys and Hcy, and high biocompatibility. In addition, NPO-o-Pyr can significantly detect the GBM site both in actual clinical samples as well as in the GBM-xenografted mouse model. We are confident that NPO-o-Pyr will become a new substitute in FSG due to its capability to overcome the limitations of the current fluorescent probes.
Collapse
|
5
|
Camostat Does Not Inhibit the Proteolytic Activity of Neutrophil Serine Proteases. Pharmaceuticals (Basel) 2022; 15:ph15050500. [PMID: 35631327 PMCID: PMC9144258 DOI: 10.3390/ph15050500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) can lead to multi-organ failure influenced by comorbidities and age. Binding of the severe acute respiratory syndrome coronavirus 2 spike protein (SARS-CoV-2 S protein) to angiotensin-converting enzyme 2 (ACE2), along with proteolytic digestion of the S protein by furin and transmembrane protease serine subtype 2 (TMPRSS2), provokes internalization of SARS-CoV-2 into the host cell. Productive infection occurs through viral replication in the cytosol and cell-to-cell transmission. The catalytic activity of TMPRSS2 can be blocked by the trypsin-like serine protease inhibitor camostat, which impairs infection by SARS-CoV-2. At the site of infection, immune cells, such as neutrophils, infiltrate and become activated, releasing neutrophil serine proteases (NSPs), including cathepsin G (CatG), neutrophil elastase (NE), and proteinase 3 (PR3), which promote the mounting of a robust immune response. However, NSPs might be involved in infection and the severe outcome of COVID-19 since the uncontrolled proteolytic activity is responsible for many complications, including autoimmunity, chronic inflammatory disorders, cardiovascular diseases, and thrombosis. Here, we demonstrate that camostat does not inhibit the catalytic activity of CatG, NE, and PR3, indicating the need for additional selective serine protease inhibitors to reduce the risk of developing severe COVID-19.
Collapse
|
6
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
7
|
Burster T, Mustafa Z, Myrzakhmetova D, Zhanapiya A, Zimecki M. Hindrance of the Proteolytic Activity of Neutrophil-Derived Serine Proteases by Serine Protease Inhibitors as a Management of Cardiovascular Diseases and Chronic Inflammation. Front Chem 2021; 9:784003. [PMID: 34869231 PMCID: PMC8634265 DOI: 10.3389/fchem.2021.784003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
During inflammation neutrophils become activated and segregate neutrophil serine proteases (NSPs) to the surrounding environment in order to support a natural immune defense. However, an excess of proteolytic activity of NSPs can cause many complications, such as cardiovascular diseases and chronic inflammatory disorders, which will be elucidated on a biochemical and immunological level. The application of selective serine protease inhibitors is the logical consequence in the management of the indicated comorbidities and will be summarized in this briefing.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dinara Myrzakhmetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Michal Zimecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
Mustafa Z, Zhanapiya A, Kalbacher H, Burster T. Neutrophil Elastase and Proteinase 3 Cleavage Sites Are Adjacent to the Polybasic Sequence within the Proteolytic Sensitive Activation Loop of the SARS-CoV-2 Spike Protein. ACS OMEGA 2021; 6:7181-7185. [PMID: 33748632 PMCID: PMC7970549 DOI: 10.1021/acsomega.1c00363] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/22/2021] [Indexed: 05/15/2023]
Abstract
Serine proteases neutrophil elastase (NE), protease 3 (PR3), cathepsin G (CatG), and neutrophil serine protease 4 (NSP4) are released by activated neutrophils swarming around the place of pathogen invasion to provoke an immune response. However, uncontrolled proteolytic activity of proteases results in various human diseases, including cardiovascular diseases, thrombosis, and autoimmunity. In addition, proteases can be hijacked by several viruses to prime virus-derived surface proteins and evade immune detection by entering into the host cell. Indeed, porcine elastase increases the suitability of host cells to be infected by SARS-CoV-1. We compared the cleavage sites of human NE, PR3, and CatG as well as porcine-derived trypsin within the amino acid sequence of the proteolytic sensitive activation loop at the interface of S1/S2 of the spike protein (S protein) of SARS-CoV-1 as well as SARS-CoV-2. As a result, NE and PR3, but not CatG, hydrolyze the scissile peptide bond adjacent to the polybasic amino acid sequence of the S1/S2 interface of SARS-CoV-2, which is distinctive from SARS-CoV-1. These findings suggest that neutrophil-derived NE and PR3 participate in priming of the S1/S2 interface during an immune response.
Collapse
Affiliation(s)
- Zhadyra Mustafa
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan 010000, Kazakhstan Republic
| | - Anuar Zhanapiya
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan 010000, Kazakhstan Republic
| | - Hubert Kalbacher
- Eberhard
Karls University Tübingen, Faculty of Medicine, Institute of Clinical Anatomy and Cell Analysis, Österbergstraße 3, 72074 Tübingen, Germany
| | - Timo Burster
- Department
of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan 010000, Kazakhstan Republic
| |
Collapse
|
9
|
Burster T, Gärtner F, Knippschild U, Zhanapiya A. Activity-Based Probes to Utilize the Proteolytic Activity of Cathepsin G in Biological Samples. Front Chem 2021; 9:628295. [PMID: 33732686 PMCID: PMC7959752 DOI: 10.3389/fchem.2021.628295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophils, migrating to the site of infection, are able to release serine proteases after being activated. These serine proteases comprise cathepsin G (CatG), neutrophil elastase protease 3 (PR3), and neutrophil serine protease 4 (NSP4). A disadvantage of the uncontrolled proteolytic activity of proteases is the outcome of various human diseases, including cardiovascular diseases, thrombosis, and autoimmune diseases. Activity-based probes (ABPs) are used to determine the proteolytic activity of proteases, containing a set of three essential elements: Warhead, recognition sequence, and the reporter tag for detection of the covalent enzyme activity–based probe complex. Here, we summarize the latest findings of ABP-mediated detection of proteases in both locations intracellularly and on the cell surface of cells, thereby focusing on CatG. Particularly, application of ABPs in regular flow cytometry, imaging flow cytometry, and mass cytometry by time-of-flight (CyTOF) approaches is advantageous when distinguishing between immune cell subsets. ABPs can be included in a vast panel of markers to detect proteolytic activity and determine whether proteases are properly regulated during medication. The use of ABPs as a detection tool opens the possibility to interfere with uncontrolled proteolytic activity of proteases by employing protease inhibitors.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital, Ulm, Germany
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
10
|
Haas P, Muralidharan M, Krogan NJ, Kaake RM, Hüttenhain R. Proteomic Approaches to Study SARS-CoV-2 Biology and COVID-19 Pathology. J Proteome Res 2021; 20:1133-1152. [PMID: 33464917 PMCID: PMC7839417 DOI: 10.1021/acs.jproteome.0c00764] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Indexed: 12/17/2022]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), was declared a pandemic infection in March 2020. As of December 2020, two COVID-19 vaccines have been authorized for emergency use by the U.S. Food and Drug Administration, but there are no effective drugs to treat COVID-19, and pandemic mitigation efforts like physical distancing have had acute social and economic consequences. In this perspective, we discuss how the proteomic research community can leverage technologies and expertise to address the pandemic by investigating four key areas of study in SARS-CoV-2 biology. Specifically, we discuss how (1) mass spectrometry-based structural techniques can overcome limitations and complement traditional structural approaches to inform the dynamic structure of SARS-CoV-2 proteins, complexes, and virions; (2) virus-host protein-protein interaction mapping can identify the cellular machinery required for SARS-CoV-2 replication; (3) global protein abundance and post-translational modification profiling can characterize signaling pathways that are rewired during infection; and (4) proteomic technologies can aid in biomarker identification, diagnostics, and drug development in order to monitor COVID-19 pathology and investigate treatment strategies. Systems-level high-throughput capabilities of proteomic technologies can yield important insights into SARS-CoV-2 biology that are urgently needed during the pandemic, and more broadly, can inform coronavirus virology and host biology.
Collapse
Affiliation(s)
- Paige Haas
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nevan J. Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robyn M. Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|