1
|
Benucci M, Gobbi FL, Fusi P, Damiani A, Russo E, Guiducci S, Manfredi M, Grossi V, Infantino M, Amedei A. Different Biomarkers of Response to Treatment with Selective Jak-1 Inhibitors in Rheumatoid Arthritis. FRONT BIOSCI-LANDMRK 2023; 28:176. [PMID: 37664943 DOI: 10.31083/j.fbl2808176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a systemic autoimmune disease that causes progressive joint damage. The Janus kinase (JAK) inhibitors (JAK-I) represent a new therapeutic option for RA patients, blocking the intracellular JAK-STAT pathway. Today, no studies have been conducted to determine whether new biomarkers could better reflect disease activity in patients treated with JAK-I than traditional disease activity indicators. Thus, the aim of our study was to determine additional disease activity biomarkers in RA patients receiving selective JAK-1 inhibitors. METHODS we enrolled 57 patients with RA: 34 patients were treated with Upadacitinib (UPA) and 23 patients with Filgotinib (FIL). All patients were evaluated for clinimetry with DAS28 and Crohn's Disease Activity Index (CDAI), number of tender and swollen joints, Visual Analogic Scale (VAS), Physician Global Assessment (PhGA), and Health Assessment Questionnaire (HAQ), at baseline and at the 12th week of treatment. Lymphocyte subpopulations, complete blood count, erythrocyte sedimentation rate (ESR), C-Reactive Protein (CRP), anti-cyclic citrullinated peptide antibodies (APCA), rheumatoid factor (RF) IgM, interleukin 6 (IL-6), circulating calprotectin (cCLP), tumor necrosis factor α (TNFα), soluble urokinase Plasminogen Activator Receptor (suPAR), complement functional activity were measured at baseline and after the 12th week of treatment. RESULTS in both groups of patients, we documented a significant reduction in the clinimetric parameters DAS28, CDAI, number of tender joints, number of swollen joints, VAS, PhGA, and HAQ. Moreover, significant differences were reported for laboratory parameters of ESR, CRP, IL-6, suPAR, cCLP, and PLT/L ratio in both groups. However, no difference was demonstrated between the two groups for changes in renal, hepatic, and lipid parameters. CONCLUSIONS the suPAR and cCLP levels may lead towards a different therapeutic choice between UPA and FIL, with the expression of two different RA pathophenotypes directing FIL towards a lymphocyte-poor form and UPA towards a myeloid form of RA.
Collapse
Affiliation(s)
- Maurizio Benucci
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50068 Florence, Italy
| | - Francesca Li Gobbi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50068 Florence, Italy
| | - Paola Fusi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50068 Florence, Italy
| | - Arianna Damiani
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, 50068 Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, 50068 Florence, Italy
| | - Maria Infantino
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, Azienda USL-Toscana Centro, 50068 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
2
|
Benucci M, Damiani A, Russo E, Guiducci S, Li Gobbi F, Fusi P, Grossi V, Amedei A, Manfredi M, Infantino M. The Association of uPA, uPAR, and suPAR System with Inflammation and Joint Damage in Rheumatoid Arthritis: suPAR as a Biomarker in the Light of a Personalized Medicine Perspective. J Pers Med 2022; 12:1984. [PMID: 36556207 PMCID: PMC9788564 DOI: 10.3390/jpm12121984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND In recent years, the involvement of the soluble urokinase Plasminogen Activator Receptor (suPAR) in the pathophysiological modulation of Rheumatoid Arthritis (RA) has been documented, resulting in the activation of several intracellular inflammatory pathways. METHODS We investigated the correlation of urokinase Plasminogen Activator (uPA)/urokinase Plasminogen Activator Receptor (uPAR) expression and suPAR with inflammation and joint damage in RA, evaluating their potential role in a precision medicine context. RESULTS Currently, suPAR has been shown to be a potential biomarker for the monitoring of Systemic Chronic Inflammation (SCI) and COVID-19. However, the effects due to suPAR interaction in immune cells are also involved in both RA onset and progression. To date, the literature data on suPAR in RA endorse its potential application as a biomarker of inflammation and subsequent joint damage. CONCLUSION Available evidence about suPAR utility in the RA field is promising, and future research should further investigate its use in clinical practice, resulting in a big step forward for precision medicine. As it is elevated in different types of inflammation, suPAR could potentially work as an adjunctive tool for the screening of RA patients. In addition, a suPAR system has been shown to be involved in RA pathogenesis, so new data about the therapeutic response to Jak inhibitors can represent a possible way to develop further studies.
Collapse
Affiliation(s)
- Maurizio Benucci
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Arianna Damiani
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Edda Russo
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Serena Guiducci
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Francesca Li Gobbi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Paola Fusi
- Rheumatology Unit, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50134 Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| | - Maria Infantino
- Immunology and Allergology Laboratory, Hospital S. Giovanni di Dio, Azienda USL-Toscana Centro, 50143 Florence, Italy
| |
Collapse
|
3
|
Hügle T, Nasi S, Ehirchiou D, Omoumi P, So A, Busso N. Fibrin deposition associates with cartilage degeneration in arthritis. EBioMedicine 2022; 81:104081. [PMID: 35660787 PMCID: PMC9163430 DOI: 10.1016/j.ebiom.2022.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background Cartilage damage in inflammatory arthritis is attributed to inflammatory cytokines and pannus infiltration. Activation of the coagulation system is a well known feature of arthritis, especially in rheumatoid arthritis (RA). Here we describe mechanisms by which fibrin directly mediates cartilage degeneration. Methods Fibrin deposits were stained on cartilage and synovial tissue of RA and osteoarthritis (OA) patients and in murine adjuvant-induced arthritis (AIA) in wild-type or fibrinogen deficient mice. Fibrinogen expression and procoagulant activity in chondrocytes were evaluated using qRT-PCR analysis and turbidimetry. Chondro-synovial adhesion was studied in co-cultures of human RA cartilage and synoviocytes, and in the AIA model. Calcific deposits were stained in human RA and OA cartilage and in vitro in fibrinogen-stimulated chondrocytes. Findings Fibrin deposits on cartilage correlated with the severity of cartilage damage in human RA explants and in AIA in wild-type mice, whilst fibrinogen deficient mice were protected. Fibrin upregulated Adamts5 and Mmp13 in chondrocytes. Chondro-synovial adhesion only occurred in fibrin-rich cartilage areas and correlated with cartilage damage. In vitro, autologous human synoviocytes, cultured on RA cartilage explants, adhered exclusively to fibrin-rich areas. Fibrin co-localized with calcification in human RA cartilage and triggered chondrocyte mineralization by inducing pro-calcification genes (Anx5, Pit1, Pc1) and the IL-6 cytokine. Similar fibrin-mediated mechanisms were observed in OA models, but to a lesser extent and without pseudo-membranes formation. Interpretation In arthritis, fibrin plaques directly impair cartilage integrity via a triad of catabolism, adhesion, and calcification. Funding None.
Collapse
|
4
|
Xiong L, Li S, Dai M. Comparison of D-dimer with CRP and ESR for diagnosis of periprosthetic joint infection. J Orthop Surg Res 2019; 14:240. [PMID: 31358018 PMCID: PMC6664511 DOI: 10.1186/s13018-019-1282-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/16/2019] [Indexed: 12/25/2022] Open
Abstract
Background Despite the availability of several biomarkers, the diagnosis of periprosthetic joint infection (PJI) continues to be challenging. Serum D-dimer assessment is a widely available test that detects fibrinolytic activities and has been reported as an inflammatory biomarker. However, quite a few articles have reported the diagnostic efficiency of D-dimer for PJI. Methods This prospective study enrolled patients who had undergone total joint arthroplasty, were suspected of PJI, and also prepared for revision arthroplasty. PJI was defined using the Musculoskeletal Infection Society criteria. In all patients, serum D-dimer level, erythrocyte sedimentation rate (ESR), and C-reactive protein (CRP) level were measured preoperatively. We then compared the diagnostic efficiency of these three biomarkers. Results The median D-dimer level was significantly higher (p < 0.001) for the patients with PJI than for the patients with aseptic failure. With a sensitivity of 80.77% (95% CI, 65.62 to 95.92%) and a specificity of 79.63% (95% CI, 68.89 to 90.37%), the diagnostic efficiency of D-dimer did not outperform serum CRP (with a sensitivity of 84.61% and specificity of 64.81%) and ESR (with a sensitivity of 73.08% and specificity of 90.47%). Conclusions Serum D-dimer as a marker for the diagnosis of PJI still requires more large-scale and detailed clinical trials.
Collapse
Affiliation(s)
- Longjiang Xiong
- Nanchang University, Nanchang, 330003, China.,Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Siyun Li
- Department of Orthopedics, Jiangxi Province Hospital of Integrated Chinese and Western Medicine, Nanchang, 330003, China
| | - Min Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, NO.17, Yongwai Street, Nanchang, 330006, China.
| |
Collapse
|
5
|
Heo JN, Kim DY, Lim SG, Lee K, Suk K, Lee WH. ER stress differentially affects pro-inflammatory changes induced by mitochondrial dysfunction in the human monocytic leukemia cell line, THP-1. Cell Biol Int 2019; 43:313-322. [PMID: 30632648 DOI: 10.1002/cbin.11103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
The functional and physical interaction between mitochondria and the endoplasmic reticulum (ER) has been the subject of intense study. To test the effect of this interaction on macrophage inflammatory activation, the human macrophage-like monocytic leukemia cell line THP-1 was treated with oligomycin, rotenone, or sodium azide, which induce mitochondrial dysfunction (MD) by blocking the electron transport chain (ETC). MD induced by these agents triggered activation of various sensors and markers of ER stress. This linkage affected macrophage function since LPS-induced expression of IL-23 was enhanced by the MD inducers, and this enhancing effect was abolished by inhibition of pancreatic endoplasmic reticulum kinase (PERK) activity. This MD-mediated ER stress may be universal since it was observed in human embryonic kidney HEK293 cells and colon cancer SW480 cells. On the other hand, MD regulated LPS-induced activation of the AKT/GSK3β/β-catenin pathway in a manner not affected by inhibition of PERK or inositol-requiring enzyme 1α (IRE1α) activities. These results indicate that the occurrence of MD can lead to ER stress and these two events, separately or in combination, can affect various cellular processes.
Collapse
Affiliation(s)
- Jae-Nyoung Heo
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong-Yeon Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Su-Geun Lim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kiboo Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
6
|
Göbel K, Eichler S, Wiendl H, Chavakis T, Kleinschnitz C, Meuth SG. The Coagulation Factors Fibrinogen, Thrombin, and Factor XII in Inflammatory Disorders-A Systematic Review. Front Immunol 2018; 9:1731. [PMID: 30105021 PMCID: PMC6077258 DOI: 10.3389/fimmu.2018.01731] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background The interaction of coagulation factors has been shown to go beyond their traditional roles in hemostasis and to affect the development of inflammatory diseases. Key molecular players, such as fibrinogen, thrombin, or factor XII have been mechanistically and epidemiologically linked to inflammatory disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), and colitis. Objectives To systematically review the evidence for a role of coagulation factors, especially factor XII, fibrinogen, and thrombin in inflammatory disorders like MS, RA, and bowel disorders. Methods A systematic literature search was done in the PubMed database to identify studies about coagulation factors in inflammatory diseases. Original articles and reviews investigating the role of the kallikrein–kinin and the coagulation system in mouse and humans were included. Results We identified 43 animal studies dealing with inflammatory disorders and factors of the kallikrein–kinin or the coagulation system. Different immunological influences are described and novel molecular mechanisms linking coagulation and inflammation are reported. Conclusion A number of studies have highlighted coagulation factors to tip the balance between hemostasis and thrombosis and between protection from infection and extensive inflammation. To optimize the treatment of chronic inflammatory disorders by these factors, further studies are necessary.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Susann Eichler
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Laboratory Medicine, Institute for Clinical Chemistry, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Dinesh P, Rasool M. uPA/uPAR signaling in rheumatoid arthritis: Shedding light on its mechanism of action. Pharmacol Res 2018; 134:31-39. [PMID: 29859810 DOI: 10.1016/j.phrs.2018.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA) is a systemic and chronic autoimmune inflammatory disorder affecting multiple joints. Various cytokines, chemokines and growth factors synergistically modulate the joint physiology leading to bone erosion and cartilage degradation. Other than these conventional mediators that are well established in the past, the newly identified plasminogen activator (PA) family of proteins have been witnessed to possess a multifactorial approach in mediating RA pathogenesis. One such family of proteins comprises of the urokinase-type plasminogen activator (uPA) and its receptor (uPAR)/soluble-type plasminogen activator receptor (suPAR). PA family of proteins are classified into two types namely: uPA and tissue type plasminogen activator (tPA). Both these subtypes have been implicated to play a key role in RA disease progression. However during RA pathogenesis, uPA secreted by neutrophils, chondrocytes, and monocytes are designated to interact with uPAR expressed on macrophages, fibroblast-like synoviocytes (FLS), chondrocytes and endothelial cells. Interaction of uPA/uPAR promotes the disease progression of RA through secretion of several cytokines, chemokines, growth factors and matrix metalloproteinases (MMPs). Moreover, uPA/uPAR initiates inflammatory responses in macrophages and FLS through activation of PI3K/Akt signaling pathways. Furthermore, uPAR plays a dual role in osteoclastogenesis under the presence/absence of growth factors like monocyte-colony stimulating factor (M-CSF). Overall, this review emphasizes the role of uPA/uPAR on various immune cells, signaling pathways and osteoclastogenesis involved in RA pathogenesis.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, Tamil Nadu, India.
| |
Collapse
|
8
|
Tissue Plasminogen Activator Coating on Implant Surfaces Reduces Staphylococcus aureus Biofilm Formation. Appl Environ Microbiol 2015; 82:394-401. [PMID: 26519394 DOI: 10.1128/aem.02803-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus biofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role in S. aureus biofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating on S. aureus biofilm formation was tested with in vitro microplate biofilm assays and an in vivo mouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by various S. aureus strains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics. In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduce S. aureus biofilm formation both in vitro and in vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.
Collapse
|
9
|
Kwiecinski J, Peetermans M, Liesenborghs L, Na M, Björnsdottir H, Zhu X, Jacobsson G, Johansson BR, Geoghegan JA, Foster TJ, Josefsson E, Bylund J, Verhamme P, Jin T. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation. J Infect Dis 2015; 213:139-48. [PMID: 26136471 DOI: 10.1093/infdis/jiv360] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.
Collapse
Affiliation(s)
- Jakub Kwiecinski
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Marijke Peetermans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Halla Björnsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, Skövde, Sweden
| | | | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, Institute of Medicine Department of Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| |
Collapse
|
10
|
Kwiecinski J, Jin T, Josefsson E. Surface proteins of Staphylococcus aureus play an important role in experimental skin infection. APMIS 2014; 122:1240-50. [PMID: 25051890 DOI: 10.1111/apm.12295] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/21/2014] [Indexed: 02/02/2023]
Abstract
Staphylococcus aureus is the most common cause of skin infections that range from mild diseases up to life-threatening conditions. Mechanisms of S. aureus virulence in those infections remain poorly studied. To investigate the impact of S. aureus surface proteins on skin infection, we used mouse models of skin abscess formation and skin necrosis, induced by a subcutaneous injection of bacteria. In the skin abscess model, a sortase-deficient S. aureus strain lacking all of its cell-wall anchored proteins was less virulent than its wild-type strain. Also, strains specifically lacking protein A, fibronecting binding proteins, clumping factor A or surface protein SasF were impaired in their virulence. When a model of dermonecrosis was studied, the S. aureus surface proteins could not be shown to be involved. In summary, surface proteins play an important role in virulence of S. aureus skin abscess infections, but not in formation of skin necrosis.
Collapse
Affiliation(s)
- Jakub Kwiecinski
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|