1
|
Okselni T, Septama AW, Juliadmi D, Dewi RT, Angelina M, Yuliani T, Saragih GS, Saputri A. Quercetin as a therapeutic agent for skin problems: a systematic review and meta-analysis on antioxidant effects, oxidative stress, inflammation, wound healing, hyperpigmentation, aging, and skin cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5011-5055. [PMID: 39738831 DOI: 10.1007/s00210-024-03722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Quercetin is abundant in plants and has notable pharmacological properties for skin health. This review aims to comprehensively evaluate the effects of quercetin on skin-related issues, adhering to the PRISMA guidelines and analyzing studies from ScienceDirect, Web of Science, Scopus, and PubMed. Of the 1,398 studies identified, 65 studies met the criteria for meta-analysis. The meta-analysis indicated that quercetin had powerful antioxidant properties, protecting against oxidative stress by significantly lowering levels of MDA (Z-score, 2.51), ROS (Z-score, 3.81), and LPO (Z-score, 4.46), and enhancing enzymes of GSH (Z-score, 5.46), CAT (Z-score, 5.20), and SOD (Z-score, 4.37). Quercetin acted as an anti-inflammatory by significantly suppressing protein regulators such as NF-κβ, AP-1, and MAPKs (ERK and JNK), cytokines of TNFα, IL-6, IL-1β, IL-8, and MCP-1, and enzymes of COX-2, iNOS, and MPO, while upregulating the cytokine IL-10. Additionally, quercetin significantly suppressed IL-4 (Z-score, 3.16) and IFNγ (Z-score, 3.76) cytokines involved in chronic inflammation of atopic dermatitis. Quercetin also supported wound healing by significantly decreasing inflammatory cells (Z-score, 5.60) and enhancing fibroblast distribution (Z-score, 5.98), epithelialization (Z-score, 8.57), collagen production (Z-score, 4.20), and angiogenesis factors of MVD (Z-score, 5.66) and VEGF (Z-score, 3.86). Furthermore, quercetin significantly inhibited tyrosinase activity (Z-score, 1.95), resulting in a significantly reduced melanin content (Z-score, 2.56). A significant reduction in DNA damage (Z-score, 3.27), melanoma cell viability (Z-score, 2.97), and tumor formation was also observed to ensure the promising activity of quercetin for skin issues. This review highlights quercetin's potential as a multifaceted agent in skin care and treatment.
Collapse
Affiliation(s)
- Tia Okselni
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia.
- BRIN-Kawasan BJ Habibie, Serpong, Banten, Indonesia.
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Dian Juliadmi
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - Rizna Triana Dewi
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Marissa Angelina
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Tri Yuliani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Grace Serepina Saragih
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| | - Ariyanti Saputri
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16911, West Java, Indonesia
| |
Collapse
|
2
|
Potapovich AI, Kostyuk TV, Ishutina OV, Shutava TG, Kostyuk VA. Effects of native and particulate polyphenols on DNA damage and cell viability after UV-C exposure. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1923-1930. [PMID: 36864349 DOI: 10.1007/s00210-023-02443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Plant polyphenols have poor water solubility, resulting in low bioavailability. In order to overcome this limitation, the drug molecules can be coated with multiple layers of polymeric materials. Microcrystals of quercetin and resveratrol coated with a (PAH/PSS)4 or (CH/DexS)4 shell were prepared using the layer-by-layer assembly method; cultured human HaCaT keratinocytes were treated with UV-C, and after that, cells were incubated with native and particulate polyphenols. DNA damage, cell viability, and integrity were evaluated by comet assay, using PrestoBlueTM reagent and lactate dehydrogenase (LDH) leakage test. The data obtained indicate that both native and particulate polyphenols added immediately after UV-C exposure increased cell viability in a dose-dependent manner; however, the efficiency of particulate quercetin was more pronounced than that of the native compound; also quercetin coated with a (CH/DexS)4 shell more effectively than the native compound reduced the number of DNA lesions in the nuclei of keratinocytes exposed to UV-C radiation; native and particulate resveratrol were ineffective against DNA damage. Quercetin reduces cell death caused by UV-C radiation and increases DNA repair capacity. Coating quercetin with (CH/DexS)4 shell markedly enhanced its impact on DNA repair.
Collapse
Affiliation(s)
- Alla I Potapovich
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatyana V Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Olga V Ishutina
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus
| | - Tatsiana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, 36 F. Skaryny Street, 220141, Minsk, Belarus
| | - Vladimir A Kostyuk
- Belarusian State University, Niezaližnasci Avenue, 4, 220030, Minsk, Belarus.
| |
Collapse
|
3
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Salas-Arias K, Irías-Mata A, Sánchez-Kopper A, Hernández-Moncada R, Salas-Morgan B, Villalta-Romero F, Calvo-Castro LA. Strawberry Fragaria x ananassa cv. Festival: A Polyphenol-Based Phytochemical Characterization in Fruit and Leaf Extracts. Molecules 2023; 28:1865. [PMID: 36838852 PMCID: PMC9966301 DOI: 10.3390/molecules28041865] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Berry fruits are an important dietary source of health-promoting antioxidant polyphenols. Interestingly, berry leaves of diverse species, including strawberries, have shown higher bioactive phytochemical content in the leaves than in the fruit. Moreover, the vegetative part of the plants is usually discarded, representing a presumably large source of underutilized bioactive biomass. In this investigation, the polyphenol profiles of tropical highland strawberry (Fragaria x ananassa cv. Festival) leaves and fruits were compared by high-performance liquid chromatography coupled with a diode array detector (UHPLC-DAD) and mass spectrometry (HPLC-MS). The total polyphenol strawberry leaf extracts exhibited a 122-fold-higher total polyphenol content and 13-fold higher antioxidant activity (ORAC) than strawberry fruits, and they showed evidence of possible photoprotective effects against UV damage in human melanoma cells (SK-MEL-28) and in murine embryo fibroblasts (NIH/3T3), together with promising anti-proliferative activities against the same melanoma cells. Seven polyphenols were confirmed by HPLC-DAD in the leaf extracts, with differences depending on fraction solubility. Moreover, three substituted quercetin derivatives, three substituted kaempferol derivatives, two anthocyanins, and catechin were confirmed in the soluble fraction by HPLC-MS. Given their higher total polyphenol content and bioactive activities, underutilized strawberry Festival leaves are a potential source of apparently abundant biomass with prospective bioactive applications.
Collapse
Affiliation(s)
- Karla Salas-Arias
- Doctorado en Ciencias Naturales Para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Cartago P.O. Box 159-7050, Costa Rica
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Andrea Irías-Mata
- Centro de Investigación en Granos y Semillas, Escuela de Agronomía, Universidad de Costa Rica, San José P.O. Box 2060, Costa Rica
| | - Andrés Sánchez-Kopper
- Centro de Investigación y de Servicios Químicos y Microbiológicos, Escuela de Química, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Ricardo Hernández-Moncada
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Bridget Salas-Morgan
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Fabián Villalta-Romero
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| | - Laura A. Calvo-Castro
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica
| |
Collapse
|
5
|
Potapovich AI, Kostyuk TV, Shman TV, Ermilova TI, Shutava TG, Kostyuk VA. DNA Repair Activation and Cell Death Suppression by Plant Polyphenols in Keratinocytes Exposed to Ultraviolet Irradiation. Rejuvenation Res 2023; 26:1-8. [PMID: 36262038 DOI: 10.1089/rej.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This work investigated effects of plant polyphenolic compounds (PPs) on responses of cultured human HaCaT keratinocytes to ultraviolet radiation in the C range (UV-C). The experimental data obtained indicate a cytoprotective effect of PPs added immediately after UV-C exposure. The efficiency of PPs was lowered in the following order: acacetin ≥ silybin > quercetin. The influence of PPs on phosphorylation of histone H2AX and the number of single-strand DNA breaks in the nuclei of keratinocytes were also studied. Using the comet assay and γH2AX staining, followed by fluorescence microscopy, it has been established that PPs can reduce DNA damage in the nuclei of keratinocytes exposed to UV-C. It is concluded that PPs can diminish the destructive effect of UV radiation on skin cells, activating the process of repairing genetic damage.
Collapse
Affiliation(s)
| | | | - Tatyana V Shman
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Borovlyany, Belarus
| | - Tatyana I Ermilova
- Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Borovlyany, Belarus
| | - Tatyana G Shutava
- Institute of Chemistry of New Materials, National Academy of Sciences of Belarus, Minsk, Belarus
| | | |
Collapse
|
6
|
Pizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci 2022. [DOI: 10.1007/s12038-022-00314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Butkeviciute A, Ramanauskiene K, Kurapkiene V, Janulis V. Dermal Penetration Studies of Potential Phenolic Compounds Ex Vivo and Their Antioxidant Activity In Vitro. PLANTS (BASEL, SWITZERLAND) 2022; 11:1901. [PMID: 35893606 PMCID: PMC9331963 DOI: 10.3390/plants11151901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds with miscellaneous biological activities are an interesting component in dermatology and cosmetology practices. The aim of our study was to determine the phenolic compounds released from emulsion, emulgel, gel, ointment, and oleogel formulations penetration into human skin layers, both the epidermis and dermis, and estimate their antioxidant activity. The ex vivo penetration study was performed using Bronaugh type flow-through diffusion cells. Penetration studies revealed that, within 24 h, the chlorogenic acid released from the oleogel penetrated into skin layers to a depth of 2.0 ± 0.1 µg/mL in the epidermis and 1.5 ± 0.07 µg/mL in the dermis. The oleogel-released complex of phenolic compounds penetrating into epidermis showed the strongest DPPH free radical scavenging activity (281.8 ± 14.1 µM TE/L). The study estimated a strong positive correlation (r = 0.729) between the amount of quercetin penetrated into epidermis and the antioxidant activity detected in the epidermis extract. Plant based phenolic compounds demonstrated antioxidant activity and showed great permeability properties through the skin.
Collapse
Affiliation(s)
- Aurita Butkeviciute
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| | - Kristina Ramanauskiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania; (K.R.); (V.K.)
| | - Vaida Kurapkiene
- Department of Clinical Pharmacy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania; (K.R.); (V.K.)
| | - Valdimaras Janulis
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Ave. 13, LT-50162 Kaunas, Lithuania;
| |
Collapse
|
8
|
Baroi AM, Popitiu M, Fierascu I, Sărdărescu ID, Fierascu RC. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants (Basel) 2022; 11:antiox11020393. [PMID: 35204275 PMCID: PMC8869687 DOI: 10.3390/antiox11020393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Wine production is one of the most critical agro-industrial sectors worldwide, generating large amounts of waste with negative environmental impacts, but also with high economic value and several potential applications. From wine shoots to grape pomace or seeds, all of the wastes are rich sources of bioactive compounds with beneficial effects for human health, with these compounds being raw materials for other industries such as the pharmaceutical, cosmetic or food industries. Furthermore, these compounds present health benefits such as being antioxidants, supporting the immune system, anti-tumoral, or preventing cardiovascular and neural diseases. The present work aims to be a critical discussion of the extraction methods used for bioactive compounds from grapevine waste and their beneficial effects on human health.
Collapse
Affiliation(s)
- Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
| | - Mircea Popitiu
- Department of Vascular Surgery and Reconstructive Microsurgery, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Correspondence: (M.P.); (I.F.)
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 011464 Bucharest, Romania
- Correspondence: (M.P.); (I.F.)
| | - Ionela-Daniela Sărdărescu
- National Research and Development Institute for Biotechnology in Horticulture, 117715 Stefanesti, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM, 060021 Bucharest, Romania; (A.M.B.); (R.C.F.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
9
|
Madureira J, Margaça FMA, Santos-Buelga C, Ferreira ICFR, Verde SC, Barros L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr Rev Food Sci Food Saf 2021; 21:453-476. [PMID: 34773427 DOI: 10.1111/1541-4337.12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
The wastes generated during the olive oil extraction process, even if presenting a negative impact for the environment, contain several bioactive compounds that have considerable health benefits. After suitable extraction and purification, these compounds can be used as food antioxidants or as active ingredients in nutraceutical and cosmetic products due to their interesting technological and pharmaceutical properties. The aim of this review, after presenting general applications of the different types of wastes generated from this industry, is to focus on the olive pomace produced by the two-phase system and to explore the challenging applications of the main individual compounds present in this waste. Hydroxytyrosol, tyrosol, oleuropein, oleuropein aglycone, and verbascoside are the most abundant bioactive compounds present in olive pomace. Besides their antioxidant activity, these compounds also demonstrated other biological properties such as antimicrobial, anticancer, or anti-inflammatory, thus being used in formulations to produce pharmaceutical and cosmetic products or in the fortification of food. Nevertheless, it is mandatory to involve both industries and researchers to create strategies to valorize these byproducts while maintaining environmental sustainability.
Collapse
Affiliation(s)
- Joana Madureira
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal.,Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal.,Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain
| | - Fernanda M A Margaça
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s /n, Salamanca, Spain.,Unidad de Excelencia Producción, Agrícola y Medioambiente (AGRIENVIRONMENT), Parque Científico, Universidad de Salamanca, Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Sandra Cabo Verde
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, Loures, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| |
Collapse
|
10
|
Şenol H, Tulay P, Ergören MÇ, Hanoğlu A, Çalış İ, Mocan G. Cytotoxic Effects of Verbascoside on MCF-7 and MDA-MB-231. Turk J Pharm Sci 2021; 18:637-644. [PMID: 34719192 DOI: 10.4274/tjps.galenos.2021.36599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objectives Verbascoside, also known as acteoside/kusaginin, has attracted a great attention due to its pharmacological features. In this study, we aimed to determine the cytotoxic effects of pure verbascoside isolated from Phlomis nissolii L. plant in both MCF-7 and MDA-MB-231 cell lines in vitro. Materials and Methods MCF-7 and MDA-MB 231 cells were treated with verbascoside (100, 48, 25, 10, 1, 0.5, and 0.1 μM) for 24, 48, and 72 hours. Cytotoxic effect of verbascoside in MCF-7 and MDA-MB-231 cells was assessed using TEBU-BIO cell counting kit 8. Results and Conclusion IC50 values for 24, 48, and 72 h verbascoside exposure of MCF-7 cells were determined as 0.127, 0.2174, and 0.2828 μM, respectively. R2 values were calculated as 0.9630, 0.8789 and 0.8752, respectively. Two-Way ANOVA multiple comparison test results showed that 100 μM verbascoside has the highest cytotoxic effect on MCF-7 breast cancer (BC) cells after 72 h of exposure. IC50 values for 24, 48 and 72 h verbascoside exposure of MDA-MB 231 cells were determined as 0.1597, 0.2584 and 0.2563 μM, respectively and R2 values were calculated as 0.8438, 0.5107 and 0.9203, respectively. Two-Way ANOVA multiple comparisons test results showed that 100 μM verbascoside has the highest cytotoxic effect on MDA-MB 231 BC cells after 24, 48 and 72 h of exposure.
Collapse
Affiliation(s)
- Hülya Şenol
- Near East University Faculty of Medicine, Department of Medical Biology, Nicosia, North Cyprus
| | - Pınar Tulay
- Near East University Faculty of Medicine, Department of Medical Genetics, Nicosia, North Cyprus,Near East University, Desam Research Institute, Nicosia, Cyprus
| | - Mahmut Çerkez Ergören
- Near East University Faculty of Medicine, Department of Medical Genetics, Nicosia, North Cyprus,Near East University, Desam Research Institute, Nicosia, Cyprus
| | - Azmi Hanoğlu
- Near East University Faculty of Pharmacy, Department of Pharmacognosy, Nicosia, North Cyprus
| | - İhsan Çalış
- Near East University Faculty of Pharmacy, Department of Pharmacognosy, Nicosia, North Cyprus
| | - Gamze Mocan
- Near East University Faculty of Medicine, Department of Medical Pathology, Nicosia, North Cyprus
| |
Collapse
|
11
|
Carrara M, Kelly MT, Roso F, Larroque M, Margout D. Potential of Olive Oil Mill Wastewater as a Source of Polyphenols for the Treatment of Skin Disorders: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7268-7284. [PMID: 34180235 DOI: 10.1021/acs.jafc.1c00296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Current trends toward naturally occurring compounds of therapeutic interest have contributed to an increasing number of studies on olive oil phenolics in the treatment of diseases with oxidative and inflammatory origins. Recent focus has been on olive oil wastewater, which is richer in phenolic compounds than olive oil itself. In this review, we present findings demonstrating the potential use of olive mill wastewater in dermatology. Particular attention is given to compounds with proven benefits in topical pharmacology: caffeic and ferulic acids, tyrosol and hydroxytyrosol, verbascoside, and oleuropein. The review is divided into different sections: inflammatory skin diseases, microbial effects, wound healing in addition to the antimelanoma properties of olive mill waste phenolics, and their potential in sun protection agents. There is strong evidence to support further studies into the valorization of this abundant and sustainable source of phenolic compounds for use in dermatology and dermo-cosmetic preparations.
Collapse
Affiliation(s)
- Morgane Carrara
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Mary T Kelly
- Faculté de Pharmacie, Université Montpellier, 15 Avenue Charles Flahault, 34093 Montpellier, France
| | - Florence Roso
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Michel Larroque
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| | - Delphine Margout
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34090 Montpellier, France
| |
Collapse
|
12
|
Lecci RM, D’Antuono I, Cardinali A, Garbetta A, Linsalata V, Logrieco AF, Leone A. Antioxidant and Pro-Oxidant Capacities as Mechanisms of Photoprotection of Olive Polyphenols on UVA-Damaged Human Keratinocytes. Molecules 2021; 26:molecules26082153. [PMID: 33917980 PMCID: PMC8068360 DOI: 10.3390/molecules26082153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022] Open
Abstract
A wide variety of polyphenols are reported to have considerable antioxidant and skin photoprotective effects, although the mechanisms of action are not fully known. Environmentally friendly and inexpensive sources of natural bioactive compounds, such as olive mill wastewater (OMWW), the by-product of olive-oil processing, can be considered an economic source of bioactive polyphenols, with a range of biological activities, useful as chemotherapeutic or cosmeceutical agents. Green strategies, such as the process based on membrane technologies, allow to recover active polyphenols from this complex matrix. This study aims to evaluate the antioxidant, pro-oxidant, and photoprotective effects, including the underlying action mechanism(s), of the ultra-filtered (UF) OMWW fractions, in order to substantiate their use as natural cosmeceutical ingredient. Six chemically characterized UF-OMWW fractions, from Italian and Greek olive cultivar processing, were investigated for their antioxidant activities, measured by Trolox Equivalent Antioxidant Capacity (TEAC), LDL oxidation inhibition, and ROS-quenching ability in UVA-irradiated HEKa (Human Epidermal Keratinocytes adult) cultures. The photoprotective properties of UF-OMWW were assayed as a pro-oxidant-mediated pro-apoptotic effect on the UVA-damaged HEKa cells, which can be potentially involved in the carcinogenesis process. All the UF-OMWW fractions exerted an effective antioxidant activity in vitro and in cells when administered together with UV-radiation on HEKa. A pro-oxidative and pro-apoptotic effect on the UVA-damaged HEKa cells were observed, suggesting some protective actions of polyphenol fraction on keratinocyte cell cultures.
Collapse
Affiliation(s)
- Raffaella Marina Lecci
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
| | - Isabella D’Antuono
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Angela Cardinali
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| | - Antonella Garbetta
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Vito Linsalata
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonio F. Logrieco
- National Research Council, Institute of Science of Food Production, (CNR-ISPA, Bari), Via Amendola, 122/O, 70126 Bari, Italy; (I.D.); (A.G.); (V.L.); (A.F.L.)
| | - Antonella Leone
- National Research Council, Institute of Sciences of Food Production, (CNR-ISPA, Lecce), Via Prov.le Lecce-Monteroni, 73100 Lecce, Italy;
- Correspondence: (A.C.); (A.L.); Tel.: +39-080-5929303 (A.C.); +39-0832-422615 (A.L.); Fax: +39-0832-422620 (A.L.)
| |
Collapse
|
13
|
Mallamaci R, Budriesi R, Clodoveo ML, Biotti G, Micucci M, Ragusa A, Curci F, Muraglia M, Corbo F, Franchini C. Olive Tree in Circular Economy as a Source of Secondary Metabolites Active for Human and Animal Health Beyond Oxidative Stress and Inflammation. Molecules 2021; 26:molecules26041072. [PMID: 33670606 PMCID: PMC7922482 DOI: 10.3390/molecules26041072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Extra-virgin olive oil (EVOO) contains many bioactive compounds with multiple biological activities that make it one of the most important functional foods. Both the constituents of the lipid fraction and that of the unsaponifiable fraction show a clear action in reducing oxidative stress by acting on various body components, at concentrations established by the European Food Safety Authority's claims. In addition to the main product obtained by the mechanical pressing of the fruit, i.e., the EVOO, the residual by-products of the process also contain significant amounts of antioxidant molecules, thus potentially making the Olea europea L. an excellent example of the circular economy. In fact, the olive mill wastewaters, the leaves, the pomace, and the pits discharged from the EVOO production process are partially recycled in the nutraceutical and cosmeceutical fields also because of their antioxidant effect. This work presents an overview of the biological activities of these by-products, as shown by in vitro and in vivo assays, and also from clinical trials, as well as their main formulations currently available on the market.
Collapse
Affiliation(s)
- Rosanna Mallamaci
- Department of Bioscience, Biotechnology and Biopharmaceutics, University Aldo Moro Bari, 70125 Bari, Italy;
| | - Roberta Budriesi
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine, University Aldo Moro Bari, 702125 Bari, Italy;
| | - Giulia Biotti
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Matteo Micucci
- Department of Pharmacy and Biotechnology, Food Chemistry & Nutraceutical Lab, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy; (R.B.); (G.B.); (M.M.)
| | - Andrea Ragusa
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, 73100 Lecce, Italy;
| | - Francesca Curci
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Marilena Muraglia
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
- Correspondence: ; Tel.: +39-0805442746
| | - Carlo Franchini
- Department of Pharmacy-Drug Sciences, University Aldo Moro Bari, 70125 Bari, Italy; (F.C.); (M.M.); (C.F.)
| |
Collapse
|
14
|
Dias R, Oliveira H, Fernandes I, Simal-Gandara J, Perez-Gregorio R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit Rev Food Sci Nutr 2020; 61:1130-1151. [PMID: 32338035 DOI: 10.1080/10408398.2020.1754162] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolic compounds in plants are essential components of human nutrition, which provide various health benefits. However, some missing links became the research in phenolic compounds structures and potential applications in a challenging work. Despite universal extraction methods with mixtures of different organic solvents are generally adopted in the analysis of phenolic compounds, a need for establish a specific procedure is still open. The great heterogeneity in food and food by-products matrices and the lack of standardized methods which combine chromatographic with spectrophotometric techniques to calculate the amount of phenolic compounds joined with the absence of specific standards hamper to accurate know the real amount of phenolic compounds. Indeed, the high complexity in nature and chemistry of phenolic compounds clearly difficult to establish a daily intake to obtain certain healthy outcomes. Hence, despite the potential of phenolic compounds to use them in cosmetic and healthy applications have been widely analyzed, some concerns must be considered. The chemical complexity, the interactions between phenolic compounds and other food components and the structural changes induced by food processing joined with the lack in the understanding of phenolic compounds metabolism and bioavailability undergo the need to conduct a comprehensive review of each factors influencing the final activity of phenolic compounds. This paper summarizes the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity. This paper illustrates the potential of phenolic compounds for disease prevention and cosmetics production, as well as their many other uses derived from their antioxidant activity.
Collapse
Affiliation(s)
- Ricardo Dias
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Helder Oliveira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Iva Fernandes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Rosa Perez-Gregorio
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
16
|
Hydrangenol Isolated from the Leaves of Hydrangea serrata Attenuates Wrinkle Formation and Repairs Skin Moisture in UVB-Irradiated Hairless Mice. Nutrients 2019; 11:nu11102354. [PMID: 31581754 PMCID: PMC6835603 DOI: 10.3390/nu11102354] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
Our previous study showed that hydrangenol isolated from Hydrangea serrata leaves exerts antiphotoaging activity in vitro. In this study, we determined its antiphotoaging effect in UVB-irradiated HR-1 hairless mice. We evaluated wrinkle formation, skin thickness, histological characteristics, and mRNA and protein expression using qRT-PCR and Western blot analysis in dorsal skins. Hydrangenol mitigated wrinkle formation, dorsal thickness, dehydration, and collagen degradation. Hydrangenol increased the expression of involucrin, filaggrin, and aquaporin-3 (AQP3) as well as hyaluronic acid (HA) production via hyaluronidase (HYAL)-1/-2 downregulation. Consistent with the recovery of collagen composition, the expression of Pro-COL1A1 was increased by hydrangenol. Matrix metalloproteinase (MMP)-1/-3, cyclooxygenase-2 (COX-2), and interleukin-6 (IL-6) expression was reduced by hydrangenol. Hydrangenol attenuated the phosphorylation of mitogen-activated protein kinases (MAPKs) including ERK and p38, activator protein 1 (AP-1) subunit, and signal transduction and activation of transcription 1 (STAT1). Hydrangenol upregulated the expression of nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO-1), glutamate cysteine ligase modifier subunit (GCLM), and glutamate cysteine ligase catalysis subunit (GCLC). Taken together, our data suggest that hydrangenol can prevent wrinkle formation by reducing MMP and inflammatory cytokine levels and increasing the expression of moisturizing factors and antioxidant genes.
Collapse
|
17
|
de Lima Cherubim DJ, Buzanello Martins CV, Oliveira Fariña L, da Silva de Lucca RA. Polyphenols as natural antioxidants in cosmetics applications. J Cosmet Dermatol 2019; 19:33-37. [PMID: 31389656 DOI: 10.1111/jocd.13093] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Currently, there is a great interest in cosmetics prepared on natural resources bases and this may restrict the use of synthetic substances. Plants play a relevant role as a source of biologically active natural products with cosmetic and dermatological importance. According to this context, polyphenolic extracts are highlighted because they have proven antioxidant, anti-inflammatory, anti-aging, antimicrobial, and supporting activity in solar photoprotection. AIMS The purpose this study were reviewed at reporting the antioxidant activity of phenolic compounds, mainly applied to dermatological therapy, and highlighting the action mechanisms and structure-activity relationship. METHODOLOGY In September 2017, we performed a literature search in PubMed and Scielo for scientific researches, antioxidant studies, and systemic reviews. The search terms we used were "PHYTOCOSMETICS" AND "ANTIOXIDANT ACTIVITY" OR "PHENOLIC COMPOUNDS" (from 2000). As inclusion criteria were used relevant original articles, scientific research in the area of interest, and crucial reference articles. Exclusion criteria were: duplicate publications, non-relevant articles and not published in English. RESULTS The potential cosmetic application of phenolic compounds as natural antioxidants has been attributed to the chemical structure of these compounds, which to interfere in different phases of the oxidation mechanism. CONCLUSION The use of phenolic extracts emerges as a viable alternative for cosmetic application, ensuring a commitment to sustainability. However, it is of crucial importance to evaluate the toxicity risks of raw materials and finished products.
Collapse
Affiliation(s)
| | | | - Luciana Oliveira Fariña
- Medical and Pharmaceutical Sciences Center, Western Paraná State University, Cascavel, Brazil
| | - Rosemeire Aparecida da Silva de Lucca
- Medical and Pharmaceutical Sciences Center, Western Paraná State University, Cascavel, Brazil.,Engineering and Exact Sciences Center, Western Paraná State University, Toledo, Brasil
| |
Collapse
|
18
|
Chaiprasongsuk A, Janjetovic Z, Kim TK, Jarrett SG, D'Orazio JA, Holick MF, Tang EKY, Tuckey RC, Panich U, Li W, Slominski AT. Protective effects of novel derivatives of vitamin D 3 and lumisterol against UVB-induced damage in human keratinocytes involve activation of Nrf2 and p53 defense mechanisms. Redox Biol 2019; 24:101206. [PMID: 31039479 PMCID: PMC6488822 DOI: 10.1016/j.redox.2019.101206] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Abstract
We tested whether novel CYP11A1-derived vitamin D3- and lumisterol-hydroxyderivatives, including 1,25(OH)2D3, 20(OH)D3, 1,20(OH)2D3, 20,23(OH)2D3, 1,20,23(OH)3D3, lumisterol, 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3, can protect against UVB-induced damage in human epidermal keratinocytes. Cells were treated with above compounds for 24 h, then subjected to UVB irradiation at UVB doses of 25, 50, 75, or 200 mJ/cm2, and then examined for oxidant formation, proliferation, DNA damage, and the expression of genes at the mRNA and protein levels. Oxidant formation and proliferation were determined by the DCFA-DA and MTS assays, respectively. DNA damage was assessed using the comet assay. Expression of antioxidative genes was evaluated by real-time RT-PCR analysis. Nuclear expression of CPD, phospho-p53, and Nrf2 as well as its target proteins including HO-1, CAT, and MnSOD, were assayed by immunofluorescence and western blotting. Treatment of cells with the above compounds at concentrations of 1 or 100 nM showed a dose-dependent reduction in oxidant formation. At 100 nM they inhibited the proliferation of cultured keratinocytes. When keratinocytes were irradiated with 50–200 mJ/cm2 of UVB they also protected against DNA damage, and/or induced DNA repair by enhancing the repair of 6-4PP and attenuating CPD levels and the tail moment of comets. Treatment with test compounds increased expression of Nrf2-target genes involved in the antioxidant response including GR, HO-1, CAT, SOD1, and SOD2, with increased protein expression for HO-1, CAT, and MnSOD. The treatment also stimulated the phosphorylation of p53 at Ser-15, increased its concentration in the nucleus and enhanced Nrf2 translocation into the nucleus. In conclusion, pretreatment of keratinocytes with 1,25(OH)2D3 or CYP11A1-derived vitamin D3- or lumisterol hydroxy-derivatives, protected them against UVB-induced damage via activation of the Nrf2-dependent antioxidant response and p53-phosphorylation, as well as by the induction of the DNA repair system. Thus, the new vitamin D3 and lumisterol hydroxy-derivatives represent promising anti-photodamaging agents. Vitamin D3 and lumisterol derivatives stimulate antioxidative responses in skin. Vitamin D3 and lumisterol derivatives protect against UVB-induced DNA damage. Vitamin D3 and lumisterol derivatives target p53 and Nrf2-antioxidant pathways. Vitamin D3 and lumisterol derivatives promise to be skin photoprotectors
Collapse
Affiliation(s)
- Anyamanee Chaiprasongsuk
- Department of Dermatology, University of Alabama at Birmingham, USA; Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Tae-Kang Kim
- Department of Dermatology, University of Alabama at Birmingham, USA
| | - Stuart G Jarrett
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - John A D'Orazio
- Department of Toxicology and Cancer Biology, The Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Edith K Y Tang
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Robert C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Andrzej T Slominski
- Department of Dermatology, University of Alabama at Birmingham, USA; VA Medical Center, Birmingham, AL, USA.
| |
Collapse
|
19
|
Secondary Plant Metabolites for Sun Protective Cosmetics: From Pre-Selection to Product Formulation. COSMETICS 2018. [DOI: 10.3390/cosmetics5020032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|
20
|
Photodamage attenuating potential of Nectandra hihua against UVB-induced oxidative stress in L929 fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 181:127-133. [DOI: 10.1016/j.jphotobiol.2018.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 02/02/2023]
|
21
|
Ribeiro FM, Volpato H, Lazarin-Bidóia D, Desoti VC, de Souza RO, Fonseca MJV, Ueda-Nakamura T, Nakamura CV, Silva SDO. The extended production of UV-induced reactive oxygen species in L929 fibroblasts is attenuated by posttreatment with Arrabidaea chica through scavenging mechanisms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:175-181. [PMID: 29156345 DOI: 10.1016/j.jphotobiol.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 01/07/2023]
Abstract
Ultraviolet radiation (UVR) exposure causes various injurious effects to human skin by generating reactive oxygen species (ROS). Excessive ROS production can lead to oxidative stress which may damage cellular components like lipids and proteins and causing photoaging. The use of natural photochemopreventive agents with antioxidant properties is an important alternative to improve the effectiveness of sunscreens and reduce skin photodamage. A crude extract (CE) from the leaves of Arrabidaea chica underwent partition by a liquid-liquid method. The hexane fraction (FH), chloroform fraction (FC), and ethyl acetate fraction (FEA) were obtained. The antioxidant capacity of the CE, FH, FC, and FEA was studied in a cell-free system using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and the xanthine/luminol/xanthine oxidase system. The FC had the best antioxidant activity. We also evaluated the photochemoprotective effect of A. chica in protecting L929 fibroblasts against UV-A- and UV-B-induced cell damage. A. chica inhibited the extended production of ROS up to 3h. Posttreatment with the CE and FC attenuated UV-induced cell damage through scavenging mechanisms, including the quenching of intracellular ROS and mitochondrial O2- and preventing lipid peroxidation. These results suggest that A. chica may be a promising non-sunscreen photoprotector that can improve the effectiveness of commercial sunscreens.
Collapse
Affiliation(s)
- Fabianne Martins Ribeiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Hélito Volpato
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Danielle Lazarin-Bidóia
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Vânia Cristina Desoti
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | | | | | - Tânia Ueda-Nakamura
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil
| | - Celso Vataru Nakamura
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Sueli de Oliveira Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Paraná, Brazil.
| |
Collapse
|
22
|
Lin KT, Chang TC, Lai FY, Lin CS, Chao HL, Lee SY. Rhodiola crenulata Attenuates γ-Ray Induced Cellular Injury via Modulation of Oxidative Stress in Human Skin Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:175-190. [PMID: 29298516 DOI: 10.1142/s0192415x18500106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Skin injury is a major complication during radiation therapy and is associated with oxidative damage to skin cells. An effective and safe radioprotectant to prevent this skin damage is still unavailable. The Rhodiola crenulata root extract (RCE) has been reported to be a free radical scavenger and a potent anti-oxidant in both in vitro and in vivo models. In the current study, we investigated the effects of RCE on ionizing radiation-induced skin injury and its underlying mechanisms. HaCaT cells - a non-cancerous skin cell line together with HepG2, Caco2, A549, and OECM cancer cell lines - were pre-treated with RCE for 24[Formula: see text]h followed by exposure to 15 Gy using Caesium-137 as a γ-ray source. The cell viability was measured. In HaCaT cells, oxidative stress markers, cellular apoptosis pathways, matrix metalloproteinases (MMPs), and pro-inflammatory cytokine gene expression were studied. We found that RCE significantly protected HaCaT cells, but not cancer cells from the loss of viability induced by exposure to ionizing radiation. RCE attenuated radiation-induced oxidative stress markers, cell apoptosis, MMP levels, and expression of cytokine genes. RCE also limited the induction of p53 and p21 by radiation exposure. These findings indicate that RCE may selectively protect the skin cells from ionizing radiation without altering its ability to kill cancer cells. Therefore, we suggest that RCE or its derivatives could serve as a novel radioprotective therapy.
Collapse
Affiliation(s)
- Kuen-Tze Lin
- * Graduate Institute of Medical Sciences, Tri-Service General Hospital, Taipei, Taiwan.,† Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Taiwan
| | - Tsu-Chung Chang
- ‡ Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Feng-Yi Lai
- § Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Shu Lin
- † Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Taiwan
| | - Hsing-Lung Chao
- † Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Taiwan
| | - Shih-Yu Lee
- * Graduate Institute of Medical Sciences, Tri-Service General Hospital, Taipei, Taiwan.,§ Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
23
|
Wu PY, Lyu JL, Liu YJ, Chien TY, Hsu HC, Wen KC, Chiang HM. Fisetin Regulates Nrf2 Expression and the Inflammation-Related Signaling Pathway to Prevent UVB-Induced Skin Damage in Hairless Mice. Int J Mol Sci 2017; 18:ijms18102118. [PMID: 28994699 PMCID: PMC5666800 DOI: 10.3390/ijms18102118] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
Chronic ultraviolet (UV) exposure may cause skin damage, disrupt skin barrier function, and promote wrinkle formation. UV induces oxidative stress and inflammation, which results in extracellular matrix degradation in the dermis and epidermal hyperplasia. Our previous study demonstrated that fisetin exerts photoprotective activity by inhibiting mitogen-activated protein kinase/activator protein-1/matrix metalloproteinases (MMPs) activation. In this study, fisetin was applied topically to investigate its antiphotodamage effects in hairless mice. The erythema index (a* values) and transepidermal water loss were evaluated to assess skin damage, and immunohistochemical staining was conducted to elucidate the photoprotective mechanism of fisetin. The results revealed that the topical application of fisetin reduced UVB-induced increase in the a* value and wrinkle formation. In addition, fisetin inhibited epidermal hyperplasia and increased the collagen content in the dermis. Fisetin exerted photoprotective activity by inhibiting the expression of MMP-1, MMP-2, and cyclooxygenase-2 and increasing the expression of nuclear factor erythroid 2-related factor. Furthermore, fisetin increased the expression of filaggrin to prevent UVB-induced barrier function disruption. Altogether, the present results provide evidence of the effects and mechanisms of fisetin's antiphotodamage and antiphotoinflammation activities.
Collapse
Affiliation(s)
- Po-Yuan Wu
- Department of Dermatology, China Medical University Hospital, Taichung 404, Taiwan.
- School of Medicine, China Medical University, Taichung 404, Taiwan.
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Jia-Ling Lyu
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
- Ph. D Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan.
| | - Yi-Jung Liu
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
- Ph. D Program for Biotechnology Industry, China Medical University, Taichung 404, Taiwan.
| | - Ting-Yi Chien
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Hao-Cheng Hsu
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Kuo-Ching Wen
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| | - Hsiu-Mei Chiang
- Department of Cosmeceutics, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
24
|
Kostyuk V, Potapovich A, Albuhaydar AR, Mayer W, De Luca C, Korkina L. Natural Substances for Prevention of Skin Photoaging: Screening Systems in the Development of Sunscreen and Rejuvenation Cosmetics. Rejuvenation Res 2017; 21:91-101. [PMID: 28661208 PMCID: PMC5910042 DOI: 10.1089/rej.2017.1931] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Solar broadband UV irradiation is commonly regarded as a major causative reason for cutaneous photoaging. The pro-aging molecular pathways and cellular targets affected by UVA+UVB light in human skin have been extensively investigated. Notwithstanding growing knowledge in mechanisms of photoaging, research and development of clinically efficient, nontoxic, and sustainable topical preparations providing full physical, chemical, and biological photoprotection still remain a great challenge for pharmaceutical and cosmetic industries. In this study, we are proposing a panel of the in vitro methods for preselection of natural photoprotective substances with high photostability and low phototoxicity able of absorbing a broadband UVA+UVB irradiation (physical sunscreen), reducing UV-related overproduction of free radicals and loss of endogenous antioxidants (chemical protection), and attenuating UV-induced cytotoxicity and immune and metabolic responses (biological protection) in primary human epidermal keratinocytes and immortalized human keratinocyte cultures. Our data showed that secondary metabolites biosynthesized in plant cells in response to UV irradiation, such as phenylpropanoids and their glycosylated metabolites, aglycons and glycosylated flavonoids, and leontopodic acids, hold the best promise for complete natural topical prevention of photoaging and rejuvenation of photoaged skin. Meristem plant cell cultures elicited by solar simulating UV could be the most environmentally sustainable biotechnological source of polyphenols with combined photoprotective and antiaging properties.
Collapse
Affiliation(s)
- Vladimir Kostyuk
- 1 Department of Biology, Byelorussian State University , Minsk, Belarus
| | - Alla Potapovich
- 1 Department of Biology, Byelorussian State University , Minsk, Belarus
| | | | | | | | - Liudmila Korkina
- 3 Centre for Innovative Biotechnological Investigations NANOLAB (CIBI-NANOLAB) , Moscow, Russia
| |
Collapse
|
25
|
Gasparrini M, Forbes-Hernandez TY, Afrin S, Reboredo-Rodriguez P, Cianciosi D, Mezzetti B, Quiles JL, Bompadre S, Battino M, Giampieri F. Strawberry-Based Cosmetic Formulations Protect Human Dermal Fibroblasts against UVA-Induced Damage. Nutrients 2017; 9:nu9060605. [PMID: 28613256 PMCID: PMC5490584 DOI: 10.3390/nu9060605] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 11/22/2022] Open
Abstract
Extreme exposure of skin to Ultraviolet A (UVA)-radiation may induce a dysregulated production of reactive oxygen species (ROS) which can interact with cellular biomolecules leading to oxidative stress, inflammation, DNA damage, and alteration of cellular molecular pathways, responsible for skin photoaging, hyperplasia, erythema, and cancer. For these reasons, the use of dietary natural bioactive compounds with remarkable antioxidant activity could be a strategic tool to counteract these UVA-radiation-caused deleterious effects. Thus, the purpose of the present work was to test the efficacy of strawberry (50 μg/mL)-based formulations supplemented with Coenzyme Q10 (100 μg/mL) and sun protection factor 10 in human dermal fibroblasts irradiated with UVA-radiation. The apoptosis rate, the amount of intracellular reactive oxygen species (ROS) production, the expression of proteins involved in antioxidant and inflammatory response, and mitochondrial functionality were evaluated. The results showed that the synergic topical use of strawberry and Coenzyme Q10 provided a significant (p < 0.05) photoprotective effect, reducing cell death and ROS, increasing antioxidant defense, lowering inflammatory markers, and improving mitochondrial functionality. The obtained results suggest the use of strawberry-based formulations as an innovative, natural, and useful tool for the prevention of UVA exposure-induced skin diseases in order to decrease or substitute the amount of synthetic sunscreen agents.
Collapse
Affiliation(s)
- Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Area de Nutrición y Salud, Universidad Internacional Iberoamericana (UNINI), 24040 Campeche, Mexico.
| | - Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Patricia Reboredo-Rodriguez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade de Vigo, 32004 Ourense, Spain.
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Josè L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, 18000 Granada, Spain.
| | - Stefano Bompadre
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Facoltà di Medicina, Università Politecnica delle Marche Via Ranieri 65, 60131 Ancona, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), 39011 Santander, Spain.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy.
| |
Collapse
|
26
|
Meristem Plant Cells as a Sustainable Source of Redox Actives for Skin Rejuvenation. Biomolecules 2017; 7:biom7020040. [PMID: 28498360 PMCID: PMC5485729 DOI: 10.3390/biom7020040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/30/2022] Open
Abstract
Recently, aggressive advertisement claimed a “magic role” for plant stem cells in human skin rejuvenation. This review aims to shed light on the scientific background suggesting feasibility of using plant cells as a basis of anti-age cosmetics. When meristem cell cultures obtained from medicinal plants are exposed to appropriate elicitors/stressors (ultraviolet, ultrasound ultraviolet (UV), ultrasonic waves, microbial/insect metabolites, heavy metals, organic toxins, nutrient deprivation, etc.), a protective/adaptive response initiates the biosynthesis of secondary metabolites. Highly bioavailable and biocompatible to human cells, low-molecular weight plant secondary metabolites share structural/functional similarities with human non-protein regulatory hormones, neurotransmitters, pigments, polyamines, amino-/fatty acids. Their redox-regulated biosynthesis triggers in turn plant cell antioxidant and detoxification molecular mechanisms resembling human cell pathways. Easily isolated in relatively large quantities from contaminant-free cell cultures, plant metabolites target skin ageing mechanisms, above all redox imbalance. Perfect modulators of cutaneous oxidative state via direct/indirect antioxidant action, free radical scavenging, UV protection, and transition-metal chelation, they are ideal candidates to restore photochemical/redox/immune/metabolic barriers, gradually deteriorating in the ageing skin. The industrial production of plant meristem cell metabolites is toxicologically and ecologically sustainable for fully “biological” anti-age cosmetics.
Collapse
|
27
|
Montes de Oca MK, Pearlman RL, McClees SF, Strickland R, Afaq F. Phytochemicals for the Prevention of Photocarcinogenesis. Photochem Photobiol 2017; 93:956-974. [PMID: 28063168 DOI: 10.1111/php.12711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Ultraviolet (UV) exposure has an array of damaging effects and is the main cause of skin cancer in humans. Nonmelanoma skin cancer (NMSC), including basal cell carcinoma and squamous cell carcinoma, is the most common type of cancer. Incidence of NMSC has increased due to greater UV radiation, increased life expectancy and other changes in lifestyle; the annual cost of skin cancer treatment in the United States has increased concurrently to around eight billion dollars. Because of these trends, novel approaches to skin cancer prevention have become an important area of research to decrease skin cancer morbidity and defray the costs associated with treatment. Chemoprevention aims to prevent or delay the development of skin cancer through the use of phytochemicals. Use of phytochemicals as chemopreventive agents has gained attention due to their low toxicity and anticarcinogenic properties. Phytochemicals also exhibit antioxidant, anti-inflammatory and antiproliferative effects which support their use as chemopreventive agents, particularly for skin cancer. Preclinical and human studies have shown that phytochemicals decrease UV-induced skin damage and photocarcinogenesis. In this review article, we discuss the selected phytochemicals that may prevent or delay UV-induced carcinogenesis and highlight their potential use for skin protection.
Collapse
Affiliation(s)
| | - Ross L Pearlman
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Sarah F McClees
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca Strickland
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
28
|
Lee JH, Kim JS, Park SY, Lee YJ. Resveratrol induces human keratinocyte damage via the activation of class III histone deacetylase, Sirt1. Oncol Rep 2015; 35:524-9. [PMID: 26499368 DOI: 10.3892/or.2015.4332] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/06/2015] [Indexed: 11/06/2022] Open
Abstract
Human skin diseases are various and induce chronic inflammatory disorders, including psoriasis, atopic dermatitis and certain forms of ichthyosis. Psoriasis is a chronic inflammatory skin disease characterized by circumscribed, red, thickened plaques. Regulation of the balance between growth, differentiation and death is critical to keratinocytes; when altered, epidermal keratinocytes undergo hyperproliferation, abnormal differentiation and inflammatory infiltration. In the present study, we focused on the effects of resveratrol, found in red wine and peanuts, on the cell death of keratinocytes. We additionally studied the mechanism of resveratrol on Sirt1, a class III histone deacetylase, and Akt phosphorylation. Resveratrol caused apoptosis and increased Sirt1 expression in human HaCaT keratinocytes, following a decrease in the p62 protein level. Inhibition of Sirt1 by Sirt1 inhibitor restored cell viability and protein levels. Furthermore, we showed that resveratrol-induced Sirt1 blocked Akt phosphorylation. The present results indicated that resveratrol inhibited the Akt pathways by inducing Sirt1, thus leading to cell death. These data suggest that resveratrol-mediated activation of Sirt1 histone deacetylase may be a potential therapeutic target for skin diseases including psoriasis.
Collapse
Affiliation(s)
- Ju-Hee Lee
- Biosafety Research Institute, Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jin-Shang Kim
- Biosafety Research Institute, Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - You-Jin Lee
- Biosafety Research Institute, Department of Biochemistry, College of Veterinary Medicine, Chonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
29
|
Relevance of Natural Phenolics from Grape and Derivative Products in the Formulation of Cosmetics. COSMETICS 2015. [DOI: 10.3390/cosmetics2030259] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
30
|
Hosseinzad H, Etemad L, Zafari R, Mashhadian NV, Moallem SA, Shirvan ZO. Acute, Sub-Acute and Cell Toxicity of Verbascoside. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/rjmp.2015.354.360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Sticozzi C, Cervellati F, Muresan XM, Cervellati C, Valacchi G. Resveratrol prevents cigarette smoke-induced keratinocytes damage. Food Funct 2015; 5:2348-56. [PMID: 25088477 DOI: 10.1039/c4fo00407h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant polyphenol, resveratrol (Resv, 3,4,5-trihydroxystilbene), naturally occurring in a number of fruits and other food products, has been extensively studied over the last two decades for its beneficial properties. Recently, its possible topical use in ameliorating skin conditions has also been proposed; however, its role in preventing cigarette smoke (CS)-induced keratinocyte damage has not been investigated yet. Because of its peculiar location, cutaneous tissue is constantly exposed to several environmental stressors, such as CS. Many compounds presented in CS, have been shown to induce, directly or indirectly, cellular oxidative stress (OS) and inflammation via the production of ROS and lipid peroxidation compounds, among which 4HNE has been shown to be one of the most reactive. In this study, we have shown that resveratrol (at a dose of 10 μM) can decrease CS-induced ROS and carbonyl formation in human keratinocytes. In addition, pre-treatment with resveratrol prevented the induction of TRPA1 expression (mRNA and protein levels), a known receptor involved in cellular differentiation and inflammation, which has been recently shown to be activated by 4HNE. Finally, in keratinocytes, resveratrol could increase the expression of MsrA, enzyme involved in cell defence against oxidative protein damage. The present study further confirms the idea that the topical use of resveratrol can provide a good defence against CS-induced skin damage.
Collapse
Affiliation(s)
- Claudia Sticozzi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | | | | | | | | |
Collapse
|
32
|
Zillich OV, Schweiggert-Weisz U, Eisner P, Kerscher M. Polyphenols as active ingredients for cosmetic products. Int J Cosmet Sci 2015; 37:455-64. [PMID: 25712493 DOI: 10.1111/ics.12218] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/07/2015] [Indexed: 01/11/2023]
Abstract
Polyphenols are secondary plant metabolites with antioxidant, anti-inflammatory and anti-microbial activity. They are ubiquitously distributed in the plant kingdom; high amounts contain, for example, green tea and grape seeds. Polyphenolic extracts are attractive ingredients for cosmetics and pharmacy due to their beneficial biological properties. This review summarizes the effects of polyphenols in the context of anti-ageing activity. We have explored in vitro studies, which investigate antioxidant activity, inhibition of dermal proteases and photoprotective activity, mostly studied using dermal fibroblasts or epidermal keratinocytes cell lines. Possible negative effects of polyphenols were also discussed. Further, some physicochemical aspects, namely the possible interactions with emulsifiers and the influence of the cosmetic formulation on the skin delivery, were reported. Finally, few clinical studies, which cover the anti-ageing action of polyphenols on the skin after topical application, were reviewed.
Collapse
Affiliation(s)
- O V Zillich
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354, Freising, Germany.,Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Papendamm 21, 20146, Hamburg, Germany
| | - U Schweiggert-Weisz
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354, Freising, Germany
| | - P Eisner
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Str. 35, D-85354, Freising, Germany
| | - M Kerscher
- Department of Chemistry, Institute for Biochemistry and Molecular Biology, University of Hamburg, Papendamm 21, 20146, Hamburg, Germany
| |
Collapse
|
33
|
Shon MS, Lee Y, Song JH, Park T, Lee JK, Kim M, Park E, Kim GN. Anti-aging Potential of Extracts Prepared from Fruits and Medicinal Herbs Cultivated in the Gyeongnam Area of Korea. Prev Nutr Food Sci 2014; 19:178-86. [PMID: 25320715 PMCID: PMC4195623 DOI: 10.3746/pnf.2014.19.3.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/21/2014] [Indexed: 11/07/2022] Open
Abstract
Many recent studies have focused on maintaining a healthy life by preventing and/or postponing the aging process. Numerous studies have reported that continuous exposure to reactive oxygen species can stimulate skin aging and that excessive accumulation of fat can cause an impaired skin barrier and tissue structure alterations. Thus, the maintenance of antioxidant homeostasis and the suppression of adipose accumulation are important strategies for skin anti-aging. Here, we prepared three types of extracts [whole juice, acetone-perchloric acid (PCA), and ethanol] from 20 fruits and medicinal herbs native to the Gyeongnam area of Korea. The total phenolic content of each extract was analyzed, and we observed higher total phenolic contents in the medicinal herbs. Consistent with this, the results of the oxygen radical absorbance activity capacity assay indicated that the in vitro antioxidant activities of the medicinal herb extracts were stronger than those of the fruit extracts. The fruits and medicinal herbs had strong effects on cell-based systems, including H2O2-induced oxidative stress in human keratinocytes and 3T3-L1 lipid accumulation. Nishimura Wase persimmon, Taishu persimmon, wrinkled giant hyssop, sweet wormwood, Chinese cedar, red perilla, tan shen, hiyodori-jogo, and cramp bark may be natural anti-aging materials with effective antioxidant and anti-adipogenic activities. Taken together, our findings may provide scientific evidence supporting the development of functional foods and nutraceuticals from fruits and medicinal herbs.
Collapse
Affiliation(s)
- Myung-Soo Shon
- Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam 631-701, Korea
| | - Yunjeong Lee
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 631-701, Korea
| | - Ji-Hye Song
- Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam 631-701, Korea
| | - Taehyun Park
- Division of Mechanical Engineering, Kyungnam University, Gyeongnam 631-701, Korea
| | - Jun Kyoung Lee
- Division of Mechanical Engineering, Kyungnam University, Gyeongnam 631-701, Korea
| | - Minju Kim
- R&D Division, Food & Nutrition Analysis Team, Hurom L.S. Co., Ltd., Gyeongnam 621-844, Korea
| | - Eunju Park
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 631-701, Korea
| | - Gyo-Nam Kim
- Department of Food Science and Biotechnology, Kyungnam University, Gyeongnam 631-701, Korea
| |
Collapse
|
34
|
Mouret S, Wartelle J, Batal M, Emorine S, Bertoni M, Poyot T, Cléry-Barraud C, Bakdouri NE, Peinnequin A, Douki T, Boudry I. Time course of skin features and inflammatory biomarkers after liquid sulfur mustard exposure in SKH-1 hairless mice. Toxicol Lett 2014; 232:68-78. [PMID: 25275893 DOI: 10.1016/j.toxlet.2014.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 12/16/2022]
Abstract
Sulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models. We propose here to use SKH-1 hairless mouse as the appropriate model for the design of therapeutic strategies against SM-induced skin toxicity. In the present study particular emphasis was placed on histopathological changes associated with inflammatory responses after topical exposure of dorsal skin to three different doses of SM (0.6, 6 and 60mg/kg) corresponding to a superficial, a second-degree and a third-degree burn. Firstly, clinical evaluation of SM-induced skin lesions using non invasive bioengineering methods showed that erythema and impairment of skin barrier increased in a dose-dependent manner. Histological evaluation of skin sections exposed to SM revealed that the time to onset and the severity of symptoms including disorganization of epidermal basal cells, number of pyknotic nuclei, activation of mast cells and neutrophils dermal invasion were dose-dependent. These histopathological changes were associated with a dose- and time-dependent increase in expression of specific mRNA for inflammatory mediators such as interleukins (IL1β and IL6), tumor necrosis factor (TNF)-α, cycloxygenase-2 (COX-2), macrophage inflammatory proteins (MIP-1α, MIP-2 and MIP-1αR) and keratinocyte chemoattractant (KC also called CXCL1) as well as adhesion molecules (L-selectin and vascular cell adhesion molecule (VCAM)) and growth factor (granulocyte colony-stimulating factor (Csf3)). A dose-dependent increase was also noted after SM exposure for mRNA of matrix metalloproteinases (MMP9) and laminin-γ2 which are associated with SM-induced blisters formation. Taken together, our results show that SM-induced skin histopathological changes related to inflammation is similar in SKH-1 hairless mice and humans. SKH-1 mouse is thus a reliable animal model for investigating the SM-induced skin toxicity and to develop efficient treatment against SM-induced inflammatory skin lesions.
Collapse
Affiliation(s)
- Stéphane Mouret
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France.
| | - Julien Wartelle
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Mohamed Batal
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France; UJF & CNRS, CEA, INAC, SCIB, LCIB (UMR_E 3CEA-UJF), Laboratoire Lésions des Acides Nucléiques, 17 Rue des Martyrs, Grenoble Cedex 9 F-38054, France
| | - Sandy Emorine
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Marine Bertoni
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Thomas Poyot
- Pôle de Génomique, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Cécile Cléry-Barraud
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Nacera El Bakdouri
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - André Peinnequin
- Pôle de Génomique, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| | - Thierry Douki
- UJF & CNRS, CEA, INAC, SCIB, LCIB (UMR_E 3CEA-UJF), Laboratoire Lésions des Acides Nucléiques, 17 Rue des Martyrs, Grenoble Cedex 9 F-38054, France
| | - Isabelle Boudry
- Unité Brûlure Chimique, Département de Toxicologie et Risques Chimiques, Institut de Recherche Biomédicale des Armées, Centre de Recherches du Service de Santé des Armées, 24 avenue Maquis du Grésivaudan, 38700 La Tronche, France
| |
Collapse
|
35
|
Alipieva K, Korkina L, Orhan IE, Georgiev MI. Verbascoside--a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol Adv 2014; 32:1065-76. [PMID: 25048704 DOI: 10.1016/j.biotechadv.2014.07.001] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/17/2014] [Accepted: 07/07/2014] [Indexed: 01/04/2023]
Abstract
Phenylethanoid glycosides are naturally occurring water-soluble compounds with remarkable biological properties that are widely distributed in the plant kingdom. Verbascoside is a phenylethanoid glycoside that was first isolated from mullein but is also found in several other plant species. It has also been produced by in vitro plant culture systems, including genetically transformed roots (so-called 'hairy roots'). Verbascoside is hydrophilic in nature and possesses pharmacologically beneficial activities for human health, including antioxidant, anti-inflammatory and antineoplastic properties in addition to numerous wound-healing and neuroprotective properties. Recent advances with regard to the distribution, (bio)synthesis and bioproduction of verbascoside are summarised in this review. We also discuss its prominent pharmacological properties and outline future perspectives for its potential application.
Collapse
Affiliation(s)
- Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Liudmila Korkina
- Molecular Pathology Laboratory, Russian Research Medical University, Ostrovityanova St. 1A, Moscow 117449, Russia
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Milen I Georgiev
- Laboratory of Applied Biotechnologies, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, Bulgaria.
| |
Collapse
|