1
|
Sadeghi M, Amari A, Asadirad A, Nemati M, Khodadadi A. F1 fraction isolated from Mesobuthus eupeus scorpion venom induces macrophage polarization toward M1 phenotype and exerts anti-tumoral effects on the CT26 tumor cell line. Int Immunopharmacol 2024; 132:111960. [PMID: 38554440 DOI: 10.1016/j.intimp.2024.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Scorpion venoms identified as agents with anti-tumor and anti-angiogenic features. Tumor microenvironment (TME) plays a pivotal role in the process of tumorigenesis, tumor development, and polarization of M2 phenotype tumor associated macrophages (TAMs). M2 polarized cells are associated with tumor growth, invasion, and metastasis. The fractionation process was performed by gel filtration chromatography on a Sephadex G50 column. To elucidate whether scorpion venom can alter macrophage polarization, we treated interleukin (IL)-4-polarized M2 cells with isolated fractions from Mesobuthus eupeus. Next, we evaluated the cytokine production and specific markers expression for M2 and M1 phenotype using enzyme linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (PCR), respectively. The phagocytic capacity of macrophages was also assessed. In addition, the migration assay and MTT analysis were performed to investigate the effects of reprogrammed macrophages on the CT-26 colon cancer cells. The results indicated that F1 fraction of venom significantly upregulated the levels and expression of M1-associated cytokines and markers, including tumor necrosis factor-alpha (TNF-α) (p < 0.001), IL-1 (p < 0.01), interferon regulatory factor 5 (IRF5) (p < 0.0001), induced nitric oxide synthase (iNOS) (p < 0.0001), and CD86 (p < 0.0001), and downregulated M2-related markers, including transforming growth factor-beta (TGF-β) (p < 0.05), IL-10 (p < 0.05), Fizz1 (p < 0.0001), arginase-1 (Arg-1) (p < 0.0001), and CD206 (p < 0.001). The macrophage phagocytic capacity was enhanced after treatment with F1 fraction (p < 0.01). Moreover, incubation of CT-26 cell line with conditioned media of F1-treated macrophages suppressed migration (p < 0.0001) and proliferation (p < 0.01) of tumor cells. In conclusion, our findings demonstrated the potential of Mesobuthus eupeus venom in M2-to-M1 macrophage polarization as a promising therapeutic approach against proliferation and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Amari
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Nemati
- Department of Venomous Animals and Anti-venom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Matkivska R, Samborska I, Maievskyi O. Effect of animal venom toxins on the main links of the homeostasis of mammals (Review). Biomed Rep 2024; 20:16. [PMID: 38144889 PMCID: PMC10739175 DOI: 10.3892/br.2023.1704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The human body is affected by environmental factors. The dynamic balance between the organism and its environment results from the influence of natural, anthropogenic and social aspects. The factors of exogenous origin determine development of adaptive changes. The present article summarises the mechanisms of animal venom toxins and homeostasis disruption in the body of mammals. The mechanisms underlying pathological changes are associated with shifts in biochemical reactions. Components of the immune, nervous and endocrine systems are key in the host defense and adaptation processes in response to venom by triggering signalling pathways (PI3kinase pathway, arachidonic acid cascade). Animal venom toxins initiate the development of inflammatory processes, the synthesis of pro-inflammatory mediators (cytokines), ROS, proteolytic enzymes, activate the migration of leukocytes and macrophages. Keratinocytes and endothelial cells act as protective barriers under the action of animal venom toxins on the body of mammals. In addition, the formation of pores in cell membranes, structural changes in cell ion channels are characteristic of the action of animal venom toxins.
Collapse
Affiliation(s)
- Ruzhena Matkivska
- Department of Descriptive and Clinical Anatomy, Bogomolets National Medical University, Kyiv 03680, Ukraine
| | - Inha Samborska
- Department of Biological and General Chemistry, National Pirogov Memorial Medical University, Vinnytsya 21018, Ukraine
| | - Oleksandr Maievskyi
- Department of Clinical Medicine, Educational and Scientific Center ‘Institute of Biology and Medicine’ of Taras Shevchenko National University of Kyiv, Kyiv 03127, Ukraine
| |
Collapse
|
3
|
Yin L, Li X, Hou J. Macrophages in periodontitis: A dynamic shift between tissue destruction and repair. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:336-347. [DOI: 10.1016/j.jdsr.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/26/2022] Open
|
4
|
Biological Effects of Animal Venoms on the Human Immune System. Toxins (Basel) 2022; 14:toxins14050344. [PMID: 35622591 PMCID: PMC9143185 DOI: 10.3390/toxins14050344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Venoms are products of specialized glands and serve many living organisms to immobilize and kill prey, start digestive processes and act as a defense mechanism. Venoms affect different cells, cellular structures and tissues, such as skin, nervous, hematological, digestive, excretory and immune systems, as well as the heart, among other structures. Components of both the innate and adaptive immune systems can be stimulated or suppressed. Studying the effects on the cells and molecules produced by the immune system has been useful in many biomedical fields. The effects of venoms can be the basis for research and development of therapeutic protocols useful in the modulation of the immunological system, including different autoimmune diseases. This review focuses on the understanding of biological effects of diverse venom on the human immune system and how some of their components can be useful for the study and development of immunomodulatory drugs.
Collapse
|
5
|
Abstract
Orofacial clefts are one of the most common congenital anomalies worldwide; however, morphopathogenesis of the clefts is not yet completely understood. Taking the importance of innate immunity into account, the aim of this work was to examine the appearance and distribution of macrophages (M) 1, M2, and TNF-α, as well as to deduce any possible intercorrelations between the three factors in cleft affected lip tissue samples. Twenty samples of soft tissue were collected from children during plastic surgery. Fourteen control tissue samples were obtained during labial frenectomy. Tissues were immunohistochemically stained, analysed by light microscopy using a semi-quantitative method, and the Mann–Whitney U and Spearman’s tests were used to evaluate statistical differences and correlations. A statistically significant difference in the distribution was observed only in regard to M1. A weak correlation was observed between M2 and TNF-α but a moderate one between M1 and M2 as well as M1 and TNF-α. However, only the correlation between M1 and M2 was statistically important. The rise in M1, alongside the positive correlation between M1 and TNF-α, suggested a more pro-inflammatory/inflammatory environment in the cleft affected lip tissue. The moderate positive correlation between M1 and M2 indicated an intensification of the protective mechanisms.
Collapse
|
6
|
Ricketts TD, Prieto-Dominguez N, Gowda PS, Ubil E. Mechanisms of Macrophage Plasticity in the Tumor Environment: Manipulating Activation State to Improve Outcomes. Front Immunol 2021; 12:642285. [PMID: 34025653 PMCID: PMC8139576 DOI: 10.3389/fimmu.2021.642285] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a specialized class of innate immune cells with multifaceted roles in modulation of the inflammatory response, homeostasis, and wound healing. While developmentally derived or originating from circulating monocytes, naïve macrophages can adopt a spectrum of context-dependent activation states ranging from pro-inflammatory (classically activated, M1) to pro-wound healing (alternatively activated, M2). Tumors are known to exploit macrophage polarization states to foster a tumor-permissive milieu, particularly by skewing macrophages toward a pro-tumor (M2) phenotype. These pro-tumoral macrophages can support cancer progression by several mechanisms including immune suppression, growth factor production, promotion of angiogenesis and tissue remodeling. By preventing the adoption of this pro-tumor phenotype or reprogramming these macrophages to a more pro-inflammatory state, it may be possible to inhibit tumor growth. Here, we describe types of tumor-derived signaling that facilitate macrophage reprogramming, including paracrine signaling and activation of innate immune checkpoints. We also describe intervention strategies targeting macrophage plasticity to limit disease progression and address their implications in cancer chemo- and immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Eric Ubil
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Smith RJP, Faroni A, Barrow JR, Soul J, Reid AJ. The angiogenic potential of CD271+ human adipose tissue-derived mesenchymal stem cells. Stem Cell Res Ther 2021; 12:160. [PMID: 33653407 PMCID: PMC7927269 DOI: 10.1186/s13287-021-02177-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/19/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Autologous fat grafting is often a crucial aspect of reconstructive and aesthetic surgeries, yet poor graft retention is a major issue with this technique. Enriching fat grafts with adipose tissue-derived mesenchymal stem cells (AD-MSCs) improves graft survival-however, AD-MSCs represent a heterogeneous population. Selection of subpopulations of AD-MSCs would allow the targeting of specific AD-MSCs that may benefit fat graft survival more than the general AD-MSC population. METHODS Human AD-MSCs were selected for the surface marker CD271 using magnetic-activated cell sorting and compared to the CD271 negative phenotype. These subpopulations were analysed for gene expression using Real-Time qPCR and RNA sequencing; surface marker characteristics using immunostaining; ability to form tubules when cultured with endothelial cells; and gene and protein expression of key angiogenic mediators when cultured with ex-vivo adipose tissue. RESULTS Human AD-MSCs with the surface marker CD271 express angiogenic genes at higher levels, and inflammatory genes at lower levels, than the CD271- AD-MSC population. A greater proportion of CD271+ AD-MSCs also possess the typical complement of stem cell surface markers and are more likely to promote effective neoangiogenesis, compared to CD271- AD-MSCs. CONCLUSION Enriching grafts with the CD271+ AD-MSC subpopulation holds potential for the improvement of reconstructive and aesthetic surgeries involving adipose tissue.
Collapse
Affiliation(s)
- Richard J P Smith
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - James R Barrow
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Jamie Soul
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK. .,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
8
|
Morris G, Bortolasci CC, Puri BK, Olive L, Marx W, O'Neil A, Athan E, Carvalho AF, Maes M, Walder K, Berk M. The pathophysiology of SARS-CoV-2: A suggested model and therapeutic approach. Life Sci 2020; 258:118166. [PMID: 32739471 PMCID: PMC7392886 DOI: 10.1016/j.lfs.2020.118166] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 01/10/2023]
Abstract
In this paper, a model is proposed of the pathophysiological processes of COVID-19 starting from the infection of human type II alveolar epithelial cells (pneumocytes) by SARS-CoV-2 and culminating in the development of ARDS. The innate immune response to infection of type II alveolar epithelial cells leads both to their death by apoptosis and pyroptosis and to alveolar macrophage activation. Activated macrophages secrete proinflammatory cytokines and chemokines and tend to polarise into the inflammatory M1 phenotype. These changes are associated with activation of vascular endothelial cells and thence the recruitment of highly toxic neutrophils and inflammatory activated platelets into the alveolar space. Activated vascular endothelial cells become a source of proinflammatory cytokines and reactive oxygen species (ROS) and contribute to the development of coagulopathy, systemic sepsis, a cytokine storm and ARDS. Pulmonary activated platelets are also an important source of proinflammatory cytokines and ROS, as well as exacerbating pulmonary neutrophil-mediated inflammatory responses and contributing to systemic sepsis by binding to neutrophils to form platelet-neutrophil complexes (PNCs). PNC formation increases neutrophil recruitment, activation priming and extraversion of these immune cells into inflamed pulmonary tissue, thereby contributing to ARDS. Sequestered PNCs cause the development of a procoagulant and proinflammatory environment. The contribution to ARDS of increased extracellular histone levels, circulating mitochondrial DNA, the chromatin protein HMGB1, decreased neutrophil apoptosis, impaired macrophage efferocytosis, the cytokine storm, the toll-like receptor radical cycle, pyroptosis, necroinflammation, lymphopenia and a high Th17 to regulatory T lymphocyte ratio are detailed.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C. Bortolasci
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia,Corresponding author at: IMPACT – the Institute for Mental and Physical Health and Clinical Translation, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria 3218, Australia
| | | | - Lisa Olive
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,School of Psychology, Deakin University, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
| | - Eugene Athan
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Barwon Health, Geelong, Australia
| | - Andre F. Carvalho
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, University of Toronto, Toronto, Canada,Centre for Addiction and Mental Health (CAMH), Toronto, Canada
| | - Michael Maes
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand,Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Ken Walder
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT – the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia,Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
9
|
Nait Mohamed FA, Laraba-Djebari F. Scorpion envenomation: a deadly illness requiring an effective therapy. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1800746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, Algiers, Algeria
| |
Collapse
|
10
|
Reis MB, Zoccal KF, Gardinassi LG, Faccioli LH. Scorpion envenomation and inflammation: Beyond neurotoxic effects. Toxicon 2019; 167:174-179. [DOI: 10.1016/j.toxicon.2019.06.219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
11
|
Baseggio AM, Nuñez CEC, Dragano NRV, Lamas CA, Braga PADC, Lenquiste SA, Reyes FGR, Cagnon VHA, Júnior MRM. Jaboticaba peel extract decrease autophagy in white adipose tissue and prevents metabolic disorders in mice fed with a high-fat diet. PHARMANUTRITION 2018. [DOI: 10.1016/j.phanu.2018.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
TNF-α antagonist improves oxidative stress and lipid disorders induced by scorpion venom in the intestinal tissue. Acta Trop 2018; 185:307-313. [PMID: 29909063 DOI: 10.1016/j.actatropica.2018.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022]
Abstract
We previously reported that Androctonus australis hector (Aah) venom induces inflammation in several tissues, however limited information is available on its role in gastrointestinal tract. Here we evaluate the involvement of TNF-α in lipid metabolism in the small intestine after Aah envenomation. To address these issues, NMRI mice (3-month-old) were pre-treated with a TNF-α antagonist, 30 min prior to Aah venom injection. Redox status, cytotoxicity and histopathological changes were analyzed in small intestine 3 and 24 h after Aah injection. Lipid metabolism was evaluated through lipid tolerance test in sera. Lipid content in small intestine was also evaluated at different times after envenomation. Obtained results showed that Aah venom affects the intestinal integrity. This cytotoxicity could be associated with lipid peroxidation and altered or insufficient antioxidant system. These results also highlight the perturbation of lipid absorption in intestine tissue of envenomed mice. The use of TNF-α antagonist prior to Aah venom injection seems to be able to improve lipid profile, oxidative stress and antioxidant activity. These findings suggest that Aah venom induces lipid alterations in the intestinal tissue mechanisms involving of TNF- α.
Collapse
|
13
|
Khemili D, Valenzuela C, Laraba-Djebari F, Hammoudi-Triki D. Differential effect of Androctonus australis hector venom components on macrophage K V channels: electrophysiological characterization. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2018; 48:1-13. [PMID: 30006779 DOI: 10.1007/s00249-018-1323-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (KV) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on KV channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1-25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of KV current between resting and LPS-activated macrophages. Aah venom significantly reduced KV current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of KV current in LPS-activated macrophages. Unlike cloned KV1.5 channels, Aah venom exerted a similar blocking effect on KV1.3 compared to KV current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of KV1.3 inactivation, indicating a direct mechanism of current inhibition by targeting KV1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets KV channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.
Collapse
Affiliation(s)
- Dalila Khemili
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
| | - Djelila Hammoudi-Triki
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria
| |
Collapse
|
14
|
Barnette DN, Cahill TJ, Gunadasa-Rohling M, Carr CA, Freeman M, Riley PR. iRhom2-mediated proinflammatory signalling regulates heart repair following myocardial infarction. JCI Insight 2018; 3:98268. [PMID: 29415889 PMCID: PMC5821194 DOI: 10.1172/jci.insight.98268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/29/2017] [Indexed: 12/22/2022] Open
Abstract
The role of proinflammation, and specifically TNF-α, on downstream fibrosis and healing after cardiac injury remains unknown. Using iRhom2-deficient mice, which lack myeloid-specific shedding of TNF-α, we reveal increased macrophages (MΦs) that were skewed towards a more proinflammatory (M1) state at day 4, followed by more reparative, antiinflammatory (M2) state at day 7 after myocardial infarction (MI). However, associated functional cytokine expression was significantly reduced in iRhom2-mutant M1 and M2 MΦs, respectively. A dampened proinflammatory signature in iRhom2-deficient mice during the acute phase of injury and subsequent changes in MΦ polarization were associated with reduced phagocytosis and a more sparse distribution within the scar region. This resulted in impaired collagen deposition and fibrosis, and increased left ventricular remodelling and mortality in iRhom2-deficient mice after MI. Our findings reveal a requirement for an iRhom2-mediated proinflammatory response during downstream scarring and fibrosis, which is driven in part by TNF-α signaling. These conclusions challenge the existing model that infarct repair is determined exclusively by antiinflammatory signaling of M2 MΦs, and as such we propose an alternative view of immunomodulation to maintain effective healing after infarction. Optimal scarring and survival after myocardial infarction is dependent upon the initial wave of inflammation after injury.
Collapse
Affiliation(s)
- Damien N Barnette
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom (UK)
| | - Thomas J Cahill
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom (UK).,Department of Cardiovascular Medicine, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford, UK
| | - Mala Gunadasa-Rohling
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom (UK)
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom (UK)
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom (UK)
| |
Collapse
|
15
|
Chen X, Shao Q, Hao S, Zhao Z, Wang Y, Guo X, He Y, Gao W, Mao H. CTLA-4 positive breast cancer cells suppress dendritic cells maturation and function. Oncotarget 2017; 8:13703-13715. [PMID: 28099147 PMCID: PMC5355131 DOI: 10.18632/oncotarget.14626] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 12/26/2022] Open
Abstract
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a potent immunoregulatory molecule, can down-regulate T-cell activation and inhibit anti-tumor immune response. This study showed that LPS-stimulated human dendritic cells (DCs) decreased the expression of HLA-DR, CD83 and costimulatory molecules (CD40, CD80 and CD86) following coculturing with CTLA-4+ breast cancer cells. Moreover, the suppressed DCs further inhibited proliferation of allogeneic CD4+/CD8+ T-cells, differentiation of Th1 and function of cytotoxic lymphocytes (CTLs). However, CTLA-4 blockade in breast cancer cells could recover DC maturation and cytokine production, elevate antigen-presenting function of DCs, reverse Th1/CTLs response and cytokine secretion. Subsequent study demonstrated that the activation of extracellular-signal regulated kinase and signal transducer and activator of transcription 3 of DCs caused by CTLA-4+ breast cancer cells were the predominant mechanism of DC suppression. In addition, CTLA-4 blockade treatment also directly inhibited proliferation and induced apoptosis of CTLA-4+ breast cancer cells. Collectively, CTLA-4 was expressed and functional on human breast cancer cells through influencing maturation and function of DCs in vitro, and CTLA-4 blockage not only recovered the antigen-presenting function of DCs and T-cells activation but also suppressed the biological activity of breast cancer cells themselves. This study highlights the clinical application of CTLA-4 blockade therapy in breast cancer.
Collapse
Affiliation(s)
- Xi Chen
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Qianqian Shao
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Shengnan Hao
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Zhonghua Zhao
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Yang Wang
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Xiaofan Guo
- Department of Neurosurgery, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Ying He
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Wenjuan Gao
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| | - Haiting Mao
- Institute of Basic Medicial Sciences, Qi Lu Hospital, Shandong University, Jinan, Shandong Province, 250012, P.R.China
| |
Collapse
|
16
|
Yi ZJ, Gong JP, Zhang W. Transcriptional co-regulator RIP140: An important mediator of the inflammatory response and its associated diseases (Review). Mol Med Rep 2017; 16:994-1000. [PMID: 28586037 DOI: 10.3892/mmr.2017.6683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/13/2017] [Indexed: 11/06/2022] Open
Abstract
The inflammatory response is a physiological process that is essential for maintaining homeostasis of the immune system. Inflammation is classified into acute inflammation and chronic inflammation, both of which pose a risk to human health. However, specific regulatory mechanisms of the inflammatory response remain to be elucidated. Receptor interacting protein (RIP) 140 is a nuclear receptor that affects an extensive array of biological and pathological processes in the body, including energy metabolism, inflammation and tumorigenesis. RIP140‑mediated macrophage polarization is important in regulating the inflammatory response. Overexpression of RIP140 in macrophages results in M1‑like polarization and expansion during the inflammatory response. Conversely, decreased expression of RIP140 in macrophages reduces the number of M1‑like macrophages and increases the number of alternatively polarized cells, which collectively promote endotoxin tolerance (ET) and relieve inflammation. This review summarizes the role of RIP140 in acute and chronic inflammatory diseases, with a focus on insulin resistance, atherosclerosis, sepsis and ET.
Collapse
Affiliation(s)
- Zhu-Jun Yi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan 400010, P.R. China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, Sichuan 400010, P.R. China
| | - Wei Zhang
- Department of Hepatobiliary Surgery, The People's Hospital of Jianyang, Jianyang, Sichuan 641400, P.R. China
| |
Collapse
|