1
|
Su P, Li Z, Yan X, Wang B, Bai M, Li Y, Xu E. Quercetin and Kaempferol inhibit HMC-1 activation via SOCE/NFATc2 signaling and suppress hippocampal mast cell activation in lipopolysaccharide-induced depressive mice. Inflamm Res 2024; 73:945-960. [PMID: 38587532 DOI: 10.1007/s00011-024-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE AND DESIGN Mast cells (MCs), as the fastest immune responders, play a critical role in the progression of neuroinflammation-related diseases, especially in depression. Quercetin (Que) and kaempferol (Kae), as two major diet-derived flavonoids, inhibit MC activation and exhibit significant antidepressant effect due to their anti-inflammatory capacity. The study aimed to explore the mechanisms of inhibitory effect of Que and Kae on MC activation, and whether Que and Kae suppress hippocampal mast cell activation in LPS-induced depressive mice. SUBJECTS AND TREATMENT In vitro assays, human mast cells (HMC-1) were pretreated with Que or Kae for 1 h, then stimulated by phorbol 12-myristate 13-acetate (PMA) and 2,5-di-t-butyl-1,4-benzohydroquinone (tBHQ) for 3 h or 12 h. In vivo assays, Que or Kae was administered by oral gavage once daily for 14 days and then lipopolysaccharide (LPS) intraperitoneally injection to induce depressive behaviors. METHODS The secretion and expression of TNF-α were determined by ELISA and Western blotting. The nuclear factor of activated T cells (NFAT) transcriptional activity was measured in HMC-1 stably expressing NFAT luciferase reporter gene. Nuclear translocation of NFATc2 was detected by nuclear protein extraction and also was fluorescently detected in HMC-1 stably expressing eGFP-NFATc2. We used Ca2+ imaging to evaluate changes of store-operated calcium entry (SOCE) in HMC-1 stably expressing fluorescent Ca2+ indicator jGCamP7s. Molecular docking was used to assess interaction between the Que or Kae and calcium release-activated calcium modulator (ORAI). The hippocampal mast cell accumulation and activation were detected by toluidine blue staining and immunohistochemistry with β-tryptase. RESULTS In vitro assays of HMC-1 activated by PtBHQ (PMA and tBHQ), Que and Kae significantly decreased expression and secretion of TNF-α. Moreover, NFAT transcriptional activity and nuclear translocation of NFATc2 were remarkably inhibited by Que and Kae. In addition, the Ca2+ influx mediated by SOCE was suppressed by Que, Kae and the YM58483 (ORAI inhibitor), respectively. Importantly, the combination of YM58483 with Que or Kae had no additive effect on the inhibition of SOCE. The molecular docking also showed that Que and Kae both exhibit high binding affinities with ORAI at the same binding site as YM58483. In vivo assays, Que and Kae significantly reversed LPS-induced depression-like behaviors in mice, and inhibited hippocampal mast cell activation in LPS-induced depressive mice. CONCLUSIONS Our results indicated that suppression of SOCE/NFATc2 pathway-mediated by ORAI channels may be the mechanism of inhibitory effect of Que and Kae on MC activation, and also suggested Que and Kae may exert the antidepressant effect through suppressing hippocampal mast cell activation.
Collapse
Affiliation(s)
- Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Baoying Wang
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
- Henan Key Laboratory for Modern Research On Zhongjing's Herbal Formulae, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
2
|
Wetten PA, Arismendi Sosa AC, Mariani ML, Vargas PM, Michaut MA, Penissi AB. Dehydroleucodine and xanthatin, two natural anti-inflammatory lactones, inhibit mast cell degranulation by affecting the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:215-226. [PMID: 37929805 DOI: 10.1002/cm.21805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Actin remodeling is a critical regulator of mast cell secretion. In previous work, we have shown that dehydroleucodine and xanthatin, two natural α,β-unsaturated lactones, exhibit anti-inflammatory and mast cell stabilizing properties. Based on this background, this study aimed to determine whether the mast cell stabilizing action of these lactones is associated with changes in the actin cytoskeleton. Rat peritoneal mast cells were preincubated in the presence of dehydroleucodine or xanthatin before incubation with compound 48/80. Comparative studies with sodium cromoglycate and latrunculin B were also made. After treatments, different assays were performed on mast cell samples: β-hexosaminidase release, cell viability studies, quantification of mast cells and their state of degranulation by light microscopy, transmission electron microscopy, and actin staining for microscopy observation. Results showed that dehydroleucodine and xanthatin inhibited mast cell degranulation, evidenced by the inhibition of β-hexosaminidase release and decreased degranulated mast cell percentage. At the same time, both lactones altered the F-actin cytoskeleton in mast cells resulting, similarly to Latrunculin B, in a higher concentration of nuclear F-actin when activated by compound 48/80. For the first time, this study describes the biological properties of dehydroleucodine and xanthatin concerning to the rearrangement of actin filaments during stimulated exocytosis in mast cells. These data have important implications for developing new anti-inflammatory and mast cell stabilizing drugs and for designing new small molecules that may interact with the actin cytoskeleton.
Collapse
Affiliation(s)
- Paula A Wetten
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | - María Laura Mariani
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia M Vargas
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marcela Alejandra Michaut
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM), Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Martínez M, Mariani ML, García C, Ceñal JP, Penissi AB. A one-pot and eco-friendly synthesis of novel β-substituted-α-halomethyl acrylates and the bioactivity of these compounds in an in vitro model of mast cell degranulation induced by pro-inflammatory stimuli. Biomed Pharmacother 2024; 170:116009. [PMID: 38134632 DOI: 10.1016/j.biopha.2023.116009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/03/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The goal of the present work was to develop novel β-substituted-α-halomethyl acrylates from a methodology in an aqueous phase and to evaluate their bioactivity as potential inhibitors of mast cell activation. Eleven β-substituted-α-halomethyl acrylates were synthesized through a modified Horner-Wadsworth-Emmons reaction. Compound 48/80 and the calcium ionophore A23187 stimulated the release of β-hexosaminidase from mast cells. The effect induced by compound 48/80 was inhibited by compound 5 (320 µM) and compound 9 (160 and 320 µM) without causing cytotoxic effects. The effect induced by A23187 was inhibited by compound 5 (40, 80, 160, and 320 µM) without affecting cell viability. The inhibitory effects exhibited by compounds 5 and 9 were more potent than those of the reference compound sodium cromoglycate at the same concentrations. The biochemical results were consistent with the morphological findings obtained by light and transmission electron microscopy. This study reports, for the first time, that the new synthetic compounds methyl (Z)- 2-bromo-3-(furan-3-yl)acrylate (compound 5) and methyl (E)- 2-bromo-3-(3-bromophenyl)acrylate (compound 9) strongly inhibit mast cell degranulation, without affecting cell viability. The implications of these results are relevant as a basis for developing new anti-inflammatory and mast cell stabilizing drugs.
Collapse
Affiliation(s)
- Maricel Martínez
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina
| | - María Laura Mariani
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Celina García
- Instituto Universitario de Bio-Organica "Antonio Gonzalez", Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Juan Pedro Ceñal
- Instituto de Investigaciones en Tecnología Química (INTEQUI-CONICET), Universidad Nacional de San Luis, San Luis, Argentina; Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología "Dr. Mario H. Burgos" (IHEM, UNCUYO-CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina.
| |
Collapse
|
4
|
Arizmendi N, Alam SB, Azyat K, Makeiff D, Befus AD, Kulka M. The Complexity of Sesquiterpene Chemistry Dictates Its Pleiotropic Biologic Effects on Inflammation. Molecules 2022; 27:2450. [PMID: 35458648 PMCID: PMC9032002 DOI: 10.3390/molecules27082450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023] Open
Abstract
Sesquiterpenes (SQs) are volatile compounds made by plants, insects, and marine organisms. SQ have a large range of biological properties and are potent inhibitors and modulators of inflammation, targeting specific components of the nuclear factor-kappaB (NF-κB) signaling pathway and nitric oxide (NO) generation. Because SQs can be isolated from over 1600 genera and 2500 species grown worldwide, they are an attractive source of phytochemical therapeutics. The chemical structure and biosynthesis of SQs is complex, and the SQ scaffold represents extraordinary structural variety consisting of both acyclic and cyclic (mono, bi, tri, and tetracyclic) compounds. These structures can be decorated with a diverse range of functional groups and substituents, generating many stereospecific configurations. In this review, the effect of SQs on inflammation will be discussed in the context of their complex chemistry. Because inflammation is a multifactorial process, we focus on specific aspects of inflammation: the inhibition of NF-kB signaling, disruption of NO production and modulation of dendritic cells, mast cells, and monocytes. Although the molecular targets of SQs are varied, we discuss how these pathways may mediate the effects of SQs on inflammation.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Khalid Azyat
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - Darren Makeiff
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
| | - A Dean Befus
- Alberta Respiratory Centre, Department of Medicine, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Marianna Kulka
- Nanotechnology Research Centre, National Research Council Canada, Edmonton, AB T6G 2A3, Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
5
|
Vera ME, Mariani ML, Aguilera C, Penissi AB. Effect of a Cytoprotective Dose of Dehydroleucodine, Xanthatin, and 3-Benzyloxymethyl-5 H-furan-2-one on Gastric Mucosal Lesions Induced by Mast Cell Activation. Int J Mol Sci 2021; 22:5983. [PMID: 34205991 PMCID: PMC8198283 DOI: 10.3390/ijms22115983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to determine whether the lactones dehydroleucodine, xanthatin and 3-benzyloxymethyl-5H-furan-2-one, would be effective in an animal model of gastric ulcer induced by mast cell activation. Rats were divided into ten groups. Treatments were repeated for four days. The degree of gastric erosion was assessed with a scoring system and histological preparations. Gastric mast cell morphology was analyzed by histological procedures. Serum serotonin levels were determined as markers of mast cell activation. Statistical analyses were done using ANOVA and Tukey-Kramer test. We demonstrated that the repeated administration of compound 48/80 results in extensive mucosal lesions in the gastric mucosa and that such lesions occurred in association with mast cell degranulation and a significant increase of serum serotonin. We showed that these lesions were prevented by dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one and that this effect was similar to that obtained with sodium cromoglycate. In conclusion, the results of the present study indicate that the optimal gastric cytoprotective dose of dehydroleucodine, xanthatin, and 3-benzyloxymethyl-5H-furan-2-one is efficacious in an animal model of gastric ulcer induced by mast cell activation. Our findings suggest that these lactones could be valuable tools for designing novel therapeutic agents for digestive disorders associated with inappropriate mast cell activation.
Collapse
Affiliation(s)
| | | | | | - Alicia Beatriz Penissi
- Instituto de Histología y Embriología “Dr. Mario H. Burgos” (IHEM-CCT Mendoza-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, 5500 Mendoza, Argentina; (M.E.V.); (M.L.M.); (C.A.)
| |
Collapse
|
6
|
Karamyan VT. Between two storms, vasoactive peptides or bradykinin underlie severity of COVID-19? Physiol Rep 2021; 9:e14796. [PMID: 33687143 PMCID: PMC7941673 DOI: 10.14814/phy2.14796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to be a world-wide pandemic with overwhelming socioeconomic impact. Since inflammation is one of the major causes of COVID-19 complications, the associated molecular mechanisms have been the focus of many studies to better understand this disease and develop improved treatments for patients contracting SARS-CoV-2. Among these, strong emphasis has been placed on pro-inflammatory cytokines, associating severity of COVID-19 with so-called "cytokine storm." More recently, peptide bradykinin, its dysregulated signaling or "bradykinin storm," has emerged as a primary mechanism to explain COVID-19-related complications. Unfortunately, this important development may not fully capture the main molecular players that underlie the disease severity. To this end, in this focused review, several lines of evidence are provided to suggest that in addition to bradykinin, two closely related vasoactive peptides, substance P and neurotensin, are also likely to drive microvascular permeability and inflammation, and be responsible for development of COVID-19 pathology. Furthermore, based on published experimental observations, it is postulated that in addition to ACE and neprilysin, peptidase neurolysin (Nln) is also likely to contribute to accumulation of bradykinin, substance P and neurotensin, and progression of the disease. In conclusion, it is proposed that "vasoactive peptide storm" may underlie severity of COVID-19 and that simultaneous inhibition of all three peptidergic systems could be therapeutically more advantageous rather than modulation of any single mechanism alone.
Collapse
Affiliation(s)
- Vardan T. Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier ResearchSchool of PharmacyTTUHSCAmarilloTXUSA
| |
Collapse
|