1
|
Rahimi M, Kariminezhad Z, Rondon EP, Fahmi H, Fernandes JC, Benderdour M. Chitosan nanovectors for siRNA delivery: New horizons for nonviral gene therapy. Carbohydr Polym 2025; 360:123581. [PMID: 40399008 DOI: 10.1016/j.carbpol.2025.123581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 05/23/2025]
Abstract
The growing interest in RNA-based therapeutics has positioned small interfering RNA (siRNA) as a promising tool for gene silencing with high specificity and efficacy. However, the successful clinical application of siRNA therapies requires efficient delivery systems to overcome extracellular and intracellular barriers. Chitosan, a naturally derived polysaccharide, has gained significant attention as a non-viral vector due to its biodegradability, biocompatibility, mucoadhesive properties, and capacity to enhance cellular uptake. These attributes make chitosan an attractive alternative to lipid-based nanoparticles, which currently dominate siRNA delivery platforms. Recent advancements in chitosan-based nanoformulations, including chemical modifications and functionalization strategies, have improved siRNA stability, targeting efficiency, and transfection potential, addressing key limitations such as low bioavailability and immunogenicity. Despite these advances, challenges remain in achieving optimal release kinetics, scalability, and consistent therapeutic efficacy. Future research efforts will focus on engineering chitosan derivatives with enhanced physicochemical properties, integrating multifunctional nanocarriers, and refining formulation strategies to bridge the gap between preclinical research and clinical translation. The continued development of chitosan-based siRNA therapeutics holds significant potential for advancing precision medicine and expanding treatment options for a variety of diseases, including cancer, metabolic disorders, and inflammatory conditions.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada
| | - Zahra Kariminezhad
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Elsa-Patricia Rondon
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Julio C Fernandes
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada; Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Mohamed Benderdour
- Orthopedics Research Laboratory, Research Center, Hôpital du Sacré-Cœur de Montréal, Université de Montréal, Montréal, Québec H4J 1C5, Canada.
| |
Collapse
|
2
|
Wang B, Meng F, Song S, Xie B, Jia S, Xiu D, Li X. Multi-Omics Analysis of Curculio dieckmanni (Coleoptera: Curculionidae) Larvae Reveals Host Responses to Steinernema carpocapsae Infection. INSECTS 2025; 16:503. [PMID: 40429216 DOI: 10.3390/insects16050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
The hazelnut weevil larvae (Curculio dieckmanni) is a major pest of nut weevils, spending part of its life cycle in the soil and causing significant damage to hazelnut crops. Moreover, its concealed feeding behavior complicates effective control with chemical insecticides. The entomopathogenic nematode Steinernema carpocapsae, which efficiently kills weevil larvae, offers a promising biological control agent. To investigate the molecular responses of hazelnut weevil larvae to nematode infection, we employed integrated transcriptomic and proteomic analyses following infection by S. carpocapsae. Our results revealed substantial alterations in gene expression, particularly the upregulation of immune-related transcripts such as antimicrobial peptides (AMPs) and stress-responsive proteins like heat shock protein 70 (HSP70). Furthermore, significant metabolic reprogramming occurred, marked by the downregulation of carbohydrate metabolic pathways and activation of energy conservation mechanisms. Although we observed an overall correlation between mRNA and protein expression levels, notable discrepancies highlighted the critical roles of post-transcriptional and post-translational regulatory processes. Collectively, these findings advance our understanding of the molecular interaction between insect hosts and pathogenic nematodes and contribute valuable knowledge for enhancing the effectiveness of EPN-based pest management strategies.
Collapse
Affiliation(s)
- Bin Wang
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | - Fanyu Meng
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | - Shiqi Song
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | - Bin Xie
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | - Shuxia Jia
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| | - Dongying Xiu
- Jilin Academy of Forestry Sciences, Jilin 132000, China
| | - Xingpeng Li
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Beihua University, Jilin 132013, China
| |
Collapse
|
3
|
Cui LG, Wang SH, Komal S, Yin JJ, Zhai MM, Zhou YJ, Yu QW, Wang C, Wang P, Wang ZM, Zafar AM, Shakeel M, Zhang LR, Han SN. ALKBH5 promotes cardiac fibroblasts pyroptosis after myocardial infarction through Notch1/NLRP3 pathway. Cell Signal 2025; 127:111574. [PMID: 39710090 DOI: 10.1016/j.cellsig.2024.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Through bioinformatics screening, we previously found that AlkB homolog 5 (ALKBH5) expression, an m6A demethylase, was higher in patients with heart failure than in the normal population. This study aimed to investigate the molecular mechanisms by which ALKBH5 regulates heart failure. We established a myocardial infarction (MI)-induced heart failure model in rats in vivo and an in vitro hypoxia model using rat primary cardiac fibroblasts (RCFs). M6A sequencing, RNA immunoprecipitation assay, RNA pull-down assay, proximity ligation assay, gain-of-function and loss-of-function experiments, and transcriptomic analysis were performed to confirm the pyroptosis-promoting effects of ALKBH5. The effects of two small-molecule inhibitors (ZINC78774792 and ZINC00546946) on ALKBH5 expression were examined. The expression of m6A demethyltransferase ALKBH5 was significantly elevated in hypoxia-induced RCFs. Transcriptional profiling revealed Notch receptor 1 (Notch1) as an m6A modification target of ALKBH5, and Notch1 mRNA m6A modifications were increased in ALKBH5-deficient RCFs. Moreover, Notch1 and NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) are associated. ALKBH5 knockdown alleviated hypoxia-induced RCF cell pyroptosis by inhibiting Notch1, NLRP3 inflammasome activation, and pyroptosis-associated protein (N-GSDMD), whereas ALKBH5 overexpression had the opposite effect. Targeting ALKBH5 with two small-molecule inhibitors (ZINC78774792 and ZINC00546946) reduced hypoxia-induced RCF pyroptosis, and ZINC00546946 alleviated cell pyroptosis after myocardial infarction in mice. Our results indicate that ALKBH5 promotes cardiac fibroblast pyroptosis after myocardial infarction through the Notch1/NLRP3 pathway. Therefore, inhibiting ALKBH5 may be a strategy for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Liu-Gen Cui
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shu-Hui Wang
- Department of Ultrasound, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Sumra Komal
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jian-Jian Yin
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Miao-Miao Zhai
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue-Jiao Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Qing-Wen Yu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Cong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhi-Mo Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Aliza Muhammad Zafar
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Shakeel
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Sheng-Na Han
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
4
|
Yi Y, Wu G. RNA-seq analysis of LPS-induced immune priming in silkworms (Bombyx mori) and the role of cytochrome P450 detoxification system in the process. Int J Biol Macromol 2024; 283:136551. [PMID: 39401638 DOI: 10.1016/j.ijbiomac.2024.136551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 12/18/2024]
Abstract
While immune priming has been identified in many invertebrates, the intricate mechanisms that drive this process in insects continue to be a subject of mystery. In this study, we exposed silkworm larvae to varying doses of lipopolysaccharide (LPS) to induce immune priming and assessed their survival upon challenge with Bacillus thuringiensis (Bt). Transcriptome analysis was performed to identify differentially expressed genes (DEGs) associated with immune priming. The role of CYP450 genes in this process was further explored using RNA interference (RNAi) to knockdown CYP9E2 and CYP6K1, followed by measurements of detoxification enzyme activities and reactive oxygen species (ROS) levels. We found that LPS exposure significantly increased silkworm survival rates upon Bt challenge, indicating the induction of immune priming. Transcriptome analysis revealed 549 DEGs, including a large number involved in detoxification, immunity, and metabolism, suggesting a complex regulatory network that encompasses immune responses and metabolic pathways. Functional enrichment and gene set enrichment analysis (GSEA) highlighted the activation of immune signaling pathways and the involvement of detoxification processes. Knockdown of CYP9E2 and CYP6K1 resulted in increased ROS levels, decreased detoxification enzyme activities, and reduced survival rates post-Bt challenge, implicating the critical role of these genes in immune priming and detoxification. Our findings demonstrate that LPS-induced immune priming in silkworms involves the upregulation of CYP450 genes, which play a critical role in detoxification and immune response modulation. The study provides insights into the molecular mechanisms of immune priming in insects and highlights the potential of CYP9E2 and CYP6K1 as targets for enhancing disease resistance and pest management in insects.
Collapse
Affiliation(s)
- Yunhong Yi
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China
| | - Gongqing Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, PR China.
| |
Collapse
|
5
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
6
|
Niemeyer CS, Frietze S, Coughlan C, Lewis SWR, Bustos Lopez S, Saviola AJ, Hansen KC, Medina EM, Hassell JE, Kogut S, Traina-Dorge V, Nagel MA, Bruce KD, Restrepo D, Mahalingam R, Bubak AN. Suppression of the host antiviral response by non-infectious varicella zoster virus extracellular vesicles. J Virol 2024; 98:e0084824. [PMID: 39051773 PMCID: PMC11334484 DOI: 10.1128/jvi.00848-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Varicella zoster virus (VZV) reactivates from ganglionic sensory neurons to produce herpes zoster (shingles) in a unilateral dermatomal distribution, typically in the thoracic region. Reactivation not only heightens the risk of stroke and other neurological complications but also increases susceptibility to co-infections with various viral and bacterial pathogens at sites distant from the original infection. The mechanism by which VZV results in complications remote from the initial foci remains unclear. Small extracellular vesicles (sEVs) are membranous signaling structures that can deliver proteins and nucleic acids to modify the function of distal cells and tissues during normal physiological conditions. Although viruses have been documented to exploit the sEV machinery to propagate infection, the role of non-infectious sEVs released from VZV-infected neurons in viral spread and disease has not been studied. Using multi-omic approaches, we characterized the content of sEVs released from VZV-infected human sensory neurons (VZV sEVs). One viral protein was detected (immediate-early 62), as well as numerous immunosuppressive and vascular disease-associated host proteins and miRNAs that were absent in sEVs from uninfected neurons. Notably, VZV sEVs are non-infectious yet transcriptionally altered primary human cells, suppressing the antiviral type 1 interferon response and promoting neuroinvasion of a secondary pathogen in vivo. These results challenge our understanding of VZV infection, proposing that the virus may contribute to distant pathologies through non-infectious sEVs beyond the primary infection site. Furthermore, this study provides a previously undescribed immune-evasion mechanism induced by VZV that highlights the significance of non-infectious sEVs in early VZV pathogenesis. IMPORTANCE Varicella zoster virus (VZV) is a ubiquitous human virus that predominantly spreads by direct cell-cell contact and requires efficient and immediate host immune evasion strategies to spread. The mechanisms of immune evasion prior to virion entry have not been fully elucidated and represent a critical gap in our complete understanding of VZV pathogenesis. This study describes a previously unreported antiviral evasion strategy employed by VZV through the exploitation of the infected host cell's small extracellular vesicle (sEV) machinery. These findings suggest that non-infectious VZV sEVs could travel throughout the body, affecting cells remote from the site of infection and challenging the current understanding of VZV clinical disease, which has focused on local effects and direct infection. The significance of these sEVs in early VZV pathogenesis highlights the importance of further investigating their role in viral spread and secondary disease development to reduce systemic complications following VZV infections.
Collapse
Affiliation(s)
- Christy S. Niemeyer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Christina Coughlan
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Serena W. R. Lewis
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sara Bustos Lopez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva M. Medina
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James E. Hassell
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sophie Kogut
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA
| | - Vicki Traina-Dorge
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Maria A. Nagel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kimberley D. Bruce
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ravi Mahalingam
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew N. Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
7
|
Damås JK, Otterdal K, Astrup E, Lekva T, Janardhanan J, Michelsen A, Aukrust P, Varghese GM, Ueland T. Canonical notch activation in patients with scrub typhus: association with organ dysfunction and poor outcome. Infection 2024; 52:1357-1365. [PMID: 38502427 PMCID: PMC11288987 DOI: 10.1007/s15010-024-02192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The mechanisms that control inflammation in scrub typhus are not fully elucidated. The Notch pathways are important regulators of inflammation and infection, but have not been investigated in scrub typhus. METHODS Plasma levels of the canonical Notch ligand Delta-like protein 1 (DLL1) were measured by enzyme immunoassay and RNA expression of the Notch receptors (NOTCH1, NOTCH2 and NOTCH4) in whole blood was analyzed by real-time PCR in patients with scrub typhus (n = 129), in patients with similar febrile illness without O. tsutsugamushi infection (n = 31) and in healthy controls (n = 31); all from the same area of South India. RESULTS Our main results were: (i) plasma DLL1 was markedly increased in scrub typhus patients at hospital admission with a significant decrease during recovery. (ii) RNA expression of NOTCH4 was decreased at admission in whole blood. (iii) A similar pattern for DLL1 and NOTCH4 was seen in febrile disease controls. (iv) Admission DLL1 in plasma was associated with disease severity and short-term survival. (vi) Regulation of Notch pathways in O. tsutsugamushi-infected monocytes as evaluated by public repository data revealed enhanced canonical Notch activation with upregulation of DLL1 and downregulation of NOTCH4. CONCLUSION Our findings suggest that scrub typhus patients are characterized by enhanced canonical Notch activation. Elevated plasma levels of DLL1 were associated with organ dysfunction and poor outcomes in these patients.
Collapse
Affiliation(s)
- Jan K Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Elisabeth Astrup
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jeshina Janardhanan
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Annika Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - George M Varghese
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
8
|
Tasharrofi B, Najafi A, Pourbakhtyaran E, Amirsalari S, Khan GS, Ashrafi MR, Tavasoli AR, Keramatipour M, Heidari M. Distinct neurological phenotypes associated with biallelic loss of NOTCH3 function: evidence for recessive inheritance. Mol Biol Rep 2024; 51:714. [PMID: 38824264 DOI: 10.1007/s11033-024-09560-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/16/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND NOTCH3 variants are known to be linked to cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). However, some null NOTCH3 variants with homozygous inheritance cause neurological symptoms distinct from CADASIL. The aim of this study was to expand the clinical spectrum of this distinct condition and provide further evidence of its autosomal recessive inheritance. METHODS AND RESULTS Whole exome sequencing (WES) was performed on a proband who exhibited livedo racemosa, ataxia, cognitive decline, seizures, and MRI white matter abnormalities without anterior temporal pole lesions. Segregation analysis was conducted with Sanger sequencing. WES of the proband identified a novel homozygous NOTCH3 null variant (c.2984delC). The consanguineous parents were confirmed as heterozygous variant carriers. In addition, three heterozygous NOTCH3 null variants were reported as incidental findings in three unrelated cases analyzed in our center. CONCLUSION The findings of this study suggest an autosomal recessive inheritance pattern in this early-onset leukoencephalopathy, in contrast to CADASIL's dominant gain-of-function mechanism; which is a clear example of genotype-phenotype correlation. Comprehensive genetic analysis provides valuable insights into disease mechanisms and facilitates diagnosis and family planning for NOTCH3-associated neurological disorders.
Collapse
Affiliation(s)
- Behnoosh Tasharrofi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Najafi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Pourbakhtyaran
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Susan Amirsalari
- Pediatric Neurology Department, New Hearing Technologies Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Golazin Shahbodagh Khan
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Ashrafi
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Tavasoli
- Department of Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Heidari
- Department of Pediatrics, Division of Pediatric Neurology, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Neurology Division, Pediatrics Center of Excellence, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Suleiman Khoury Z, Sohail F, Wang J, Mendoza M, Raake M, Tahoor Silat M, Reddy Bathinapatta M, Sadeghzadegan A, Meghana P, Paul J. Neuroinflammation: A Critical Factor in Neurodegenerative Disorders. Cureus 2024; 16:e62310. [PMID: 39006715 PMCID: PMC11246070 DOI: 10.7759/cureus.62310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/16/2024] Open
Abstract
This review offers a comprehensive review of the signals and the paramount role neuroinflammation plays in neurodegenerative diseases such as Alzheimer's, Parkinson's, Huntington's, and amyotrophic lateral sclerosis. The study explores the sophisticated interactions between microglial, astrocytic, and dendritic cells and how neuroinflammation affects long-term neuronal damage and dysfunction. There are specific pathways related to the mentioned inflammatory processes, including Janus kinases/signal transducer and activator of transcriptions, nuclear factor-κB, and mitogen-activated protein kinases pathways. Neuroinflammation is argued to be a double-edged sword, being not only a protective agent that prevents further neuron damage but also the causative factor in more cell injury development. This concept of contrasting inflammation with neuroprotection advocates for the use of therapeutic techniques that seek to modulate neuroinflammatory responses as part of the neurodegeneration treatment. The recent research findings are integrated with the established knowledge to help present a comprehensive image of neuroinflammation's impact on neurodegenerative diseases and its implications for future therapy.
Collapse
Affiliation(s)
| | - Fatima Sohail
- Department of Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, USA
| | - Jada Wang
- Department of Medicine, St. George's University, Brooklyn, USA
| | - Moises Mendoza
- Department of Health Sciences, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, VEN
| | - Mohammed Raake
- Department of Medicine, Annamalai University, Chennai, IND
| | | | | | - Amirali Sadeghzadegan
- Department of General Practice, Marmara University School of Medicine, Istanbul, TUR
| | - Patel Meghana
- Department of Medicine, Ramaiah University of Applied Sciences, Bengaluru, IND
| | - Janisha Paul
- Department of Medicine, Punjab Institute of Medical Sciences, Jalandhar, IND
| |
Collapse
|
10
|
Raoufinia R, Arabnezhad A, Keyhanvar N, Abdyazdani N, Saburi E, Naseri N, Niazi F, Niazi F, Namdar AB, Rahimi HR. Leveraging stem cells to combat hepatitis: a comprehensive review of recent studies. Mol Biol Rep 2024; 51:459. [PMID: 38551743 DOI: 10.1007/s11033-024-09391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Hepatitis is a significant global public health concern, with viral infections being the most common cause of liver inflammation. Antiviral medications are the primary treatments used to suppress the virus and prevent liver damage. However, the high cost of these drugs and the lack of awareness and stigma surrounding the disease create challenges in managing hepatitis. Stem cell therapy has arisen as a promising therapeutic strategy for hepatitis by virtue of its regenerative and immunomodulatory characteristics. Stem cells have the exceptional capacity to develop into numerous cell types and facilitate tissue regeneration, rendering them a highly promising therapeutic avenue for hepatitis. In animal models, stem cell therapy has demonstrated worthy results by reducing liver inflammation and improving liver function. Furthermore, clinical trials have been undertaken to assess the safety and effectiveness of stem cell therapy in individuals with hepatitis. This review aims to explore the involvement of stem cells in treating hepatitis and highlight the findings from studies conducted on both animals and humans. The objective of this review is to primarily concentrate on the ongoing and future clinical trials that assess the application of stem cell therapy in the context of hepatitis, including the transplantation of autologous bone marrow-derived stem cells, human induced pluripotent stem cells, and other mesenchymal stem cells. In addition, this review will explore the potential merits and constraints linked to stem cell therapy for hepatitis, as well as its prospective implications in the management of this disease.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Arabnezhad
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Naseri
- Department of Biochemistry, School of medicine, Hamadan University of medical sciences, Hamadan, Iran
| | - Fereshteh Niazi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Niazi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Beheshti Namdar
- Department of Gastroenterology and Hepatology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Tan Z, Li H, Huang Y, Fu S, Wang H, Wang J. Multi-omics landscape analysis reveals the pan-cancer association of arginine biosynthesis genes with tumor immune evasion and therapy resistance. Heliyon 2024; 10:e26804. [PMID: 38468956 PMCID: PMC10925990 DOI: 10.1016/j.heliyon.2024.e26804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Background The metabolism of arginine, a conditionally essential amino acid, plays a crucial role in cancer progression and prognosis. However, a more detailed understanding of the influence of arginine biosynthesis genes in cancer is currently unavailable. Methods We performed an integrative multi-omics analysis using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases to determine the characteristics of these genes across multiple cancer types. To measure the overall activity of arginine biosynthesis genes in cancer, we calculated arginine biosynthesis scores based on gene expression. Results Our results indicated that the arginine biosynthesis score was negatively correlated with immune-related pathways, immune infiltration, immune checkpoint expression, and patient prognosis, and single-cell data further clarified that patients with high arginine biosynthesis scores showed a reduced proportion of T and B cells in an immune desert tumor microenvironment and were insensitive to immunotherapy. We also identified several potential drugs through the Cancer Therapeutic Response Portal (CTRP) and Genomics of Drug Sensitivity in Cancer (GDSC) databases that could target arginine biosynthesis genes and potentially improve the response rate to immunotherapy in patients with a high arginine biosynthesis fraction. Conclusion Overall, our analyses emphasize that arginine biosynthesis genes are associated with immune evasion in several cancers. Targeting these genes may facilitate more effective immunotherapy.
Collapse
Affiliation(s)
- Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Urological disease clinical medical center of Yunnan province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming 650101, Yunnan, China
| | - Haihao Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Urological disease clinical medical center of Yunnan province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming 650101, Yunnan, China
| | - Yinglong Huang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Urological disease clinical medical center of Yunnan province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming 650101, Yunnan, China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Urological disease clinical medical center of Yunnan province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming 650101, Yunnan, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Urological disease clinical medical center of Yunnan province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming 650101, Yunnan, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Urological disease clinical medical center of Yunnan province, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming, 650101, Yunnan, China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, No. 347, Dianmian Street, Wuhua District, Kunming 650101, Yunnan, China
| |
Collapse
|
12
|
Ning H, Liu J, Tan J, Yi M, Lin X. The role of the Notch signalling pathway in the pathogenesis of ulcerative colitis: from the perspective of intestinal mucosal barrier. Front Med (Lausanne) 2024; 10:1333531. [PMID: 38249980 PMCID: PMC10796567 DOI: 10.3389/fmed.2023.1333531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Ulcerative colitis is a common digestive disorder worldwide, with increasing incidence in recent years. It is an urgent problem to be solved, as it seriously affects and threatens the health and life of the global population. Studies have shown that dysfunction of the intestinal mucosal barrier is a critical pathogenic factor and molecular basis of ulcerative colitis, and some scholars have described it as a "barrier organ disease." While the Notch signalling pathway affects a series of cellular processes, including proliferation, differentiation, development, migration, and apoptosis. Therefore, it can regulate intestinal stem cells, CD4+ T cells, innate lymphoid cells, macrophages, and intestinal microbiota and intervene in the chemical, physical, immune, and biological mucosal barriers in cases of ulcerative colitis. The Notch signalling pathway associated with the pathogenesis of ulcerative colitis has distinct characteristics, with good regulatory effects on the mucosal barrier. However, research on ulcerative colitis has mainly focused on immune regulation, anti-inflammatory activity, and antioxidant stress; therefore, the study of the Notch signalling pathway suggests the possibility of understanding the pathogenesis of ulcerative colitis from another perspective. In this article we explore the role and mechanism of the Notch signalling pathway in the pathogenesis of ulcerative colitis from the perspective of the intestinal mucosal barrier to provide new targets and theoretical support for further research on the pathogenesis and clinical treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Hang Ning
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jiemin Liu
- Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jiaqian Tan
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Mengni Yi
- School of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
13
|
Gowripriya T, Meharaj Afrin K, Paurna M, Yashwanth R, Bhaskar JP, Suresh R, Balamurugan K. Regulation of miR-61 and col-19 via TGF-β and Notch signalling in Caenorhabditis elegans against Klebsiella aerogenes infection. Microb Pathog 2024; 186:106505. [PMID: 38122874 DOI: 10.1016/j.micpath.2023.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Klebsiella aerogenes, previously known as Enterobacter aerogenes, is a gram-negative bacterium typically present in the gastrointestinal tract. While numerous studies reported the pathogenicity and drug resistance of this bacterium there remains a lack of comprehensive research on K. aerogenes induced alterations in the host cellular mechanisms. In this study, we identify a previously uncharacterized C. elegans miR-61 that defines an evolutionarily conserved miRNA important for development and innate immunity regulation through Notch and TGF-β signaling pathway. We employed C. elegans wild-type (N2) as well as mutant strains, such as TGF-β (sma-6) and notch-signaling pathway mutants (adm-4 and mir-61). Our results have demonstrated that the K. aerogenes infected mutants exhibited significantly reduced survival rate, reduced pharyngeal pumping, altered swimming and chemotactic behavior. Moreover, K. aerogenes affects the healthspan by increasing ROS level in the mutants. The gene expression analysis revealed that K. aerogenes upregulated egl-30, tph-1 and sod-1 in adm-4, mir-61 mutants not in sma-6. The in-silico analysis indicated an interaction between mir-61 and col-19, which was confirmed by the upregulation of miR-61 expression and the downregulation of col-19 in sma-6, adm-4, and wild-type strains. These findings suggest that C. elegans activates mir-61 and col-19 regulation through the Notch and TGF-β signaling pathway against K. aerogenes infection.
Collapse
Affiliation(s)
- Thirumugam Gowripriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India.
| | | | - Manikandan Paurna
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, India.
| | - Radhakrishnan Yashwanth
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - James Prabhanand Bhaskar
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | - Ramamurthi Suresh
- ITC Life Sciences and Technology Centre, Peenya Industrial Area, Bangalore, 560 058, Karnataka, India.
| | | |
Collapse
|
14
|
Liu Q, Chen C, He Y, Mai W, Ruan S, Ning Y, Li Y. Notch Signaling Regulates the Function and Phenotype of Dendritic Cells in Helicobacter pylori Infection. Microorganisms 2023; 11:2818. [PMID: 38004829 PMCID: PMC10673485 DOI: 10.3390/microorganisms11112818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic cells (BMDCs) were pretreated in the absence or presence of Notch signaling inhibitor DAPT prior to H. pylori stimulation and the levels of Notch components, cytokines and surface markers as well as the differentiation of CD4+ T cells in co-culture were measured using quantitative real-time PCR (qRT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Compared with the control, the mRNA expression of all Notch receptors and Notch ligands Dll4 and Jagged1 was up-regulated in H. pylori-stimulated BMDCs. The blockade of Notch signaling by DAPT influenced the production of IL-1β and IL-10 in H. pylori-pulsed BMDCs, and reduced the expression of Notch1, Notch3, Notch4, Dll1, Dll3 and Jagged2. In addition, DAPT pretreatment decreased the expression of maturation markers CD80, CD83, CD86, and major histocompatibility complex class II (MHC-II) of BMDCs, and further skewed Th17/Treg balance toward Treg. Notch signaling regulates the function and phenotype of DCs, thus mediating the differentiation of CD4+ T cells during H. pylori infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| |
Collapse
|
15
|
Chen Y, Ren P, He X, Yan F, Gu R, Bai J, Zhang X. Olfactory bulb neurogenesis depending on signaling in the subventricular zone. Cereb Cortex 2023; 33:11102-11111. [PMID: 37746807 DOI: 10.1093/cercor/bhad349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Olfaction is a crucial sense that is essential for the well-being and survival of individuals. Olfactory bulb (OB) is the first olfactory relay station, and its function depends on newly generated neurons from the subventricular zone (SVZ). These newly born neurons constantly migrate through the rostral migratory stream to integrate into existing neural networks within the OB, thereby contributing to olfactory information processing. However, the mechanisms underlying the contribution of SVZ adult neurogenesis to OB neurogenesis remain largely elusive. Adult neurogenesis is a finely regulated multistep process involving the proliferation of adult neural stem cells (aNSCs) and neural precursor cells, as well as the migration and differentiation of neuroblasts, and integration of newly generated neurons into preexisting neuronal circuitries. Recently, extensive studies have explored the mechanism of SVZ and OB neurogenesis. This review focused on elucidating various molecules and signaling pathways associated with OB neurogenesis dependent on the SVZ function. A better understanding of the mechanisms underlying the OB neurogenesis on the adult brain is an attractive prospect to induce aNSCs in SVZ to generate new neurons to ameliorate olfactory dysfunction that is involved in various diseases. It will also contribute to developing new strategies for the human aNSCs-based therapies.
Collapse
Affiliation(s)
- Yali Chen
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Peng Ren
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiongjie He
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Fang Yan
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Rou Gu
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Bai
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianwen Zhang
- Laboratory of Molecular Neurobiology, Medical Faculty, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
16
|
Zhong H, Li J, Cheng JH. Targeting different signaling pathways for food allergy regulation and potential therapy: a review. Crit Rev Food Sci Nutr 2023; 64:12860-12877. [PMID: 37707435 DOI: 10.1080/10408398.2023.2257798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The rising incidence rate of food allergy is attracting more intention. The pathogenesis of food allergy is complex and its definite regulatory mechanism is not utterly understood. Exploring the molecular mechanism of food allergy to help find effective methods that can prevent or treat food allergy is widely necessary. Recently, targeting cellular signaling pathways have been employed as novel approaches to discover food allergy therapy. Supplementing probiotics and bioactive compounds with anti-allergic property are believed feasible approaches for food allergy therapy. These probiotics or bioactive compounds affect food allergy by regulating cellular signaling pathways, and ultimately alleviate food allergy. This review aims to report systematic information about the knowledge of signaling pathways participated in food allergy, the alterations of these signaling pathways during food allergy that treated with probiotics and bioactive compounds are discussed as well. Further studies on the mechanism of signaling pathway network regulating food allergy and the precise action mechanism of probiotics and bioactive compounds are in the urgent need to help develop efficient treatment or complete prevention. We hope to help scientists understand food allergy systematically.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China
| |
Collapse
|
17
|
Zhang Y, Wang T, Wu S, Tang L, Wang J, Yang J, Yao S, Zhang Y. Notch signaling pathway: a new target for neuropathic pain therapy. J Headache Pain 2023; 24:87. [PMID: 37454050 PMCID: PMC10349482 DOI: 10.1186/s10194-023-01616-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023] Open
Abstract
The Notch gene, a highly evolutionarily conserved gene, was discovered approximately 110 years ago and has been found to play a crucial role in the development of multicellular organisms. Notch receptors and their ligands are single-pass transmembrane proteins that typically require cellular interactions and proteolytic processing to facilitate signal transduction. Recently, mounting evidence has shown that aberrant activation of the Notch is correlated with neuropathic pain. The activation of the Notch signaling pathway can cause the activation of neuroglia and the release of pro-inflammatory factors, a key mechanism in the development of neuropathic pain. Moreover, the Notch signaling pathway may contribute to the persistence of neuropathic pain by enhancing synaptic transmission and calcium inward flow. This paper reviews the structure and activation of the Notch signaling pathway, as well as its potential mechanisms of action, to provide novel insights for future treatments of neuropathic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tingting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Tang
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jia Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, Research Center for Brain-Inspired Intelligence, School of Life Science and Technology, Xi'an Jiaotong University, The Key Laboratory of Neuro-Informatics & Rehabilitation En-Gineering of Ministry of Civil Affairs, Xi'an, Shaanxi, P. R. China
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, Hubei, China
| | - Jinghan Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Yan Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
18
|
Grennell JA, Jenkins KD, Luther KB, Glushka J, Haltiwanger RS, Macnaughtan MA. 1H, 15N, 13C backbone and sidechain resonance assignments and secondary structure of mouse NOTCH1 EGF27. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:27-35. [PMID: 36565355 PMCID: PMC10626972 DOI: 10.1007/s12104-022-10116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/08/2022] [Indexed: 06/02/2023]
Abstract
NOTCH1 is a transmembrane receptor in metazoans that is linked to a variety of disorders. The receptor contains an extracellular domain (ECD) with 36 tandem epidermal growth factor-like (EGF) repeats. The ECD is responsible for intercellular signaling via protein-ligand interactions with neighboring cells. Each EGF repeat consists of approximately 40 amino acids and 3 conserved disulfide bonds. The Abruptex region (EGF24-29) is critical for NOTCH1 signaling and is known for its missense mutations. Certain EGF repeats are modified with the addition of O-linked glycans and many have calcium binding sites, which give each EGF repeat a unique function. It has been shown that the loss of the O-fucose site of EGF27 alters NOTCH1 activity. To investigate the role of glycosylation in the NOTCH1 signaling pathway, nuclear magnetic resonance spectroscopy has been employed to study the structures of EGF27 and its glycoforms. Here, we report the backbone and sidechain 1H, 15N, and 13C-resonance assignments of the unmodified EGF27 protein and the predicted secondary structure derived from the assigned chemical shifts.
Collapse
Affiliation(s)
- Justin A Grennell
- Department of Chemistry, Louisiana State University, Baton Range, LA, 70803, USA
| | - Kendra D Jenkins
- Department of Chemistry, Louisiana State University, Baton Range, LA, 70803, USA
| | - Kelvin B Luther
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - John Glushka
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, 30602, USA
| | - Megan A Macnaughtan
- Department of Chemistry, Louisiana State University, Baton Range, LA, 70803, USA.
| |
Collapse
|
19
|
Zheng L, Duan SL. Molecular regulation mechanism of intestinal stem cells in mucosal injury and repair in ulcerative colitis. World J Gastroenterol 2023; 29:2380-2396. [PMID: 37179583 PMCID: PMC10167905 DOI: 10.3748/wjg.v29.i16.2380] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/26/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with complex causes. The main pathological changes were intestinal mucosal injury. Leucine-rich repeat-containing G protein coupled receptor 5 (LGR5)-labeled small intestine stem cells (ISCs) were located at the bottom of the small intestine recess and inlaid among Paneth cells. LGR5+ small ISCs are active proliferative adult stem cells, and their self-renewal, proliferation and differentiation disorders are closely related to the occurrence of intestinal inflammatory diseases. The Notch signaling pathway and Wnt/β-catenin signaling pathway are important regulators of LGR5-positive ISCs and together maintain the function of LGR5-positive ISCs. More importantly, the surviving stem cells after intestinal mucosal injury accelerate division, restore the number of stem cells, multiply and differentiate into mature intestinal epithelial cells, and repair the damaged intestinal mucosa. Therefore, in-depth study of multiple pathways and transplantation of LGR5-positive ISCs may become a new target for the treatment of UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| |
Collapse
|
20
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
21
|
Yu H, Wei Y, Dong Y, Chen P. Regulation of Notch Signaling Pathway to Innate Lymphoid Cells in Patients with Acute Myocardial Infarction. Immunol Invest 2023; 52:241-255. [PMID: 36562737 DOI: 10.1080/08820139.2022.2158856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Notch signaling pathway is an important regulator in fate decisions and immune responses of innate lymphoid cells (ILCs). However, the function of Notch signaling in ILCs in acute coronary syndrome is still not fully elucidated. Thirty-one unstable angina pectoris (UAP) patients, 21 acute myocardial infarction (AMI) patients, and 20 controls were included in this study. Peripheral blood mononuclear cells (PBMCs) were isolated. The mRNA expression levels of Notch receptors and ligands were measured by real-time PCR, while ILC subsets were measured by flow cytometry. Lin- cells were purified and stimulated with γ-secretase inhibitor (GSI). ILC subsets, transcription factors, and secreted cytokines were assessed. Notch receptor and ligand mRNA levels were elevated in PBMCs and peripheral lin- cells from AMI patients. There was no significant difference in total lin-CD45+CD161+CD127+ ILC frequency among three groups. The CRTH2-CD117- ILC1 subset was down-regulated, while the CRTH2+ ILC2 subset was up-regulated in AMI patients. The CRTH2-CD117+ ILC3 subpopulation was comparable among the three groups. ILC1% was negatively correlated with Notch1 and Notch2 in AMI patients. Inhibition of Notch signaling pathway by GSI induced elevations in ILC1 frequency, T-bet mRNA expression, and interferon-γ secretion and reduced ILC2 frequency, GATA3 mRNA levels, and interleukin-5/interleukin-13 production by lin- cells from AMI patients. The current data indicated that activation of Notch signaling pathway might contribute to ILC1-to-ILC2 shift in peripheral blood in AMI patients.
Collapse
Affiliation(s)
- Haiwen Yu
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongjie Wei
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Dong
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Penglei Chen
- Department of Cardiovascularology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
22
|
Mo Y, Chen K. Review: The role of HMGB1 in spinal cord injury. Front Immunol 2023; 13:1094925. [PMID: 36713448 PMCID: PMC9877301 DOI: 10.3389/fimmu.2022.1094925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
High mobility group box 1 (HMGB1) has dual functions as a nonhistone nucleoprotein and an extracellular inflammatory cytokine. In the resting state, HMGB1 is mainly located in the nucleus and regulates key nuclear activities. After spinal cord injury, HMGB1 is rapidly expressed by neurons, microglia and ependymal cells, and it is either actively or passively released into the extracellular matrix and blood circulation; furthermore, it also participates in the pathophysiological process of spinal cord injury. HMGB1 can regulate the activation of M1 microglia, exacerbate the inflammatory response, and regulate the expression of inflammatory factors through Rage and TLR2/4, resulting in neuronal death. However, some studies have shown that HMGB1 is beneficial for the survival, regeneration and differentiation of neurons and that it promotes the recovery of motor function. This article reviews the specific timing of secretion and translocation, the release mechanism and the role of HMGB1 in spinal cord injury. Furthermore, the role and mechanism of HMGB1 in spinal cord injury and, the challenges that still need to be addressed are identified, and this work will provide a basis for future studies.
Collapse
|
23
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
Dinarvand M, Koch FC, Al Mouiee D, Vuong K, Vijayan A, Tanzim AF, Azad AKM, Penesyan A, Castaño-Rodríguez N, Vafaee F. dRNASb: a systems biology approach to decipher dynamics of host-pathogen interactions using temporal dual RNA-seq data. Microb Genom 2022; 8. [PMID: 36136078 DOI: 10.1099/mgen.0.000862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infection triggers a dynamic cascade of reciprocal events between host and pathogen wherein the host activates complex mechanisms to recognise and kill pathogens while the pathogen often adjusts its virulence and fitness to avoid eradication by the host. The interaction between the pathogen and the host results in large-scale changes in gene expression in both organisms. Dual RNA-seq, the simultaneous detection of host and pathogen transcripts, has become a leading approach to unravelling complex molecular interactions between the host and the pathogen and is particularly informative for intracellular organisms. The amount of in vitro and in vivo dual RNA-seq data is rapidly growing, which demands computational pipelines to effectively analyse such data. In particular, holistic, systems-level, and temporal analyses of dual RNA-seq data are essential to enable further insights into the host-pathogen transcriptional dynamics and potential interactions. Here, we developed an integrative network-driven bioinformatics pipeline, dRNASb, a systems biology-based computational pipeline to analyse temporal transcriptional clusters, incorporate molecular interaction networks (e.g. protein-protein interactions), identify topologically and functionally key transcripts in host and pathogen, and associate host and pathogen temporal transcriptome to decipher potential between-species interactions. The pipeline is applicable to various dual RNA-seq data from different species and experimental conditions. As a case study, we applied dRNASb to analyse temporal dual RNA-seq data of Salmonella-infected human cells, which enabled us to uncover genes contributing to the infection process and their potential functions and to identify putative associations between host and pathogen genes during infection. Overall, dRNASb has the potential to identify key genes involved in bacterial growth or host defence mechanisms for future uses as therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Dinarvand
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Forrest C Koch
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Daniel Al Mouiee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - Kaylee Vuong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Abhishek Vijayan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Afia Fariha Tanzim
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - A K M Azad
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Anahit Penesyan
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, Australia
| | - Natalia Castaño-Rodríguez
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
25
|
Zhang H, Zhang R, Wang F, Li G, Wen Y, Shan H. Comparative proteomic analysis of PK15 swine kidney cells infected with a pseudorabies pathogenic variant and the Bartha-K/61 vaccine strain. Microb Pathog 2022; 170:105698. [DOI: 10.1016/j.micpath.2022.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
|
26
|
Aljedaie MM. Epigenetic paradigms/exemplars of the macrophage: inflammasome axis in Leishmaniasis. Mol Cell Biochem 2022; 477:2553-2565. [PMID: 35595955 DOI: 10.1007/s11010-022-04460-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
The infectious paradigms have recently led to the recognition interplay of complex phenomenon underpinning disease diagnosis and prognosis. Evidently, parasitic infection studies are depicting converging trends of the epigenetic, environmental, and microbiome contributions, assisting pathogen-directed modulations of host biological system. The molecular details of epigenetic variations and memory, along with the multi-omics data at the interface of the host-pathogen level becomes strong indicator of immune cell plasticity, differentiation, and pathogen survival. Despite being one of the most important aspects of the disease's etiopathology, the epigenetic regulation of host-pathogen interactions and evolutionary epigenetics have received little attention thus far. Recent evidence has focused on the growing need to link epigenetic and microbiome modulations on parasite phenotypic plasticity and pathogen-induced host phenotypic plasticity for designing futuristic therapeutic regimes. Leishmaniasis is a neglected tropical illness with varying degrees of disease severity that is linked to a trans-species and epigenetic heredity process, including the pathogen-induced host and strain-specific modulations. The review configures research findings aligning to the epigenetic epidemiology niche, involving co-evolutionary epigenetic inheritance and plasticity disease models. The epigenetic exemplars focus on the host-pathogen interactome expanse at the macrophage-inflammasome axis.
Collapse
Affiliation(s)
- Manei M Aljedaie
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj, 11942, Saudi Arabia.
| |
Collapse
|
27
|
Li T, Zhang YS, Wan M, Wu W, Yao YF, Li WJ. Ganoderma atrum polysaccharide modulates the M1/M2 polarization of macrophages linked to the Notch signaling pathway. Food Funct 2022; 13:4216-4228. [PMID: 35332895 DOI: 10.1039/d1fo04309a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macrophages could be polarized into two major sub-populations including classically activated (M1) and alternatively activated (M2) macrophages. The present study aimed to investigate the effects of Ganoderma atrum polysaccharide (PSG-1) on the regulation of macrophage polarization and further explored the associated molecular mechanisms. In this work, a lipopolysaccharide (LPS) plus IFN-γ and IL-4 were used to establish an in vitro model of two extreme states, namely pro-inflammatory M1 and anti-inflammatory M2. The results showed that PSG-1 had effects on the behavior modification of macrophage polarization by reducing CD80 expression in LPS plus IFN-γ-induced M1 macrophages, and attenuating CD23 expression in IL-4-induced M2 macrophages. Further study revealed that PSG-1-modulated M1 and M2 macrophage polarization was associated with controlling phagocytosis, reactive oxygen species generation, NO and cytokines (IL-1β, IL-6 and IL-10). Subsequently, the treatment of M1 macrophages with a combination of PSG-1 and a Notch-response inhibitor (DAPT) did not alter CD80 expression compared with DAPT alone, while several pro-inflammatory parameters were considerably decreased, suggesting that the Notch signaling pathway partly mediated the effects of PSG-1 on modulating macrophage polarization. Together, our findings suggested that PSG-1 could repair the chaos in the polarization of M1/M2 macrophages and the molecular mechanism linked to the Notch signaling pathway.
Collapse
Affiliation(s)
- Teng Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yan-Song Zhang
- Research Institute of Food Science & Engineering Technology, Hezhou University, Hezhou 542899, China
| | - Min Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Wei Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yu-Fei Yao
- Department of Critical Care Medicine, The Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006, China.
| | - Wen-Juan Li
- State Key Laboratory of Food Science and Technology, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
28
|
Chen S, Wang C, Chen Q, Zhao D, Liu Y, Zhao S, Fu S, He X, Yang B, Zhao Q, An Q, Zhang Z, Cheng Y, Man C, Liu G, Wei X, Zhang W, Du L, Wang F. Downregulation of Three Novel miRNAs in the Lymph Nodes of Sheep Immunized With the Brucella suis Strain 2 Vaccine. Front Vet Sci 2022; 9:813170. [PMID: 35274021 PMCID: PMC8902169 DOI: 10.3389/fvets.2022.813170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/13/2022] [Indexed: 02/02/2023] Open
Abstract
Ovine and caprine brucellosis, both caused by Brucella melitensis, lead to substantial economic losses in the animal industry and health problems in human populations. Brucella suis strain 2 (B.suis S2), as a live attenuated vaccine, is used extensively in China to prevent brucellosis. It has been proven that microRNA (miRNAs) are involved in the immunopathogenesis of brucellosis; however, the miRNA-driven mechanism of immune response to B.suis S2 in vivo remains unknown. To determine which new miRNAs are involved in the host immune response to B.suis S2 and elucidate the function of these miRNAs, we performed a comprehensive analysis of miRNA expression profiles in sheep immunized with B.suis S2 using the high-throughput sequencing approach. The submandibular lymphatic nodes from sheep seropositive for Brucella were collected at 7, 14, 21, 30, 60 and 90 days post-immunization. MiRNA sequencing analysis revealed that 282 differentially expressed miRNAs (|log2 fold-change |>0.5 and p < 0.05) were significantly enriched in the immune pathways, including the NF-kappa B signaling pathway, B cell receptor signaling pathway, p53 signaling pathway and complement and coagulation cascades. Increasing the threshold to |log2 fold change|>1 and p < 0.01 revealed 48 differentially expressed miRNAs, 31 of which were novel miRNAs. Thirteen of these novel miRNAs, which were differentially expressed for at least two time points, were detected via RT-qPCR assays. The novel_229, novel_609, novel_973 and oar-miR-181a assessed by RT-qPCR were detectable and consistent with the expression patterns obtained by miRNA sequencing. Functional analyses of these miRNAs demonstrated that their target genes participated in the immune response pathways, including the innate and adaptive immunity pathways. The immune-related target genes of novel_229 included ENSOARG00000000649 and TMED1, as well as LCN2, PDPK1 and LPO were novel_609 target genes. The immune-related target genes of novel_973 included C6orf58, SPPL3, BPIFB1, ENSOARG00000021083, MPTX1, CCL28, FGB, IDO1, OLR1 and ENSOARG00000020393. The immune-related target genes of oar-miR-181a included ENSOARG00000002722, ARHGEF2, MFAP4 and DOK2. These results will deepen our understanding of the host miRNA-driven defense mechanism in sheep immunized with B.suis S2 vaccine, and provide the valuable information for optimizing vaccines and developing molecular diagnostic targets.
Collapse
Affiliation(s)
- Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Chengqiang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Dantong Zhao
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, China
| | | | - Shihua Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Shaoyin Fu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Xiaolong He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bin Yang
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Qinan Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Qi An
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Zhenxing Zhang
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Yiwen Cheng
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Guoying Liu
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, China
| | - Xuefeng Wei
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, China
| | - Wenguang Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Li Du
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
- Li Du
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Animal Genetic Engineering Key Lab of Haikou, Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
- *Correspondence: Fengyang Wang
| |
Collapse
|
29
|
Yu S, Ge H, Li S, Qiu HJ. Modulation of Macrophage Polarization by Viruses: Turning Off/On Host Antiviral Responses. Front Microbiol 2022; 13:839585. [PMID: 35222345 PMCID: PMC8874017 DOI: 10.3389/fmicb.2022.839585] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Macrophages are professional antigen-presenting cells and serve as the first line of defense against invading pathogens. Macrophages are polarized toward the proinflammatory classical (M1) or anti-inflammatory alternative (M2) phenotype upon viral infections. M1-polarized macrophages exert critical roles in antiviral responses via different mechanisms. Within the long competitive history between viruses and hosts, viruses have evolved various immune evasion strategies, inhibiting macrophage acquisition of an antiviral phenotype, impairing the antiviral responses of activated macrophages, and/or exploiting macrophage phenotypes for efficient replication. This review focuses on the sophisticated regulation of macrophage polarization utilized by viruses and is expected to provide systematic insights into the regulatory mechanisms of macrophage polarization by viruses and further facilitate the design of therapeutic targets for antivirals.
Collapse
|
30
|
Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med 2022; 54:91-102. [PMID: 35217834 PMCID: PMC8894452 DOI: 10.1038/s12276-022-00736-w] [Citation(s) in RCA: 424] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nonhistone nuclear protein that has multiple functions according to its subcellular location. In the nucleus, HMGB1 is a DNA chaperone that maintains the structure and function of chromosomes. In the cytoplasm, HMGB1 can promote autophagy by binding to BECN1 protein. After its active secretion or passive release, extracellular HMGB1 usually acts as a damage-associated molecular pattern (DAMP) molecule, regulating inflammation and immune responses through different receptors or direct uptake. The secretion and release of HMGB1 is fine-tuned by a variety of factors, including its posttranslational modification (e.g., acetylation, ADP-ribosylation, phosphorylation, and methylation) and the molecular machinery of cell death (e.g., apoptosis, pyroptosis, necroptosis, alkaliptosis, and ferroptosis). In this minireview, we introduce the basic structure and function of HMGB1 and focus on the regulatory mechanism of HMGB1 secretion and release. Understanding these topics may help us develop new HMGB1-targeted drugs for various conditions, especially inflammatory diseases and tissue damage. A nuclear protein that gets released after cell death or is actively secreted by immune cells offers a promising therapeutic target for treating diseases linked to excessive inflammation. Daolin Tang from the University of Texas Southwestern Medical Center in Dallas, USA, and colleagues review how cellular stresses can trigger the accumulation of HMGB1, a type of alarm signal protein that promotes the recruitment and activation of inflammation-promoting immune cells. The researchers discuss various mechanisms that drive both passive and active release of HMGB1 into the space around cells. These processes, which include enzymatic modifications of the HMGB1 protein, cell–cell interactions and molecular pathways of cell death, could be targeted by drugs to lessen tissue damage and inflammatory disease caused by HMGB1-induced immune responses
Collapse
Affiliation(s)
- Ruochan Chen
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
31
|
Innate Immunity Response to BK Virus Infection in Polyomavirus-Associated Nephropathy in Kidney Transplant Recipients. TRANSPLANTOLOGY 2022. [DOI: 10.3390/transplantology3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BK polyomavirus (BKV) mainly causes infection in uroepithelial and renal tubular epithelial cells of either immunocompetent or immunocompromised hosts. Despite asymptomatic or mild clinical features in immunocompetent hosts with BK infection, serious complications are frequently found in immunocompromised patients, especially patients with kidney transplantation. Accordingly, BKV-associated nephropathy (BKVN) demonstrates a wide range of clinical manifestations, including ureteric stenosis and hemorrhagic cystitis. In addition, BKV re-infection in post-kidney transplantation is also a main cause of kidney allograft dysfunction and graft loss. Since the direct anti-BKV is unavailable, immune response against BKV infection is the main mechanism for organism control and might be a novel strategy to treat or suppress BKV. As such, the innate immunity, consisting of immune cells and soluble molecules, does not only suppress BKV but also enhances the subsequent adaptive immunity to eradicate the virus. Furthermore, the re-activation of BKV in BKVN of kidney-transplanted recipients seems to be related to the status of innate immunity. Therefore, this review aims to collate the most recent knowledge of innate immune response against BKV and the association between the innate immunity status of kidney-transplanted recipients and BKV re-activation.
Collapse
|