1
|
Singh A, Astekar MS, Sapra G, Agarwal A, Murari A. Immunohistochemical expression of paxillin in ameloblastoma and odontogenic keratocyst: An observational study. J Oral Maxillofac Pathol 2023; 27:727-734. [PMID: 38304525 PMCID: PMC10829436 DOI: 10.4103/jomfp.jomfp_312_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/08/2023] [Accepted: 10/09/2023] [Indexed: 02/03/2024] Open
Abstract
Background Cell adhesion molecules (CAMs) are found on the surface of all cells, where they allow dynamic processes to take place. These include cadherins, integrins, selectins and Immunoglobulin superfamily. Directly associated with β-integrin tails is a multidomain protein known as paxillin. However, CAMs participate in cell-cell and extracellular matrix-cell interactions during histomorphogenesis in the various phases of odontogenesis. Some tumours or cysts like ameloblastoma (AB) or odontogenic keratocyst (OKC) having odontogenic origin show disturbance in the interaction of these CAMs. Hence, the assessment of paxillin expression in AB and OKC was carried out. Materials and Methods The present observational study comprised 30 clinically and histologically confirmed cases of AB and OKC. All the slides were stained immunohistochemically using a paxillin antibody. Results Upon comparison of staining intensity of paxillin among AB and OKC showed statistically significant result, whereas quantitative staining and final summation showed non-significant result. Gender-wise comparison of paxillin staining intensity, quantitative staining and final summation among OKC showed significant result; however, in AB, staining intensity showed non-significant result, whereas quantitative staining and final summation showed significant result. Conclusion Paxillin has the greatest influence on tissue morphogenesis and development. The regulation of cell mobility is aided by the multiple roles that paxillin plays in a range of cells and tissues. However, further studies using a large sample size, along with other molecular analytical methods, may be essential to draw a definite conclusion about the association of paxillin and its exact function in OKC and AB.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Oral Pathology and Microbiology, Bareilly International University, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | - Madhusudan S. Astekar
- Department of Oral Pathology and Microbiology, Bareilly International University, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | - Gaurav Sapra
- Department of Oral Pathology and Microbiology, Bareilly International University, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | - Ashutosh Agarwal
- Department of Oral Pathology and Microbiology, Bareilly International University, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| | - Aditi Murari
- Department of Oral Pathology and Microbiology, Bareilly International University, Institute of Dental Sciences, Bareilly, Uttar Pradesh, India
| |
Collapse
|
2
|
Qu M, Yu K, Rehman Aziz AU, Zhang H, Zhang Z, Li N, Liu B. The role of Actopaxin in tumor metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:90-102. [PMID: 36150525 DOI: 10.1016/j.pbiomolbio.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/06/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Actopaxin is a newly discovered focal adhesions (FAs) protein, actin-binding protein and pseudopodia-enriched molecule. It can not only bind to a variety of FAs proteins (such as Paxillin, ILK and PINCH) and non-FAs proteins (such as TESK1, CdGAP, β2-adaptin, G3BP2, ADAR1 and CD29), but also participates in multiple signaling pathways. Thus, it plays a crucial role in regulating important processes of tumor metastasis, including matrix degradation, migration, and invasion, etc. This review covers the latest progress in the structure and function of Actopaxin, its interaction with other proteins as well as its involvement in regulating tumor development and metastasis. Additionally, the current limitations for Actopaxin related studies and the possible research directions on it in the future are also discussed. It is hoped that this review can assist relevant researchers to obtain a deep understanding of the role that Actopaxin plays in tumor progression, and also enlighten further research and development of therapeutic approaches for the treatment of tumor metastasis.
Collapse
Affiliation(s)
- Manrong Qu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Kehui Yu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Aziz Ur Rehman Aziz
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Hangyu Zhang
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China
| | - Zhengyao Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, China
| | - Na Li
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Key Laboratory for Integrated Circuit and Biomedical Electronic System of Liaoning Province, Dalian, 116024, China.
| |
Collapse
|
3
|
Scavo MP, Cutrignelli A, Depalo N, Fanizza E, Laquintana V, Gasparini G, Giannelli G, Denora N. Effectiveness of a Controlled 5-FU Delivery Based on FZD10 Antibody-Conjugated Liposomes in Colorectal Cancer In vitro Models. Pharmaceutics 2020; 12:E650. [PMID: 32664186 PMCID: PMC7408534 DOI: 10.3390/pharmaceutics12070650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/17/2022] Open
Abstract
The use of controlled delivery therapy in colorectal cancer (CRC) reduces toxicity and side effects. Recently, we have suggested that the Frizzled 10 (FZD10) protein, a cell surface receptor belonging to the FZD protein family that is overexpressed in CRC cells, is a novel candidate for targeting and treatment of CRC. Here, the anticancer effect of novel immuno-liposomes loaded with 5-Fluorouracil (5-FU), decorated with an antibody against FZD10 (anti-FZD10/5-FU/LPs), was evaluated in vitro on two different CRC cell lines, namely metastatic CoLo-205 and nonmetastatic CaCo-2 cells, that were found to overexpress FZD10. The anti-FZD10/5-FU/LPs obtained were extensively characterized and their preclinical therapeutic efficacy was evaluated with the MTS cell proliferation assay based on reduction of tetrazolium compound, scratch test, Field Emission Scanning Electron Microscopes (FE-SEM) investigation and immunofluorescence analysis. The results highlighted that the cytotoxic activity of 5-FU was enhanced when encapsulated in the anti-FZD10 /5-FU/LPs at the lowest tested concentrations, as compared to the free 5-FU counterparts. The immuno-liposomes proposed herein possess a great potential for selective treatment of CRC because, in future clinical applications, they can be encapsulated in gastro-resistant capsules or suppositories for oral or rectal delivery, thereby successfully reaching the intestinal tract in a minimally invasive manner.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology “S. deBellis”, Via Turi 26 Castellana Grotte, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
| | - Elisabetta Fanizza
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125 Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
| | | | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology “de Bellis”, Via Turi 26 Castellana Grotte, 70125 Bari, Italy;
| | - Nunzio Denora
- Department of Pharmacy-Drug Science, University of Bari, Via E. Orabona 4, 70125 Bari, Italy; (A.C.); (V.L.); (N.D.)
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70125 Bari, Italy; (N.D.); (E.F.)
| |
Collapse
|
4
|
Sohn SO, Chay KO. The ATP-dependent RNA helicase, DDX42 interacts with paxillin and regulates apoptosis and polarization of Ba/F3 cells. Anim Cells Syst (Seoul) 2019; 23:1-9. [PMID: 30834153 PMCID: PMC6394298 DOI: 10.1080/19768354.2019.1567580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 12/24/2018] [Accepted: 01/06/2019] [Indexed: 01/08/2023] Open
Abstract
Paxillin is a focal adhesion adaptor protein, heavily phosphorylated at multiple tyrosine residues, as well as at serine 273 (S273), and is known to be critical for cytoskeleton rearrangement and cell migration. We previously found that paxillin plays a regulatory role in IL-3-dependent survival of Ba/F3 cells, a mouse pro-B cell line. In this study, by using overexpressed His6 tagged-paxillin as a bait, we found that DDX42, a DEAD-box RNA helicase, interacted with paxillin, inhibited apoptosis, and promoted polarization of Ba/F3 cells. His6 tagged-paxillin was stably overexpressed in Ba/F3 cells, pulled-down from cell lysates with Ni+-NTA beads, and analyzed by one-dimensional SDS-PAGE followed by LC–MS. We found that DDX42 co-precipitated with paxillin, as demonstrated by western blotting analysis of His6 tagged-paxillin precipitates with anti-DDX42 antibodies and His6 tagged-DDX42 precipitates with anti-paxillin antibodies. In addition, we observed a preferential interaction of DDX42 with the paxillin mutant, S273A, compared to the S273D mutant. Furthermore, DDX42 overexpression in Ba/F3 cells delayed the apoptosis induced by IL-3 deprivation and promoted restoration of the elongated shape in Ba/F3 cells induced by IL-3 re-supply after a 6 h-deprivation. These results suggested that DDX42 interacts with paxillin and participates in IL-3-dependent cell survival, as well as in the cytoskeletal rearrangements underlying polarization of Ba/F3 cells.
Collapse
Affiliation(s)
- Sung Oh Sohn
- Department of Biochemistry, Medical School, Chonnam National University, Jeollanam-do, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Medical School, Chonnam National University, Jeollanam-do, Republic of Korea
| |
Collapse
|
5
|
Su C, Zhang B, Liu W, Zheng H, Sun L, Tong J, Wang T, Jiang X, Liang H, Xue L, Zhang Q. High extracellular pressure promotes gastric cancer cell adhesion, invasion, migration and suppresses gastric cancer cell differentiation. Oncol Rep 2016; 36:1048-54. [DOI: 10.3892/or.2016.4841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/15/2016] [Indexed: 11/06/2022] Open
|
6
|
Zhao CJ, Du SK, Dang XB, Gong M. Expression of Paxillin is Correlated with Clinical Prognosis in Colorectal Cancer Patients. Med Sci Monit 2015; 21:1989-95. [PMID: 26159303 PMCID: PMC4509415 DOI: 10.12659/msm.893832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to investigate the expression of Paxillin in colorectal carcinoma and its significance in clinical prognosis. Material/Methods Tissue specimens from 242 colorectal cancer patients who underwent radical resection were collected in Shaanxi Provincial People’s Hospital from 2010 to 2014. The mRNA levels of Paxillin in colorectal cancer tissue and tissue adjacent to carcinoma of 62 patients were measured by quantitative real-time PCR. Immunohistochemistry staining was used to detect the expression of Paxillin in 242 samples of paraffin-embedded tissues. Results The mRNA and protein level of Paxillin in colorectal cancer tissues were significantly higher than those in the tissue adjacent to carcinoma (P<0.001 and P=0.003, respectively). The expression of Paxillin was significantly correlated to tumor histological grade (P<0.001), tumor size (P=0.01), serum CA199 level (P<0.001), the clinical TNM stage (P<0.001), and distant metastasis (P<0.001). Survival analysis showed that the prognosis of the patients with high expression of Paxillin was poorer than those with low expression of Paxillin (P=0.03). Cox proportional hazards model with stepwise selection showed that age, Paxillin expression level, and the clinical TNM stage were independent prognostic factors influencing survival for patients (P=0.01, P=0.004 and P<0.001, respectively). Conclusions Paxillin was expressed at significantly higher levels in colorectal cancer tissues and might serve as a potential prognostic indicator in patients with colorectal cancer.
Collapse
Affiliation(s)
- Cheng-jin Zhao
- Department of Emergency, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Shuang-kuan Du
- Department of Emergency, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Xing-bo Dang
- Department of Emergency, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China (mainland)
| | - Min Gong
- Department of Ophthalmology, Union Hospital of Hua Zhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
7
|
Basson MD, Zeng B, Downey C, Sirivelu MP, Tepe JJ. Increased extracellular pressure stimulates tumor proliferation by a mechanosensitive calcium channel and PKC-β. Mol Oncol 2015; 9:513-526. [PMID: 25454347 PMCID: PMC4487881 DOI: 10.1016/j.molonc.2014.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/31/2023] Open
Abstract
Large tumors exhibit high interstitial pressure heightened by growth against the constraining stroma. Such pressures could stimulate tumor proliferation via a mechanosensitive ion channel. We studied the effects of 0-80 mmHg increased extracellular pressure for 24 h on proliferation of SW620, Caco-2, and CT-26 colon; MCF-7 breast; and MLL and PC3 prostate cancer cells, and delineated its mechanism in SW620 cells with specific inhibitors and siRNA. Finally, we compared NF-kB, phospho-IkB and cyclin D1 immunoreactivity in the high pressure centers and low pressure peripheries of human tumors. Pressure-stimulated proliferation in all cells. Pressure-driven SW620 proliferation required calcium influx via the T-type Ca(2+) channel Cav3.3, which stimulated PKC-β to invoke the IKK-IkB-NF-kB pathway to increase proliferation and S-phase fraction. The mitotic index and immunoreactivity of NF-kB, phospho-IkB, and cyclin D1 in the center of 28 large human colon, lung, and head and neck tumors exceeded that in tumor peripheries. Extracellular pressure increases [Ca(2+)]i via Cav3.3, driving a PKC-β- IKK- IkB-NF-kB pathway that stimulates cancer cell proliferation. Rapid proliferation in large stiff tumors may increase intratumoral pressure, activating this pathway to stimulate further proliferation in a feedback cycle that potentiates tumor growth. Targeting this pathway may inhibit proliferation in large unresectable tumors.
Collapse
Affiliation(s)
- Marc D Basson
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA.
| | - Bixi Zeng
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA
| | - Christina Downey
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA
| | - Madhu P Sirivelu
- Department of Surgery, Michigan State University College of Human Medicine, 1200 E Michigan Ave, Lansing Charter Township, MI 48912, USA
| | - Jetze J Tepe
- Department of Pharmacology, Michigan State University, 1355 Bogue Street, B440 Life Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Phosphorylation of Dok1 by Abl family kinases inhibits CrkI transforming activity. Oncogene 2014; 34:2650-9. [PMID: 25043303 PMCID: PMC4302068 DOI: 10.1038/onc.2014.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
The Crk SH2/SH3 adaptor and the Abl nonreceptor tyrosine kinase were first identified as oncoproteins, and both can induce tumorigenesis when overexpressed or mutationally activated. We previously reported the surprising finding that inhibition or knockdown of Abl family kinases enhanced transformation of mouse fibroblasts by CrkI. Abl family inhibitors are currently used or are being tested for treatment of human malignancies, and our finding raised concerns that such inhibitors might actually promote the growth of tumors overexpressing CrkI. Here, we identify the Dok1 adaptor as the key effector for the enhancement of CrkI transformation by Abl inhibition. We show that phosphorylation of tyrosines 295 and 361 of Dok1 by Abl family kinases suppresses CrkI transforming activity, and that upon phosphorylation these tyrosines bind the SH2 domains of the Ras inhibitor p120 RasGAP. Knockdown of RasGAP resulted in a similar enhancement of CrkI transformation, consistent with a critical role for Ras activity. Imaging studies using a FRET sensor of Ras activation revealed alterations in the localization of activated Ras in CrkI-transformed cells. Our results support a model in which Dok1 phosphorylation normally suppresses localized Ras pathway activity in Crk-transformed cells via recruitment and/or activation of RasGAP, and that preventing this negative feedback mechanism by inhibiting Abl family kinases leads to enhanced transformation by Crk.
Collapse
|
9
|
Bi Y, Han Y, Bi H, Gao F, Wang X. miR-137 impairs the proliferative and migratory capacity of human non-small cell lung cancer cells by targeting paxillin. Hum Cell 2013; 27:95-102. [PMID: 24243432 DOI: 10.1007/s13577-013-0085-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/27/2013] [Indexed: 01/08/2023]
Abstract
Human lung cancer is the leading cause of cancer motility worldwide, with nearly 1.4 million deaths each year, among which non-small cell lung cancer (NSCLC) accounts for almost 85% of this disease. The discovery of microRNAs (miRNAs) provides a new avenue for NSCLC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of NSCLC, among which serum miR-137 has been examined to be down-regulated in NSCLC patients. However, the function of miR-137 on NSCLC cells migration and invasion and the relative mechanisms were less known. Here, we found that ectopic expression of miR-137 could inhibit cell proliferation, induce cell apoptosis, and suppress cell migration and invasion in NSCLC cell line A549. Moreover, we found that paxillin (PXN) was a target gene of miR-137 in NSCLC cells and restored expression of PXN abolished the miR-137-mediated suppression of cell migration and invasion. Taken together, our results showed that miR-137 acted as a tumor suppressor in NSCLC by targeting PXN, and it may provide novel diagnostic and therapeutic options for human NSCLC clinical operation in future.
Collapse
Affiliation(s)
- Yueyang Bi
- Department of Respiratory Medicine, The Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Chen DL, Wang ZQ, Ren C, Zeng ZL, Wang DS, Luo HY, Wang F, Qiu MZ, Bai L, Zhang DS, Wang FH, Li YH, Xu RH. Abnormal expression of paxillin correlates with tumor progression and poor survival in patients with gastric cancer. J Transl Med 2013; 11:277. [PMID: 24180516 PMCID: PMC4228400 DOI: 10.1186/1479-5876-11-277] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/30/2013] [Indexed: 02/07/2023] Open
Abstract
Background Paxillin (PXN) has been found to be aberrantly regulated in various malignancies and involved in tumor growth and invasion. The clinicopathological and prognostic significance of PXN in gastric cancer is still unclear. Methods The expression of PXN was determined in paired gastric cancer tissues and adjacent normal tissues by Western blotting and real-time PCR. Immunohistochemistry was performed to detect the expression of PXN in 239 gastric cancer patients. Statistical analysis was applied to investigate the correlation between PXN expression and clinicopathological characteristics and prognosis in patients. Additionally, the effects of PXN on gastric cancer cell proliferation and migration were also evaluated. Results PXN was up-regulated in gastric cancer tissues and cell lines as compared with adjacent normal tissues and normal gastric epithelial cell line GES-1. Overexpression of PXN was correlated with distant metastasis (P = 0.001) and advanced tumor stage (P = 0.021) in gastric cancer patients. Patients with high PXN expression tended to have poor prognosis compared with patients with low PXN expression (P < 0.001). Multivariate analysis demonstrated that PXN expression was an independent prognostic factor (P = 0.020). Moreover, ectopic expression of PXN promotes cell proliferation and migration in AGS cells whereas knockdown of PXN inhibits cell proliferation and migration in SGC7901 cells. Conclusions PXN plays an important role in tumor progression and may be used as a potential prognostic indicator in gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Rui-hua Xu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Dong Feng East Road, 510060 Guangzhou, P,R, China.
| |
Collapse
|
11
|
Chen DL, Wang DS, Wu WJ, Zeng ZL, Luo HY, Qiu MZ, Ren C, Zhang DS, Wang ZQ, Wang FH, Li YH, Kang TB, Xu RH. Overexpression of paxillin induced by miR-137 suppression promotes tumor progression and metastasis in colorectal cancer. Carcinogenesis 2012; 34:803-11. [PMID: 23275153 PMCID: PMC3616669 DOI: 10.1093/carcin/bgs400] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The deregulation of paxillin (PXN) has been involved in the progression and metastasis of different malignancies including colorectal cancer (CRC). miR-137 is frequently suppressed in CRC. PXN is predicted to be a direct target of miR-137 in CRC cells. On this basis, we hypothesized that overexpression of PXN induced by suppression of miR-137 may promote tumor progression and metastasis and predicts poor prognosis. We detected the expression of PXN and miR-137 in clinical tumor tissues by immunohistochemical analysis and real-time PCR, positive PXN staining was observed in 198 of the 247 (80.1%) cases, whereas no or weak PXN staining was observed in the adjacent non-cancerous area. Higher level of PXN messenger RNA (mRNA) and lower level of miR-137 was observed in cancer tissues than adjacent non-cancerous tissues. High expression of PXN and low expression of miR-137 was associated with aggressive tumor phenotype and adverse prognosis. Moreover, the expression of PXN was negatively correlated with miR-137 expression. A dual-luciferase reporter gene assay validated that PXN was a direct target of miR-137. The use of miR-137 mimics or inhibitor could decrease or increase PXN mRNA and protein levels in CRC cell lines. Knockdown of PXN or ectopic expression of miR-137 could markedly inhibit cell proliferation, migration and invasion in vitro and repress tumor growth and metastasis in vivo. Taken together, these results demonstrated that overexpression of PXN induced by suppression of miR-137 promotes tumor progression and metastasis and could serve as an independent prognostic indicator in CRC patients.
Collapse
|
12
|
Autocrine CCL2 promotes cell migration and invasion via PKC activation and tyrosine phosphorylation of paxillin in bladder cancer cells. Cytokine 2012; 59:423-32. [PMID: 22617682 DOI: 10.1016/j.cyto.2012.04.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/11/2012] [Indexed: 12/20/2022]
Abstract
The amount of monocyte chemoattractant protein-1 (MCP-1/CCL2) produced by a transitional cell carcinoma is directly correlated with high recurrence and poor prognosis in bladder cancer. However, the mechanisms underlying the effects of CCL2 on tumor progression remain unexplored. To investigate the role played by CCL2, we examined cell migration in various bladder cancer cell lines. We found that high-grade cancer cells expressing high levels of CCL2 showed more migration activity than low-grade bladder cancer cells expressing low levels of the chemokine. Although the activation of CCL2/CCR2 signals did not appreciably affect cell growth, it mediated cell migration and invasion via the activation of protein kinase C and phosphorylation of tyrosine in paxillin. Blocking CCL2 and CCR2 with small hairpin RNA (shCCL2) or a specific inhibitor reduced CCL2/CCR2-mediated cell migration. The antagonist of CCR2 promoted the survival of mice bearing MBT2 bladder cancer cells, and CCL2-depleted cells showed low tumorigenicity compared with shGFP cells. In addition to observing high-levels of CCL2 in high-grade human bladder cancer cells, we showed that the CCL2/CCR2 signaling pathway mediated migratory and invasive activity, whereas blocking the pathway decreased migration and invasion. In conclusion, high levels of CCL2 expressed in bladder cancer mediates tumor invasion and is involved with advanced tumorigenesis. Our findings suggest that this CCL2/CCR2 pathway is a potential candidate for the attenuation of bladder cancer metastases.
Collapse
|
13
|
Downey C, Craig DH, Basson MD. Isoform-specific modulation of pressure-stimulated cancer cell proliferation and adhesion by α-actinin. Am J Surg 2011; 202:520-523. [PMID: 21906716 PMCID: PMC3837569 DOI: 10.1016/j.amjsurg.2011.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/27/2011] [Accepted: 06/27/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intratumoral pressure may stimulate cancer proliferation whereas intravascular pressure promotes metastatic adhesion. α-Actinin proteins facilitate focal adhesion formation and link focal adhesion complexes to the cytoskeleton. We hypothesized that α-actinin is the mechanotransducer that mediates the effects of pressure on cancer cell proliferation and adhesion. METHODS We treated SW620 colon cancer cells with specific short interfering RNA to reduce α-actinin-1 and/or α-actinin-4, the 2 key epithelial isoforms. Proliferation was measured in adherent cells by microculture tetrazolium (MTT) assay after 24 hours at ambient or 40 mm Hg increased pressure. For comparison, we evaluated the effects of 30 minutes of ambient or 15-mm Hg increased pressure on adhesion of suspended SW620 cells. Because the transcription factor nuclear factor-κB (NF-κB) influences proliferation, we used co-immunoprecipitation to evaluate NF-κB-α-actinin association and a lentiviral reporter assay for NF-κB activity. RESULTS A total of 40 mm Hg increased pressure increased SW620 proliferation 41% ± 6% (n = 10; P < .05) versus ambient pressure controls. Reducing α-actinin-1 and α-actinin-4 together or α-actinin-4 alone blocked this effect, but reducing α-actinin-1 alone did not (n = 6; P < .05). We observed a 72% ± 11% increase in NF-κB activity (n = 6; P < .05), and increased association between NF-κB and α-actinin-4 in adherent cells under pressure. NF-κB and α-actinin-1 did not co-immunoprecipitate. However, reducing α-actinin-4 did not prevent pressure-induced NF-κB activation (n = 8). CONCLUSIONS α-actinin-4 may mediate pressure stimulation of proliferation within large rapidly growing tumors, perhaps by binding transcription factors such as NF-κB. α-actinins may be important targets to inhibit cancer proliferation and metastasis.
Collapse
Affiliation(s)
- Christina Downey
- Michigan State University Department of Surgery
- John D. Dingell VA Medical Center
| | - David H. Craig
- John D. Dingell VA Medical Center
- Medical University of South Carolina
| | - Marc D. Basson
- Michigan State University Department of Surgery
- John D. Dingell VA Medical Center
| |
Collapse
|
14
|
Zhang QW, Wang X, Wan YL, Liu YC, Zhu J. shRNA-mediated down-regulation of paxillin reduces cell invasion in human colon adenocarcinoma cell line SW480. Shijie Huaren Xiaohua Zazhi 2011; 19:1693-1697. [DOI: 10.11569/wcjd.v19.i16.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of short hairpin RNA (shRNA)-mediated down-regulation of paxillin expression on cell invasion in human colorectal adenocarcinoma cell line SW480 in vitro.
METHODS: shRNA targeting the paxillin gene was constructed and transfected into SW480 cells. SW480 cells were divided into three groups: untransfected cells, cells transfected with a control shRNA, and those transfected with a paxillin-specific shRNA. After transfection, the invasion of cells was analyzed by Transwell migration assay.
RESULTS: The expression of paxillin was inhibited in SW480 cells after the transfection of paxillin-specific shRNA. The numbers of cells passing the Transwell membrane were significantly lower in cells transfected with the paxillin-specific shRNA than in untransfected cells and those transfected with control shRNA (23.33 ± 6.12 vs 62.00 ± 6.26, 55.00 ± 13.04, F = 30.976, P < 0.05).
CONCLUSION: Down-regulation of paxillin gene expression reduces cell invasion in human colon adenocarcinoma cell line SW480 in vitro.
Collapse
|
15
|
SHEP1 partners with CasL to promote marginal zone B-cell maturation. Proc Natl Acad Sci U S A 2010; 107:18944-9. [PMID: 20956287 DOI: 10.1073/pnas.1007558107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The marginal zone is a cellular niche bordering the marginal sinus of the spleen that contains specialized B-cell and macrophage subsets poised to capture bloodborne antigens. Marginal zone B cells are retained in this niche by integrin-mediated signaling induced by G protein-coupled receptors (GPCRs) and, likely, the B-cell receptor (BCR). Sphingosine-1-phosphate (S1P) signaling via the S1P family of GPCRs is known to be essential for B-cell localization in the marginal zone, but little is known about the downstream signaling events involved. Here, we demonstrate that the adaptor protein SHEP1 is required for marginal zone B-cell maturation. SHEP1 functions in concert with the scaffolding protein CasL, because we show that SHEP1 and CasL are constitutively associated in B cells. SHEP1 association is required for the BCR or S1P receptor(s) to induce the conversion of CasL into its serine/threonine hyperphosphorylated form, which is important for lymphocyte adhesion and motility. Thus, SHEP1 orchestrates marginal zone B-cell movement and retention as a key downstream effector of the BCR and S1P receptors.
Collapse
|
16
|
Shi J, Wang S, Zhao E, Shi L, Xu X, Fang M. Paxillin expression levels are correlated with clinical stage and metastasis in salivary adenoid cystic carcinoma. J Oral Pathol Med 2010; 39:548-51. [PMID: 20136697 DOI: 10.1111/j.1600-0714.2009.00859.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To investigate the relationship between paxillin expression and clinicopathological features and metastasis in salivary adenoid cystic carcinoma (SACC). METHODS A total of 47 SACC were assessed histochemically for paxillin expression. Paxillin immunoreactivity was compared with histological type, clinical stage and distant metastasis. RESULTS Paxillin expression was identified in 57.45% of SACC as cytoplasmic staining and the expression was correlated with distant metastasis and clinical stage (P < 0.05), but not with histological type. CONCLUSIONS Our observations indicate that paxillin expression is upregulated in SACC. High expression of paxillin was correlated with a more advanced stage and metastasis in SACC, suggesting that paxillin is a disease marker in advanced SACC and SACC with distant metastasis, and, consequently, may have value as a therapeutic target for SACC.
Collapse
Affiliation(s)
- Jinna Shi
- College of Stomatology, Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | |
Collapse
|
17
|
Gayer CP, Basson MD. The effects of mechanical forces on intestinal physiology and pathology. Cell Signal 2009; 21:1237-1244. [PMID: 19249356 PMCID: PMC2715958 DOI: 10.1016/j.cellsig.2009.02.011] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 02/17/2009] [Indexed: 12/18/2022]
Abstract
The epithelial and non-epithelial cells of the intestinal wall experience a myriad of physical forces including strain, shear, and villous motility during normal gut function. Pathologic conditions alter these forces, leading to changes in the biology of these cells. The responses of intestinal epithelial cells to forces vary with both the applied force and the extracellular matrix proteins with which the cells interact, with differing effects on proliferation, differentiation, and motility, and the regulation of these effects involves similar but distinctly different signal transduction mechanisms. Although normal epithelial cells respond to mechanical forces, malignant gastrointestinal epithelial cells also respond to forces, most notably by increased cell adhesion, a critical step in tumor metastasis. This review will focus on the phenomenon of mechanical forces influencing cell biology and the mechanisms by which the gut responds these forces in both the normal as well as pathophysiologic states when forces are altered. Although more is known about epithelial responses to force, information regarding mechanosensitivity of vascular, neural, and endocrine cells within the gut wall will also be discussed, as will, the mechanism by which forces can regulate epithelial tumor cell adhesion.
Collapse
|
18
|
Abstract
Increasing evidence suggests tumor cell exposure to mechanical stimuli during the perioperative period as well as throughout the normal disease process may have a discernable impact on tumor metastasis and patient outcome. In vitro studies have demonstrated that transient exposure to increased extracellular pressure and shear forces modulates integrin binding affinity and stimulates cancer cell adhesion through a cytoskeleton- and focal adhesion complex-dependent signaling mechanism. More prolonged exposure to elevated pressures stimulates tumor cell proliferation by a distinct signaling pathway. Whether pressure effects on cell adhesion and proliferation pose biological ramifications in vivo remained unknown. We recently reported that pressure activation of malignant cells does indeed have a biological impact on surgical wound implantation, tumor development and tumor-free survival in a murine colon tumor model. Moreover, this effect can be disrupted by preoperative administration of colchicine. Taken together with previous work from our laboratory and others, these findings suggest that further elucidation of the mechanical signaling pathways governing pressure-stimulated tumor cell adhesion and proliferation may identify novel therapeutic targets for the treatment and prevention of tumor metastasis.
Collapse
Affiliation(s)
- David H. Craig
- Department of Surgery; Michigan State University; Lansing, Michigan USA
| | - Marc D. Basson
- Department of Surgery; Michigan State University; Lansing, Michigan USA
| |
Collapse
|