1
|
Stojanovski BM, Mohammed BM, Di Cera E. The Prothrombin-Prothrombinase Interaction. Subcell Biochem 2024; 104:409-423. [PMID: 38963494 DOI: 10.1007/978-3-031-58843-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The hemostatic response to vascular injury entails a sequence of proteolytic events where several inactive zymogens of the trypsin family are converted to active proteases. The cascade starts with exposure of tissue factor from the damaged endothelium and culminates with conversion of prothrombin to thrombin in a reaction catalyzed by the prothrombinase complex composed of the enzyme factor Xa, cofactor Va, Ca2+, and phospholipids. This cofactor-dependent activation is paradigmatic of analogous reactions of the blood coagulation and complement cascades, which makes elucidation of its molecular mechanism of broad significance to the large class of trypsin-like zymogens to which prothrombin belongs. Because of its relevance as the most important reaction in the physiological response to vascular injury, as well as the main trigger of pathological thrombotic complications, the mechanism of prothrombin activation has been studied extensively. However, a molecular interpretation of this mechanism has become available only recently from important developments in structural biology. Here we review current knowledge on the prothrombin-prothrombinase interaction and outline future directions for the study of this key reaction of the coagulation cascade.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Bassem M Mohammed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Stojanovski BM, Di Cera E. Role of sequence and position of the cleavage sites in prothrombin activation. J Biol Chem 2021; 297:100955. [PMID: 34265300 PMCID: PMC8348271 DOI: 10.1016/j.jbc.2021.100955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
In the penultimate step of the coagulation cascade, the multidomain vitamin-K-dependent zymogen prothrombin is converted to thrombin by the prothrombinase complex composed of factor Xa, cofactor Va, and phospholipids. Activation of prothrombin requires cleavage at two residues, R271 and R320, along two possible pathways generating either the intermediate prethrombin-2 (following initial cleavage at R271) or meizothrombin (following initial cleavage at R320). The former pathway is preferred in the absence of and the latter in the presence of cofactor Va. Several mechanisms have been proposed to explain this preference, but the role of the sequence and position of the sites of cleavage has not been thoroughly investigated. In this study, we engineered constructs where the sequences 261DEDSDRAIEGRTATSEYQT279 and 310RELLESYIDGRIVEGSDAE328 were swapped between the R271 and R320 sites. We found that in the absence of cofactor Va, the wild-type sequence at the R271 site is cleaved preferentially regardless of its position at the R271 or R320 site, whereas in the presence of cofactor Va, the R320 site is cleaved preferentially regardless of its sequence. Additional single-molecule FRET measurements revealed that the environment of R271 changes significantly upon cleavage at R320 due to the conformational transition from the closed form of prothrombin to the open form of meizothrombin. Detailed kinetics of cleavage at the R271 site were monitored by a newly developed assay based on loss of FRET. These findings show how sequence and position of the cleavage sites at R271 and R320 dictate the preferred pathway of prothrombin activation.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
3
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
4
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
5
|
Stojanovski BM, Pelc LA, Zuo X, Pozzi N, Cera ED. Enhancing the anticoagulant profile of meizothrombin. Biomol Concepts 2018; 9:169-175. [PMID: 30864392 DOI: 10.1515/bmc-2018-0016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/19/2018] [Indexed: 11/15/2022] Open
Abstract
Meizothrombin is an active intermediate generated during the proteolytic activation of prothrombin to thrombin in the penultimate step of the coagulation cascade. Structurally, meizothrombin differs from thrombin because it retains the auxiliary Gla domain and two kringles. Functionally, meizothrombin shares with thrombin the ability to cleave procoagulant (fibrinogen), prothrombotic (PAR1) and anticoagulant (protein C) substrates, although its specificity toward fibrinogen and PAR1 is less pronounced. In this study we report information on the structural architecture of meizothrombin resolved by SAXS and single molecule FRET as an elongated arrangement of its individual domains. In addition, we show the properties of a meizothrombin construct analogous to the anticoagulant thrombin mutant W215A/E217A currently in Phase I for the treatment of thrombotic complications and stroke. The findings reveal new structural and functional aspects of meizothrombin that advance our understanding of a key intermediate of the prothrombin activation pathway.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| | - Xiaobing Zuo
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104 USA
| |
Collapse
|
6
|
Releasing the brakes in coagulation Factor IXa by co-operative maturation of the substrate-binding site. Biochem J 2016; 473:2395-411. [DOI: 10.1042/bcj20160336] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 01/27/2023]
Abstract
Coagulation Factor IX is positioned at the merging point of the intrinsic and extrinsic blood coagulation cascades. Factor IXa (activated Factor IX) serves as the trigger for amplification of coagulation through formation of the so-called Xase complex, which is a ternary complex of Factor IXa, its substrate Factor X and the cofactor Factor VIIIa on the surface of activated platelets. Within the Xase complex the substrate turnover by Factor IXa is enhanced 200000-fold; however, the mechanistic and structural basis for this dramatic enhancement remains only partly understood. A multifaceted approach using enzymatic, biophysical and crystallographic methods to evaluate a key set of activity-enhanced Factor IXa variants has demonstrated a delicately balanced bidirectional network. Essential molecular interactions across multiple regions of the Factor IXa molecule co-operate in the maturation of the active site. This maturation is specifically facilitated by long-range communication through the Ile212–Ile213 motif unique to Factor IXa and a flexibility of the 170-loop that is further dependent on the conformation in the Cys168–Cys182 disulfide bond. Ultimately, the network consists of compensatory brakes (Val16 and Ile213) and accelerators (Tyr99 and Phe174) that together allow for a subtle fine-tuning of enzymatic activity.
Collapse
|
7
|
Allosteric Partial Inhibition of Monomeric Proteases. Sulfated Coumarins Induce Regulation, not just Inhibition, of Thrombin. Sci Rep 2016; 6:24043. [PMID: 27053426 PMCID: PMC4823711 DOI: 10.1038/srep24043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/14/2016] [Indexed: 11/26/2022] Open
Abstract
Allosteric partial inhibition of soluble, monomeric proteases can offer major regulatory advantages, but remains a concept on paper to date; although it has been routinely documented for receptors and oligomeric proteins. Thrombin, a key protease of the coagulation cascade, displays significant conformational plasticity, which presents an attractive opportunity to discover small molecule probes that induce sub-maximal allosteric inhibition. We synthesized a focused library of some 36 sulfated coumarins to discover two agents that display sub-maximal efficacy (~50%), high potency (<500 nM) and high selectivity for thrombin (>150-fold). Michaelis-Menten, competitive inhibition, and site-directed mutagenesis studies identified exosite 2 as the site of binding for the most potent sulfated coumarin. Stern-Volmer quenching of active site-labeled fluorophore suggested that the allosteric regulators induce intermediate structural changes in the active site as compared to those that display ~80–100% efficacy. Antithrombin inactivation of thrombin was impaired in the presence of the sulfated coumarins suggesting that allosteric partial inhibition arises from catalytic dysfunction of the active site. Overall, sulfated coumarins represent first-in-class, sub-maximal inhibitors of thrombin. The probes establish the concept of allosteric partial inhibition of soluble, monomeric proteins. This concept may lead to a new class of anticoagulants that are completely devoid of bleeding.
Collapse
|
8
|
Adams TE, Huntington JA. Structural transitions during prothrombin activation: On the importance of fragment 2. Biochimie 2015; 122:235-42. [PMID: 26365066 PMCID: PMC4756804 DOI: 10.1016/j.biochi.2015.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 09/08/2015] [Indexed: 01/01/2023]
Abstract
Prothrombin is activated to thrombin by the prothrombinase complex through sequential cleavage at two distinct sites. This occurs at sites of vascular injury in a highly regulated cascade of serine protease and cofactor activation, where activated platelets provide a suitable surface for protease/cofactor/substrate assembly. The precise structural and conformational changes undergone during the transition from prothrombin to thrombin have been studied for decades, and several structures of prothrombin fragments along the activation pathway have been solved. Here we present a new structure analyzed in context of other recent structures and biochemical studies. What emerges is an unexpected mechanism that involves a change in the mode of binding of the F2 domain (fragment 2) on the catalytic domain after cleavage at Arg320, and a subsequent reorientation of the linker between the F2 and catalytic domain to present the Arg271 site for cleavage. The catalytic domain of thrombin precursors binds to its F2 domain by two distinct modes. Cleavage of prothrombin at either Arg271 or Arg320 results in shift from mode 2 to mode 1. After cleavage at Arg320, movement of F2 helps to present the second cleavage site at Arg271.
Collapse
Affiliation(s)
- Ty E Adams
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom
| | - James A Huntington
- Cambridge Institute for Medical Research, Department of Haematology, University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, United Kingdom.
| |
Collapse
|
9
|
Asztalos P, Müller A, Hölke W, Sobek H, Rudolph MG. Atomic resolution structure of a lysine-specific endoproteinase fromLysobacter enzymogenessuggests a hydroxyl group bound to the oxyanion hole. ACTA ACUST UNITED AC 2014; 70:1832-43. [DOI: 10.1107/s1399004714008463] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/14/2014] [Indexed: 11/10/2022]
Abstract
Lysobacter enzymogeneslysyl endoproteinase (LysC) is a trypsin-type serine protease with a high pH optimum that hydrolyses all Lys-Xaa peptide bonds. The high specificity of LysC renders it useful for biotechnological purposes. The K30R variant of a related lysyl endoproteinase fromAchromobacter lyticushas favourable enzymatic properties that might be transferrable to LysC. To visualize structural differences in the substrate-binding sites, the crystal structures of wild-type and the K30R variant of LysC were determined. The mutation is located at a distance of 12 Å from the catalytic triad and subtly changes the surface properties of the substrate-binding site. The high pH optimum of LysC can be attributed to electrostatic effects of an aromatic Tyr/His stack on the catalytic aspartate and is a general feature of this enzyme subfamily. LysC crystals in complex with the covalent inhibitorNα-p-tosyl-lysyl chloromethylketone yielded data to 1.1 and 0.9 Å resolution, resulting in unprecedented precision of the active and substrate-binding sites for this enzyme subfamily. Error estimates on bond lengths and difference electron density indicate that instead of the expected oxyanion a hydroxyl group binds to the partially solvent-exposed oxyanion hole. Protonation of the alkoxide catalytic intermediate might be a recurring feature during serine protease catalysis.
Collapse
|
10
|
The linker connecting the two kringles plays a key role in prothrombin activation. Proc Natl Acad Sci U S A 2014; 111:7630-5. [PMID: 24821807 DOI: 10.1073/pnas.1403779111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The zymogen prothrombin is proteolytically converted by factor Xa to the active protease thrombin in a reaction that is accelerated >3,000-fold by cofactor Va. This physiologically important effect is paradigmatic of analogous cofactor-dependent reactions in the coagulation and complement cascades, but its structural determinants remain poorly understood. Prothrombin has three linkers connecting the N-terminal Gla domain to kringle-1 (Lnk1), the two kringles (Lnk2), and kringle-2 to the C-terminal protease domain (Lnk3). Recent developments indicate that the linkers, and particularly Lnk2, confer on the zymogen significant flexibility in solution and enable prothrombin to sample alternative conformations. The role of this flexibility in the context of prothrombin activation was tested with several deletions. Removal of Lnk2 in almost its entirety (ProTΔ146-167) drastically reduces the enhancement of thrombin generation by cofactor Va from >3,000-fold to 60-fold because of a significant increase in the rate of activation in the absence of cofactor. Deletion of Lnk2 mimics the action of cofactor Va and offers insights into how prothrombin is activated at the molecular level. The crystal structure of ProTΔ146-167 reveals a contorted architecture where the domains are not vertically stacked, kringle-1 comes within 9 Å of the protease domain, and the Gla-domain primed for membrane binding comes in contact with kringle-2. These findings broaden our molecular understanding of a key reaction of the blood coagulation cascade where cofactor Va enhances activation of prothrombin by factor Xa by compressing Lnk2 and morphing prothrombin into a conformation similar to the structure of ProTΔ146-167.
Collapse
|
11
|
Barranco-Medina S, Pozzi N, Vogt AD, Di Cera E. Histone H4 promotes prothrombin autoactivation. J Biol Chem 2013; 288:35749-57. [PMID: 24178300 DOI: 10.1074/jbc.m113.509786] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent studies have documented the ability of prothrombin to spontaneously convert to the mature protease thrombin when Arg-320 becomes exposed to solvent for proteolytic attack upon mutation of residues in the activation domain. Whether prothrombin autoactivation occurs in the wild-type under conditions relevant to physiology remains unknown. Here, we report that binding of histone H4 to prothrombin under physiological conditions generates thrombin by autoactivation. The effect is abrogated by mutation of the catalytic Ser-525 and requires the presence of the Gla domain. Fluorescence titrations document direct binding of histone H4 to prothrombin with an affinity in the low nm range. Stopped flow data and luminescence resonance energy transfer measurements indicate that the binding mechanism obeys conformational selection. Among the two conformations of prothrombin, collapsed and fully extended, histone H4 binds selectively to the collapsed form and induces a transition toward a new conformation where the distance between Ser-101 in kringle-1 and Ser-210 in kringle-2 increases by 13 Å. These findings confirm the molecular plasticity of prothrombin emerged from recent structural studies and suggest that different conformations of the inter-kringle linker domain determine the functional behavior of prothrombin. The results also broaden our mechanistic understanding of the prothrombotic phenotype observed during cellular damage due to the release of histones in the blood stream. Prothrombin autoactivation induced by histone H4 emerges as a mechanism of pathophysiological relevance through which thrombin is generated independently of activation of the coagulation cascade.
Collapse
Affiliation(s)
- Sergio Barranco-Medina
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | | | | | | |
Collapse
|
12
|
Vogt AD, Pozzi N, Chen Z, Di Cera E. Essential role of conformational selection in ligand binding. Biophys Chem 2013; 186:13-21. [PMID: 24113284 DOI: 10.1016/j.bpc.2013.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 11/26/2022]
Abstract
Two competing and mutually exclusive mechanisms of ligand recognition - conformational selection and induced fit - have dominated our interpretation of ligand binding in biological macromolecules for almost six decades. Conformational selection posits the pre-existence of multiple conformations of the macromolecule from which the ligand selects the optimal one. Induced fit, on the other hand, postulates the existence of conformational rearrangements of the original conformation into an optimal one that are induced by binding of the ligand. In the former case, conformational transitions precede the binding event; in the latter, conformational changes follow the binding step. Kineticists have used a facile criterion to distinguish between the two mechanisms based on the dependence of the rate of relaxation to equilibrium, kobs, on the ligand concentration, [L]. A value of kobs decreasing hyperbolically with [L] has been seen as diagnostic of conformational selection, while a value of kobs increasing hyperbolically with [L] has been considered diagnostic of induced fit. However, this simple conclusion is only valid under the rather unrealistic assumption of conformational transitions being much slower than binding and dissociation events. In general, induced fit only produces values of kobs that increase with [L] but conformational selection is more versatile and is associated with values of kobs that increase with, decrease with or are independent of [L]. The richer repertoire of kinetic properties of conformational selection applies to kinetic mechanisms with single or multiple saturable relaxations and explains the behavior of nearly all experimental systems reported in the literature thus far. Conformational selection is always sufficient and often necessary to account for the relaxation kinetics of ligand binding to a biological macromolecule and is therefore an essential component of any binding mechanism. On the other hand, induced fit is never necessary and only sufficient in a few cases. Therefore, the long assumed importance and preponderance of induced fit as a mechanism of ligand binding should be reconsidered.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States.
| |
Collapse
|
13
|
Vogt AD, Di Cera E. Conformational selection is a dominant mechanism of ligand binding. Biochemistry 2013; 52:5723-9. [PMID: 23947609 DOI: 10.1021/bi400929b] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular recognition in biological macromolecules is achieved by binding interactions coupled to conformational transitions that precede or follow the binding step, two limiting mechanisms known as conformational selection and induced fit, respectively. Sorting out the contribution of these mechanisms to any binding interaction remains a challenging task of general interest in biochemistry. Here we show that conformational selection is associated with a vast repertoire of kinetic behaviors, can never be disproved a priori as a mechanism of ligand binding, and is sufficient to explain the relaxation kinetics documented experimentally for a large number of systems. On the other hand, induced fit features a narrow spectrum of kinetic behaviors and can be disproved in many cases in which conformational selection offers the only possible explanation. This conclusion offers a paradigm shift in the analysis of relaxation kinetics, with conformational selection acquiring preeminence as a mechanism of ligand binding. The dominant role of conformational selection supports the emerging structural view of the macromolecule as a conformational ensemble from which the ligand selects the initial optimal fit to produce a biological response.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Missouri 63104, United States
| | | |
Collapse
|
14
|
Abstract
The prothrombinase complex, composed of the protease factor (f)Xa and cofactor fVa, efficiently converts prothrombin to thrombin by specific sequential cleavage at 2 sites. How the complex assembles and its mechanism of prothrombin processing are of central importance to human health and disease, because insufficient thrombin generation is the root cause of hemophilia, and excessive thrombin production results in thrombosis. Efforts to determine the crystal structure of the prothrombinase complex have been thwarted by the dependence of complex formation on phospholipid membrane association. Pseutarin C is an intrinsically stable prothrombinase complex preassembled in the venom gland of the Australian Eastern Brown Snake (Pseudonaja textilis). Here we report the crystal structures of the fX-fV complex and of activated fXa from P textilis venom and the derived model of active pseutarin C. Structural analysis supports a single substrate binding channel on fVa, to which prothrombin and the intermediate meizothrombin bind in 2 different orientations, providing insight into the architecture and mechanism of the prothrombinase complex-the molecular engine of blood coagulation.
Collapse
|
15
|
Pozzi N, Chen Z, Gohara DW, Niu W, Heyduk T, Di Cera E. Crystal structure of prothrombin reveals conformational flexibility and mechanism of activation. J Biol Chem 2013; 288:22734-44. [PMID: 23775088 DOI: 10.1074/jbc.m113.466946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The zymogen prothrombin is composed of fragment 1 containing a Gla domain and kringle-1, fragment 2 containing kringle-2, and a protease domain containing A and B chains. The prothrombinase complex assembled on the surface of platelets converts prothrombin to thrombin by cleaving at Arg-271 and Arg-320. The three-dimensional architecture of prothrombin and the molecular basis of its activation remain elusive. Here we report the first x-ray crystal structure of prothrombin as a Gla-domainless construct carrying an Ala replacement of the catalytic Ser-525. Prothrombin features a conformation 80 Å long, with fragment 1 positioned at a 36° angle relative to the main axis of fragment 2 coaxial to the protease domain. High flexibility of the linker connecting the two kringles suggests multiple arrangements for kringle-1 relative to the rest of the prothrombin molecule. Luminescence resonance energy transfer measurements detect two distinct conformations of prothrombin in solution, in a 3:2 ratio, with the distance between the two kringles either fully extended (54 ± 2 Å) or partially collapsed (≤34 Å) as seen in the crystal structure. A molecular mechanism of prothrombin activation emerges from the structure. Of the two sites of cleavage, Arg-271 is located in a disordered region connecting kringle-2 to the A chain, but Arg-320 is well defined within the activation domain and is not accessible to proteolysis in solution. Burial of Arg-320 prevents prothrombin autoactivation and directs prothrombinase to cleave at Arg-271 first. Reversal of the local electrostatic potential then redirects prothrombinase toward Arg-320, leading to thrombin generation via the prethrombin-2 intermediate.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | |
Collapse
|
16
|
Bradford HN, Krishnaswamy S. Meizothrombin is an unexpectedly zymogen-like variant of thrombin. J Biol Chem 2012; 287:30414-25. [PMID: 22815477 DOI: 10.1074/jbc.m112.394809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Thrombin is produced by the ordered action of prothrombinase on two cleavage sites in prothrombin. Meizothrombin, a proteinase precursor of thrombin, is a singly cleaved species that accumulates abundantly as an intermediate. We now show that covalent linkage of the N-terminal propiece with the proteinase domain in meizothrombin imbues it with exceptionally zymogen-like character. Meizothrombin exists in a slowly reversible equilibrium between two equally populated states, differing by as much as 140-fold in their affinity for active site-directed ligands. The distribution between the two forms, designated zymogen-like and proteinase-like, is affected by Na(+), thrombomodulin binding, or active site ligation. In rapid kinetic measurements with prothrombinase, we also show that the zymogen-like form is produced following the initial cleavage reaction and slowly equilibrates with the proteinase-like form in a previously unanticipated rate-limiting step before it can be further cleaved to thrombin. The reversible equilibration of meizothrombin between zymogen- and proteinase-like states provides new insights into its ability to selectively exhibit the anticoagulant function of thrombin and the mechanistic basis for its accumulation during prothrombin activation. Our findings also provide unexpected insights into the regulation of proteinase function and how the formation of meizothrombin may yield a long lived intermediate with an important regulatory role in coagulation.
Collapse
Affiliation(s)
- Harlan N Bradford
- Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | |
Collapse
|
17
|
Vogt AD, Di Cera E. Conformational selection or induced fit? A critical appraisal of the kinetic mechanism. Biochemistry 2012; 51:5894-902. [PMID: 22775458 DOI: 10.1021/bi3006913] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For almost five decades, two competing mechanisms of ligand recognition, conformational selection and induced fit, have dominated our interpretation of ligand binding in biological macromolecules. When binding-dissociation events are fast compared to conformational transitions, the rate of approach to equilibrium, k(obs), becomes diagnostic of conformational selection or induced fit based on whether it decreases or increases, respectively, with the ligand concentration, [L]. However, this simple conclusion based on the rapid equilibrium approximation is not valid in general. Here we show that conformational selection is associated with a rich repertoire of kinetic properties, with k(obs) decreasing or increasing with [L] depending on the relative magnitude of the rate of ligand dissociation, k(off), and the rate of conformational isomerization, k(r). We prove that, even for the simplest two-step mechanism of ligand binding, a decrease in k(obs) with [L] is unequivocal evidence of conformational selection, but an increase in k(obs) with [L] is not unequivocal evidence of induced fit. Ligand binding to glucokinase, thrombin, and its precursor prethrombin-2 are used as relevant examples. We conclude that conformational selection as a mechanism for a ligand binding to its target may be far more common than currently believed.
Collapse
Affiliation(s)
- Austin D Vogt
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | |
Collapse
|
18
|
Pozzi N, Vogt AD, Gohara DW, Di Cera E. Conformational selection in trypsin-like proteases. Curr Opin Struct Biol 2012; 22:421-31. [PMID: 22664096 DOI: 10.1016/j.sbi.2012.05.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/30/2023]
Abstract
For over four decades, two competing mechanisms of ligand recognition--conformational selection and induced-fit--have dominated our interpretation of protein allostery. Defining the mechanism broadens our understanding of the system and impacts our ability to design effective drugs and new therapeutics. Recent kinetics studies demonstrate that trypsin-like proteases exist in equilibrium between two forms: one fully accessible to substrate (E) and the other with the active site occluded (E*). Analysis of the structural database confirms existence of the E* and E forms and vouches for the allosteric nature of the trypsin fold. Allostery in terms of conformational selection establishes an important paradigm in the protease field and enables protein engineers to expand the repertoire of proteases as therapeutics.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, United States
| | | | | | | |
Collapse
|
19
|
|
20
|
Pozzi N, Chen R, Chen Z, Bah A, Di Cera E. Rigidification of the autolysis loop enhances Na(+) binding to thrombin. Biophys Chem 2011; 159:6-13. [PMID: 21536369 PMCID: PMC3150630 DOI: 10.1016/j.bpc.2011.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 01/09/2023]
Abstract
Binding of Na(+) to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na(+) is weak due to large heat capacity and enthalpy changes associated with binding, and the K(d)=80 mM ensures only 64% saturation of the site at the concentration of Na(+) in the blood (140 mM). Residues controlling Na(+) binding and activation have been identified. Yet, attempts to improve the interaction of Na(+) with thrombin and possibly increase catalytic activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na(+) affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na(+) binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.
Collapse
Affiliation(s)
- Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | |
Collapse
|
21
|
Niu W, Chen Z, Gandhi PS, Vogt AD, Pozzi N, Pelc LA, Zapata F, Di Cera E. Crystallographic and kinetic evidence of allostery in a trypsin-like protease. Biochemistry 2011; 50:6301-7. [PMID: 21707111 PMCID: PMC3214630 DOI: 10.1021/bi200878c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein allostery is based on the existence of multiple conformations in equilibrium linked to distinct functional properties. Although evidence of allosteric transitions is relatively easy to identify by functional studies, structural detection of a pre-existing equilibrium between alternative conformations remains challenging even for textbook examples of allosteric proteins. Kinetic studies show that the trypsin-like protease thrombin exists in equilibrium between two conformations where the active site is either collapsed (E*) or accessible to substrate (E). However, structural demonstration that the two conformations exist in the same enzyme construct free of ligands has remained elusive. Here we report the crystal structure of the thrombin mutant N143P in the E form, which complements the recently reported structure in the E* form, and both the E and E* forms of the thrombin mutant Y225P. The side chain of W215 moves 10.9 Å between the two forms, causing a displacement of 6.6 Å of the entire 215-217 segment into the active site that in turn opens or closes access to the primary specificity pocket. Rapid kinetic measurements of p-aminobenzamidine binding to the active site confirm the existence of the E*-E equilibrium in solution for wild-type and the mutants N143P and Y225P. These findings provide unequivocal proof of the allosteric nature of thrombin and lend strong support to the recent proposal that the E*-E equilibrium is a key property of the trypsin fold.
Collapse
Affiliation(s)
- Weiling Niu
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Zhiwei Chen
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Prafull S. Gandhi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Austin D. Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Leslie A. Pelc
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Fatima Zapata
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
22
|
Abstract
The prothrombinase complex converts prothrombin to α-thrombin through the intermediate meizothrombin (Mz-IIa). Both α-thrombin and Mz-IIa catalyze factor (F) XI activation to FXIa, which sustains α-thrombin production through activation of FIX. The interaction with FXI is thought to involve thrombin anion binding exosite (ABE) I. α-Thrombin can undergo additional proteolysis to β-thrombin and γ-thrombin, neither of which have an intact ABE I. In a purified protein system, FXI is activated by β-thrombin or γ-thrombin, and by α-thrombin in the presence of the ABE I-blocking peptide hirugen, indicating that a fully formed ABE I is not absolutely required for FXI activation. In a FXI-dependent plasma thrombin generation assay, β-thrombin, γ-thrombin, and α-thrombins with mutations in ABE I are approximately 2-fold more potent initiators of thrombin generation than α-thrombin or Mz-IIa, possibly because fibrinogen, which binds to ABE I, competes poorly with FXI for forms of thrombin lacking ABE I. In addition, FXIa can activate factor FXII, which could contribute to thrombin generation through FXIIa-mediated FXI activation. The data indicate that forms of thrombin other than α-thrombin contribute directly to feedback activation of FXI in plasma and suggest that FXIa may provide a link between tissue factor-initiated coagulation and the proteases of the contact system.
Collapse
|
23
|
Di Cera E. Thrombin as an Anticoagulant. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 99:145-84. [DOI: 10.1016/b978-0-12-385504-6.00004-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Vogt AD, Bah A, Di Cera E. Evidence of the E*-E equilibrium from rapid kinetics of Na+ binding to activated protein C and factor Xa. J Phys Chem B 2010; 114:16125-30. [PMID: 20809655 PMCID: PMC3050025 DOI: 10.1021/jp105502c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Na(+) binding to thrombin enhances the procoagulant and prothrombotic functions of the enzyme and obeys a mechanism that produces two kinetic phases: one fast (in the microsecond time scale) due to Na(+) binding to the low activity form E to produce the high activity form E:Na(+) and another considerably slower (in the millisecond time scale) that reflects a pre-equilibrium between E and the inactive form E*. In this study, we demonstrate that this mechanism also exists in other Na(+)-activated clotting proteases like factor Xa and activated protein C. These findings, along with recent structural data, suggest that the E*-E equilibrium is a general feature of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|
25
|
Abstract
Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-Å resolution shows an overall conformation significantly different (rmsd = 3.6 Å) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29° and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na(+) binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 Å apart in meizothrombin desF1, to come within 3.3 Å of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen → protease conversion in trypsin-like proteases.
Collapse
|
26
|
Lee CJ, Wu S, Eun C, Pedersen LG. A revisit to the one form kinetic model of prothrombinase. Biophys Chem 2010; 149:28-33. [PMID: 20435402 PMCID: PMC2877601 DOI: 10.1016/j.bpc.2010.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/22/2022]
Abstract
Thrombin is generated enzymatically from prothrombin by two pathways with the intermediates of meizothrombin and prethrombin-2. Experimental concentration profiles from two independent groups for these two pathways have been re-analyzed. By rationally combining the independent data sets, a simple mechanism can be established and rate constants determined. A structural model is consistent with the data-derived finding that mechanisms that feature channeling or ratcheting are not necessary to describe thrombin production.
Collapse
Affiliation(s)
- Chang Jun Lee
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Sangwook Wu
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Changsun Eun
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | - Lee G. Pedersen
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| |
Collapse
|
27
|
Sarilla S, Habib SY, Kravtsov DV, Matafonov A, Gailani D, Verhamme IM. Sucrose octasulfate selectively accelerates thrombin inactivation by heparin cofactor II. J Biol Chem 2010; 285:8278-89. [PMID: 20053992 DOI: 10.1074/jbc.m109.005967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inactivation of thrombin (T) by the serpins heparin cofactor II (HCII) and antithrombin (AT) is accelerated by a heparin template between the serpin and thrombin exosite II. Unlike AT, HCII also uses an allosteric interaction of its NH(2)-terminal segment with exosite I. Sucrose octasulfate (SOS) accelerated thrombin inactivation by HCII but not AT by 2000-fold. SOS bound to two sites on thrombin, with dissociation constants (K(D)) of 10 +/- 4 microm and 400 +/- 300 microm that were not kinetically resolvable, as evidenced by single hyperbolic SOS concentration dependences of the inactivation rate (k(obs)). SOS bound HCII with K(D) 1.45 +/- 0.30 mm, and this binding was tightened in the T.SOS.HCII complex, characterized by K(complex) of approximately 0.20 microm. Inactivation data were incompatible with a model solely depending on HCII.SOS but fit an equilibrium linkage model employing T.SOS binding in the pathway to higher order complex formation. Hirudin-(54-65)(SO(3)(-)) caused a hyperbolic decrease of the inactivation rates, suggesting partial competitive binding of hirudin-(54-65)(SO(3)(-)) and HCII to exosite I. Meizothrombin(des-fragment 1), binding SOS with K(D) = 1600 +/- 300 microm, and thrombin were inactivated at comparable rates, and an exosite II aptamer had no effect on the inactivation, suggesting limited exosite II involvement. SOS accelerated inactivation of meizothrombin 1000-fold, reflecting the contribution of direct exosite I interaction with HCII. Thrombin generation in plasma was suppressed by SOS, both in HCII-dependent and -independent processes. The ex vivo HCII-dependent process may utilize the proposed model and suggests a potential for oversulfated disaccharides in controlling HCII-regulated thrombin generation.
Collapse
Affiliation(s)
- Suryakala Sarilla
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
28
|
Niu W, Chen Z, Bush-Pelc LA, Bah A, Gandhi PS, Di Cera E. Mutant N143P reveals how Na+ activates thrombin. J Biol Chem 2009; 284:36175-36185. [PMID: 19846563 PMCID: PMC2794733 DOI: 10.1074/jbc.m109.069500] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/12/2009] [Indexed: 01/09/2023] Open
Abstract
The molecular mechanism of thrombin activation by Na(+) remains elusive. Its kinetic formulation requires extension of the classical Botts-Morales theory for the action of a modifier on an enzyme to correctly account for the contribution of the E*, E, and E:Na(+) forms. The extended scheme establishes that analysis of k(cat) unequivocally identifies allosteric transduction of Na(+) binding into enhanced catalytic activity. The thrombin mutant N143P features no Na(+)-dependent enhancement of k(cat) yet binds Na(+) with an affinity comparable to that of wild type. Crystal structures of the mutant in the presence and absence of Na(+) confirm that Pro(143) abrogates the important H-bond between the backbone N atom of residue 143 and the carbonyl O atom of Glu(192), which in turn controls the orientation of the Glu(192)-Gly(193) peptide bond and the correct architecture of the oxyanion hole. We conclude that Na(+) activates thrombin by securing the correct orientation of the Glu(192)-Gly(193) peptide bond, which is likely flipped in the absence of cation. Absolute conservation of the 143-192 H-bond in trypsin-like proteases and the importance of the oxyanion hole in protease function suggest that this mechanism of Na(+) activation is present in all Na(+)-activated trypsin-like proteases.
Collapse
Affiliation(s)
- Weiling Niu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Zhiwei Chen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Leslie A Bush-Pelc
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Alaji Bah
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Prafull S Gandhi
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110.
| |
Collapse
|