1
|
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253:6-24. [DOI: 10.1016/j.cancergen.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023]
|
2
|
Abdu K, Aiertza MK, Wilkinson OJ, Senthong P, Craggs TD, Povey AC, Margison GP, Williams DM. Synthesis of oligodeoxyribonucleotides containing a tricyclic thio analogue of O6-methylguanine and their recognition by MGMT and Atl1. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:1108-1121. [PMID: 32449465 DOI: 10.1080/15257770.2020.1764971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Promutagenic O6-alkylguanine adducts in DNA are repaired in humans by O6-methylguanine-DNA-methyltransferase (MGMT) in an irreversible reaction. Here we describe the synthesis of a phosphoramidite that allows the preparation of oligodeoxyribonucleotides (ODNs) containing a novel tricyclic thio analogue of O6-methylguanine in which the third ring bridges the 6-thio group and C7 of a 7-deazapurine. These ODNs are very poor substrates for MGMT and poorly recognised by the alkyltransferase-like protein, Atl1. Examination of the active sites of both MGMT and Atl1 suggest large steric clashes hindering binding of the analogue. Such analogues, if mutagenic, are likely to be highly toxic.
Collapse
Affiliation(s)
- Kabir Abdu
- Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, Bayero University, Kano, Nigeria
| | - Miren K Aiertza
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Oliver J Wilkinson
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | | | - Timothy D Craggs
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| | - Andrew C Povey
- Centre of Epidemiology, Faculty of Biology, Medicine and Health
| | | | - David M Williams
- Centre for Chemical Biology, Department of Chemistry, Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, UK
| |
Collapse
|
3
|
Serment-Guerrero J, Dominguez-Monroy V, Davila-Becerril J, Morales-Avila E, Fuentes-Lorenzo JL. Induction of the SOS response of Escherichia coli in repair-defective strains by several genotoxic agents. Mutat Res 2020; 854-855:503196. [PMID: 32660820 DOI: 10.1016/j.mrgentox.2020.503196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/07/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
DNA is exposed to the attack of several exogenous agents that modify its chemical structure, so cells must repair those changes in order to survive. Alkylating agents introduce methyl or ethyl groups in most of the cyclic or exocyclic nitrogen atoms of the ring and exocyclic oxygen available in DNA bases producing damage that can induce the SOS response in Escherichia coli and many other bacteria. Likewise, ultraviolet light produces mainly cyclobutane pyrimidine dimers that arrest the progression of the replication fork and triggers such response. The need of some enzymes (such as RecO, ExoI and RecJ) in processing injuries produced by gamma radiation prior the induction of the SOS response has been reported before. In the present work, several repair-defective strains of E. coli were treated with methyl methanesulfonate, ethyl methanesulfonate, mitomycin C or ultraviolet light. Both survival and SOS induction (by means of the Chromotest) were tested. Our results indicate that the participation of these genes depends on the type of injury caused by a genotoxin on DNA.
Collapse
Affiliation(s)
- Jorge Serment-Guerrero
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Estado de México, Mexico.
| | - Viridiana Dominguez-Monroy
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Estado de México, Mexico
| | - Jenny Davila-Becerril
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, La Marquesa, Estado de México, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Jorge Luis Fuentes-Lorenzo
- Laboratorio de Microbiología y Mutagénesis Ambiental, Grupo de Investigación en Microbiología y Genética, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
4
|
Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. Proc Natl Acad Sci U S A 2020; 117:9318-9328. [PMID: 32273391 DOI: 10.1073/pnas.1916860117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alkylation of guanine bases in DNA is detrimental to cells due to its high mutagenic and cytotoxic potential and is repaired by the alkyltransferase AGT. Additionally, alkyltransferase-like proteins (ATLs), which are structurally similar to AGTs, have been identified in many organisms. While ATLs are per se catalytically inactive, strong evidence has suggested that ATLs target alkyl lesions to the nucleotide excision repair system (NER). Using a combination of single-molecule and ensemble approaches, we show here recruitment of UvrA, the initiating enzyme of prokaryotic NER, to an alkyl lesion by ATL. We further characterize lesion recognition by ATL and directly visualize DNA lesion search by highly motile ATL and ATL-UvrA complexes on DNA at the molecular level. Based on the high similarity of ATLs and the DNA-interacting domain of AGTs, our results provide important insight in the lesion search mechanism, not only by ATL but also by AGT, thus opening opportunities for controlling the action of AGT for therapeutic benefit during chemotherapy.
Collapse
|
5
|
Sarre A, Stelter M, Rollo F, De Bonis S, Seck A, Hognon C, Ravanat JL, Monari A, Dehez F, Moe E, Timmins J. The three Endonuclease III variants of Deinococcus radiodurans possess distinct and complementary DNA repair activities. DNA Repair (Amst) 2019; 78:45-59. [DOI: 10.1016/j.dnarep.2019.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
|
6
|
Thapar R, Bacolla A, Oyeniran C, Brickner JR, Chinnam NB, Mosammaparast N, Tainer JA. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry 2018; 58:312-329. [PMID: 30346748 DOI: 10.1021/acs.biochem.8b00949] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An emerging molecular understanding of RNA alkylation and its removal is transforming our knowledge of RNA biology and its interplay with cancer chemotherapy responses. DNA modifications are known to perform critical functions depending on the genome template, including gene expression, DNA replication timing, and DNA damage protection, yet current results suggest that the chemical diversity of DNA modifications pales in comparison to those on RNA. More than 150 RNA modifications have been identified to date, and their complete functional implications are still being unveiled. These include intrinsic roles such as proper processing and RNA maturation; emerging evidence has furthermore uncovered RNA modification "readers", seemingly analogous to those identified for histone modifications. These modification recognition factors may regulate mRNA stability, localization, and interaction with translation machinery, affecting gene expression. Not surprisingly, tumors differentially modulate factors involved in expressing these marks, contributing to both tumorigenesis and responses to alkylating chemotherapy. Here we describe the current understanding of RNA modifications and their removal, with a focus primarily on methylation and alkylation as functionally relevant changes to the transcriptome. Intriguingly, some of the same RNA modifications elicited by physiological processes are also produced by alkylating agents, thus blurring the lines between what is a physiological mark and a damage-induced modification. Furthermore, we find that a high level of gene expression of enzymes with RNA dealkylation activity is a sensitive readout for poor survival in four different cancer types, underscoring the likely importance of examining RNA dealkylation mechanisms to cancer biology and for cancer treatment and prognosis.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Clement Oyeniran
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Joshua R Brickner
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - Naga Babu Chinnam
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center , Washington University in St. Louis School of Medicine , St. Louis , Missouri 63110 , United States
| | - John A Tainer
- Department of Molecular and Cellular Oncology , University of Texas M. D. Anderson Cancer Center , Houston , Texas 77030 , United States
| |
Collapse
|
7
|
Perugino G, Miggiano R, Serpe M, Vettone A, Valenti A, Lahiri S, Rossi F, Rossi M, Rizzi M, Ciaramella M. Structure-function relationships governing activity and stability of a DNA alkylation damage repair thermostable protein. Nucleic Acids Res 2015; 43:8801-16. [PMID: 26227971 PMCID: PMC4605297 DOI: 10.1093/nar/gkv774] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/18/2015] [Indexed: 12/22/2022] Open
Abstract
Alkylated DNA-protein alkyltransferases repair alkylated DNA bases, which are among the most common DNA lesions, and are evolutionary conserved, from prokaryotes to higher eukaryotes. The human ortholog, hAGT, is involved in resistance to alkylating chemotherapy drugs. We report here on the alkylated DNA-protein alkyltransferase, SsOGT, from an archaeal species living at high temperature, a condition that enhances the harmful effect of DNA alkylation. The exceptionally high stability of SsOGT gave us the unique opportunity to perform structural and biochemical analysis of a protein of this class in its post-reaction form. This analysis, along with those performed on SsOGT in its ligand-free and DNA-bound forms, provides insights in the structure-function relationships of the protein before, during and after DNA repair, suggesting a molecular basis for DNA recognition, catalytic activity and protein post-reaction fate, and giving hints on the mechanism of alkylation-induced inactivation of this class of proteins.
Collapse
Affiliation(s)
- Giuseppe Perugino
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80125 Naples, Italy
| | - Riccardo Miggiano
- DiSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale 'A. Avogadro', Via Bovio 6, 28100 Novara, Italy
| | - Mario Serpe
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80125 Naples, Italy
| | - Antonella Vettone
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80125 Naples, Italy
| | - Anna Valenti
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80125 Naples, Italy
| | - Samarpita Lahiri
- DiSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale 'A. Avogadro', Via Bovio 6, 28100 Novara, Italy
| | - Franca Rossi
- DiSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale 'A. Avogadro', Via Bovio 6, 28100 Novara, Italy
| | - Mosè Rossi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80125 Naples, Italy
| | - Menico Rizzi
- DiSF-Dipartimento di Scienze del Farmaco, University of Piemonte Orientale 'A. Avogadro', Via Bovio 6, 28100 Novara, Italy
| | - Maria Ciaramella
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, 80125 Naples, Italy
| |
Collapse
|
8
|
Fujita M, Watanabe S, Yoshizawa M, Yamamoto J, Iwai S. Analysis of structural flexibility of damaged DNA using thiol-tethered oligonucleotide duplexes. PLoS One 2015; 10:e0117798. [PMID: 25679955 PMCID: PMC4332495 DOI: 10.1371/journal.pone.0117798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6-4) photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6-4) photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.
Collapse
Affiliation(s)
- Masashi Fujita
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shun Watanabe
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Mariko Yoshizawa
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
| | - Shigenori Iwai
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1–3 Machikaneyama, Toyonaka, Osaka, 560–8531, Japan
- * E-mail:
| |
Collapse
|
9
|
Tomaszowski KH, Aasland D, Margison GP, Williams E, Pinder SI, Modesti M, Fuchs RP, Kaina B. The bacterial alkyltransferase-like (eATL) protein protects mammalian cells against methylating agent-induced toxicity. DNA Repair (Amst) 2015; 28:14-20. [PMID: 25703834 DOI: 10.1016/j.dnarep.2015.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/13/2014] [Accepted: 01/22/2015] [Indexed: 11/16/2022]
Abstract
In both pro- and eukaryotes, the mutagenic and toxic DNA adduct O(6)-methylguanine (O(6)MeG) is subject to repair by alkyltransferase proteins via methyl group transfer. In addition, in prokaryotes, there are proteins with sequence homology to alkyltransferases, collectively designated as alkyltransferase-like (ATL) proteins, which bind to O(6)-alkylguanine adducts and mediate resistance to alkylating agents. Whether such proteins might enable similar protection in higher eukaryotes is unknown. Here we expressed the ATL protein of Escherichia coli (eATL) in mammalian cells and addressed the question whether it is able to protect them against the cytotoxic effects of alkylating agents. The Chinese hamster cell line CHO-9, the nucleotide excision repair (NER) deficient derivative 43-3B and the DNA mismatch repair (MMR) impaired derivative Tk22-C1 were transfected with eATL cloned in an expression plasmid and the sensitivity to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was determined in reproductive survival, DNA double-strand break (DSB) and apoptosis assays. The results indicate that eATL expression is tolerated in mammalian cells and conferes protection against killing by MNNG in both wild-type and 43-3B cells, but not in the MMR-impaired cell line. The protection effect was dependent on the expression level of eATL and was completely ablated in cells co-expressing the human O(6)-methylguanine-DNA methyltransferase (MGMT). eATL did not protect against cytotoxicity induced by the chloroethylating agent lomustine, suggesting that O(6)-chloroethylguanine adducts are not target of eATL. To investigate the mechanism of protection, we determined O(6)MeG levels in DNA after MNNG treatment and found that eATL did not cause removal of the adduct. However, eATL expression resulted in a significantly lower level of DSBs in MNNG-treated cells, and this was concomitant with attenuation of G2 blockage and a lower level of apoptosis. The results suggest that eATL confers protection against methylating agents by masking O(6)MeG/thymine mispaired adducts, preventing them from becoming a substrate for mismatch repair-mediated DSB formation and cell death.
Collapse
Affiliation(s)
- Karl-Heinz Tomaszowski
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Dorthe Aasland
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Geoffrey P Margison
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX Manchester, UK
| | - Emma Williams
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX Manchester, UK
| | - Sarah I Pinder
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX Manchester, UK
| | - Mauro Modesti
- Centre de Recherche en Cancérologie de Marseille, CNRS-UMR7258, Inserm-U1068, Institut Paoli-Calmettes, Université Aix-Marseille, France
| | - Robert P Fuchs
- Centre de Recherche en Cancérologie de Marseille, CNRS-UMR7258, Inserm-U1068, Institut Paoli-Calmettes, Université Aix-Marseille, France
| | - Bernd Kaina
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
10
|
Kanchan S, Mehrotra R, Chowdhury S. Evolutionary pattern of four representative DNA repair proteins across six model organisms: an in silico analysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13721-014-0070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
11
|
Abstract
Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology.
Collapse
Affiliation(s)
- Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | | |
Collapse
|
12
|
Dalhus B, Nilsen L, Korvald H, Huffman J, Forstrøm RJ, McMurray CT, Alseth I, Tainer JA, Bjørås M. Sculpting of DNA at abasic sites by DNA glycosylase homolog mag2. Structure 2012; 21:154-166. [PMID: 23245849 DOI: 10.1016/j.str.2012.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/15/2022]
Abstract
Modifications and loss of bases are frequent types of DNA lesions, often handled by the base excision repair (BER) pathway. BER is initiated by DNA glycosylases, generating abasic (AP) sites that are subsequently cleaved by AP endonucleases, which further pass on nicked DNA to downstream DNA polymerases and ligases. The coordinated handover of cytotoxic intermediates between different BER enzymes is most likely facilitated by the DNA conformation. Here, we present the atomic structure of Schizosaccharomyces pombe Mag2 in complex with DNA to reveal an unexpected structural basis for nonenzymatic AP site recognition with an unflipped AP site. Two surface-exposed loops intercalate and widen the DNA minor groove to generate a DNA conformation previously only found in the mismatch repair MutS-DNA complex. Consequently, the molecular role of Mag2 appears to be AP site recognition and protection, while possibly facilitating damage signaling by structurally sculpting the DNA substrate.
Collapse
Affiliation(s)
- Bjørn Dalhus
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Line Nilsen
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Hanne Korvald
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Joy Huffman
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rune Johansen Forstrøm
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway
| | - Cynthia T McMurray
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, Rochester, MN 55905, USA; Department of Genome Dynamics, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mailstop: 83R0101, Berkeley, CA 94720, USA
| | - Ingrun Alseth
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway.
| | - John A Tainer
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Bioenergy/GTL and Structural Biology, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mailstop: 83R0101, Berkeley, CA 94720, USA.
| | - Magnar Bjørås
- Department of Microbiology, Centre of Molecular Biology and Neuroscience, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, PO Box 4950, Nydalen, N-0424, Oslo, Norway; Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Alkyltransferase-like protein (Atl1) distinguishes alkylated guanines for DNA repair using cation-π interactions. Proc Natl Acad Sci U S A 2012; 109:18755-60. [PMID: 23112169 DOI: 10.1073/pnas.1209451109] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alkyltransferase-like (ATL) proteins in Schizosaccharomyces pombe (Atl1) and Thermus thermophilus (TTHA1564) protect against the adverse effects of DNA alkylation damage by flagging O(6)-alkylguanine lesions for nucleotide excision repair (NER). We show that both ATL proteins bind with high affinity to oligodeoxyribonucleotides containing O(6)-alkylguanines differing in size, polarity, and charge of the alkyl group. However, Atl1 shows a greater ability than TTHA1564 to distinguish between O(6)-alkylguanine and guanine and in an unprecedented mechanism uses Arg69 to probe the electrostatic potential surface of O(6)-alkylguanine, as determined using molecular mechanics calculations. An unexpected consequence of this feature is the recognition of 2,6-diaminopurine and 2-aminopurine, as confirmed in crystal structures of respective Atl1-DNA complexes. O(6)-Alkylguanine and guanine discrimination is diminished for Atl1 R69A and R69F mutants, and S. pombe R69A and R69F mutants are more sensitive toward alkylating agent toxicity, revealing the key role of Arg69 in identifying O(6)-alkylguanines critical for NER recognition.
Collapse
|
14
|
Millington CL, Watson AJ, Marriott AS, Margison GP, Povey AC, Williams DM. Convenient and efficient syntheses of oligodeoxyribonucleotides containing O(6)-(carboxymethyl)guanine and O(6)-(4-oxo-4-(3-pyridyl)butyl)guanine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:328-38. [PMID: 22444194 DOI: 10.1080/15257770.2012.656784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
O(6)-(carboxymethyl)guanine (O(6)-CMG) and O(6)-(4-oxo-4-(3-pyridyl)butyl)guanine (O(6)-pobG) are toxic lesions formed in DNA following exposure to alkylating agents. O(6)-CMG results from exposure to nitrosated glycine or nitrosated bile acid conjugates and may be associated with diets rich in red meat. O(6)-pobG lesions are derived from alkylating agents found in tobacco smoke. Efficient syntheses of oligodeoxyribonucleotides (ODNs) containing O(6)-CMG and O(6)-pobG are described that involve nucleophilic displacement by the appropriate alcohol on a common synthetic ODN containing the reactive base 2-amino-6-methylsulfonylpurine. ODNs containing O(6)-pobG and O (6)-CMG were found to be good substrates for the S. pombe alkyltransferase-like protein Atl1.
Collapse
Affiliation(s)
- Christopher L Millington
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield S3 7HF, UK
| | | | | | | | | | | |
Collapse
|
15
|
Aggarwal M, Brosh RM. Functional analyses of human DNA repair proteins important for aging and genomic stability using yeast genetics. DNA Repair (Amst) 2012; 11:335-48. [PMID: 22349084 DOI: 10.1016/j.dnarep.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 12/18/2022]
Abstract
Model systems have been extremely useful for studying various theories of aging. Studies of yeast have been particularly helpful to explore the molecular mechanisms and pathways that affect aging at the cellular level in the simple eukaryote. Although genetic analysis has been useful to interrogate the aging process, there has been both interest and debate over how functionally conserved the mechanisms of aging are between yeast and higher eukaryotes, especially mammalian cells. One area of interest has been the importance of genomic stability for age-related processes, and the potential conservation of proteins and pathways between yeast and human. Translational genetics have been employed to examine the functional roles of mammalian proteins using yeast as a pliable model system. In the current review recent advancements made in this area are discussed, highlighting work which shows that the cellular functions of human proteins in DNA repair and maintenance of genomic stability can be elucidated by genetic rescue experiments performed in yeast.
Collapse
Affiliation(s)
- Monika Aggarwal
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224, United States
| | | |
Collapse
|
16
|
Valdiglesias V, Kiliç G, Costa C, Amor-Carro Ó, Mariñas-Pardo L, Ramos-Barbón D, Méndez J, Pásaro E, Laffon B. In vivo genotoxicity assessment in rats exposed to Prestige-like oil by inhalation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:756-764. [PMID: 22788363 DOI: 10.1080/15287394.2012.689801] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
One of the largest oil spill disasters in recent times was the accident of the oil tanker Prestige in front of the Galician coast in 2002. Thousands of people participated in the cleanup of the contaminated areas, being exposed to a complex mixture of toxic substances. Acute and prolonged respiratory symptoms and genotoxic effects were reported, although environmental exposure measurements were restricted to current determinations, such that attribution of effects observed to oil exposure is difficult to establish. The aim of this study was to analyze peripheral blood leukocytes (PBL) harvested from a rat model of subchronic exposure to a fuel oil with similar characteristics to that spilled by the Prestige tanker, in order to determine potential genotoxic effects under strictly controlled, in vivo exposure. Wistar Han and Brown Norway rats were exposed to the oil for 3 wk, and micronucleus test (MN) and comet assay, standard and modified with 8-oxoguanine DNA glycosylase (OGG1) enzyme, were employed to assess genotoxicity 72 h and 15 d after the last exposure. In addition, the potential effects of oil exposure on DNA repair capacity were determined by means of mutagen sensitivity assay. Results obtained from this study showed that inhalation oil exposure induced DNA damage in both Brown Norway and Wistar Han rats, especially in those animals evaluated 15 d after exposure. Although alterations in the DNA repair responses were noted, the sensitivity to oil substances varied depending on rat strain. Data support previous positive genotoxicity results reported in humans exposed to Prestige oil during cleanup tasks.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tubbs JL, Tainer JA. P53 conformational switching for selectivity may reveal a general solution for specific DNA binding. EMBO J 2011; 30:2099-100. [PMID: 21629273 DOI: 10.1038/emboj.2011.133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Julie L Tubbs
- Department of Molecular Biology, Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | |
Collapse
|
18
|
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) 2011; 10:697-713. [PMID: 21571596 DOI: 10.1016/j.dnarep.2011.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and coordinate repair with transcription and cell cycle through CAK signaling.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
19
|
Morita R, Hishinuma H, Ohyama H, Mega R, Ohta T, Nakagawa N, Agari Y, Fukui K, Shinkai A, Kuramitsu S, Masui R. An alkyltransferase-like protein from Thermus thermophilus HB8 affects the regulation of gene expression in alkylation response. J Biochem 2011; 150:327-39. [PMID: 21531768 DOI: 10.1093/jb/mvr052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Alkylation is a type of stress that is fatal to cells. However, cells have various responses to alkylation. Alkyltransferase-like (ATL) protein is a novel protein involved in the repair of alkylated DNA; however, its repair mechanism at the molecular level is unclear. DNA microarray analysis revealed that the upregulation of 71 genes because of treatment with an alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine was related to the presence of TTHA1564, the ATL protein from Thermus thermophilus HB8. Affinity chromatography showed a direct interaction of purified TTHA1564 with purified RNA polymerase holoenzyme. The amino acid sequence of TTHA1564 is homologous to that of the C-terminal domain of Ada protein, which acts as a transcriptional activator. These results suggest that TTHA1564 might act as a transcriptional regulator. The results of DNA microarray analysis also implied that the alkylating agent induced oxidation stress in addition to alkylation stress.
Collapse
Affiliation(s)
- Rihito Morita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pegg AE. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem Res Toxicol 2011; 24:618-39. [PMID: 21466232 DOI: 10.1021/tx200031q] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
O(6)-Alkylguanine-DNA alkyltransferase (AGT) is a widely distributed, unique DNA repair protein that acts as a single agent to directly remove alkyl groups located on the O(6)-position of guanine from DNA restoring the DNA in one step. The protein acts only once, and its alkylated form is degraded rapidly. It is a major factor in counteracting the mutagenic, carcinogenic, and cytotoxic effects of agents that form such adducts including N-nitroso-compounds and a number of cancer chemotherapeutics. This review describes the structure, function, and mechanism of action of AGTs and of a family of related alkyltransferase-like proteins, which do not act alone to repair O(6)-alkylguanines in DNA but link repair to other pathways. The paradoxical ability of AGTs to stimulate the DNA-damaging ability of dihaloalkanes and other bis-electrophiles via the formation of AGT-DNA cross-links is also described. Other important properties of AGTs include the ability to provide resistance to cancer therapeutic alkylating agents, and the availability of AGT inhibitors such as O(6)-benzylguanine that might overcome this resistance is discussed. Finally, the properties of fusion proteins in which AGT sequences are linked to other proteins are outlined. Such proteins occur naturally, and synthetic variants engineered to react specifically with derivatives of O(6)-benzylguanine are the basis of a valuable research technique for tagging proteins with specific reagents.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine , Pennsylvania 17033, United States.
| |
Collapse
|
21
|
Mazon G, Philippin G, Cadet J, Gasparutto D, Modesti M, Fuchs RP. Alkyltransferase-like protein (eATL) prevents mismatch repair-mediated toxicity induced by O6-alkylguanine adducts in Escherichia coli. Proc Natl Acad Sci U S A 2010; 107:18050-5. [PMID: 20921378 PMCID: PMC2964255 DOI: 10.1073/pnas.1008635107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O(6)-alkylG adducts are highly mutagenic due to their capacity to efficiently form O(6)-alkylG:T mispairs during replication, thus triggering G→A transitions. Mutagenesis is largely prevented by repair strategies such as reversal by alkyltransferases or excision by nucleotide excision repair (NER). Moreover, methyl-directed mismatch repair (MMR) is known to trigger sensitivity to methylating agents via a mechanism that involves recognition by MutS of the O(6)-mG:T replication intermediates. We wanted to investigate the mechanism by which MMR controls the genotoxicity of environmentally relevant O(6)-alkylG adducts formed by ethylene oxide and propylene oxide. Recently, the alkyltransferase-like gene ybaZ (eATL) was shown to enhance repair of these slightly larger O(6)-alkylG adducts by NER. We analyzed the toxicity and mutagenesis induced by these O(6)-alkylG adducts using single-adducted plasmid probes. We show that the eATL gene product prevents MMR-mediated attack of the O(6)-alkylG:T replication intermediate for the larger alkyl groups but not for methyl. In vivo data are compatible with the occurrence of repeated cycles of MMR attack of the O(6)-alkylG:T intermediate. In addition, in vitro, the eATL protein efficiently prevents binding of MutS to the O(6)-alkylG:T mispairs formed by the larger alkyl groups but not by methyl. In conclusion, eATL not only enhances the efficiency of repair of these larger adducts by NER, it also shields these adducts from MMR-mediated toxicity.
Collapse
Affiliation(s)
- Gerard Mazon
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Gaëlle Philippin
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Jean Cadet
- Institut Nanosciences et Cryogénie/Service de Chimie Inorganique et Biologique-Unité Mixte de Recherche E3 Commissariat à l'Énergie Atomique (CEA)-Université Joseph Fourier, Federation de Recherche en Evolution 3200 CEA-CNRS/CEA Grenoble, F-38054 Grenoble Cedex 9, France
| | - Didier Gasparutto
- Institut Nanosciences et Cryogénie/Service de Chimie Inorganique et Biologique-Unité Mixte de Recherche E3 Commissariat à l'Énergie Atomique (CEA)-Université Joseph Fourier, Federation de Recherche en Evolution 3200 CEA-CNRS/CEA Grenoble, F-38054 Grenoble Cedex 9, France
| | - Mauro Modesti
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| | - Robert P. Fuchs
- Centre National de la Recherche Scientifique (CNRS), Unité Propre de Recherche 3081, Genome Instability and Carcinogenesis, Conventionné par l'Université d'Aix-Marseille 2, 13402 Marseille Cedex 20, France; and
| |
Collapse
|