1
|
Zhou Y, Chen X, Zu X. ZBTB7A as a therapeutic target for cancer. Biochem Biophys Res Commun 2024; 736:150888. [PMID: 39490153 DOI: 10.1016/j.bbrc.2024.150888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
ZBTB7A, alternatively referred to Pokemon, FBI-1, LRF, and OCZF, is classified as a member of POK/ZBTB protein family of transcriptional repressors. ZBTB7A binds to targeted DNA via C-terminal zinc fingers and recruits co-compression complexes through N-terminal BTB ⁄ POZ domain to impede transcription. ZBTB7A regulates a range of fundamental biological processes such as cell proliferation, differentiation and apoptosis, B- and T-lymphocyte fate determination and thymic insulin expression and self-tolerance. Accumulating evidence has demonstrated an important role of ZBTB7A in the initiation and advancement of tumors, thus making ZBTB7A emerge as an appealing target. This review examines the functions and regulatory mechanisms of ZBTB7A in a range of common solid tumors, including hepatocellular carcinoma, breast cancer, prostate cancer and lung cancer, as well as hematological malignancies. Notably, the review concludes with a summary of the recent applications of targeting ZBTB7A in clinical treatments through gene silencing, immunotherapy and chemotherapeutic approaches to halt or slow tumor progression. We focus on the functional role and regulatory mechanisms of ZBTB7A in cancer with the goal of providing new insights for the development of more effective cancer therapeutic strategies.
Collapse
Affiliation(s)
- Ying Zhou
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xisha Chen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Provincial Clinical Medical Research Center for Drug Evaluation of Major Chronic Diseases, China.
| |
Collapse
|
2
|
Ren LL, Song YR, Song ZC, Yang H, Zhang Q, Ji MM, Xiao N, Wen M, Wang JH. Enhancing antitumor activity of herceptin in HER2-positive breast cancer cells: a novel DNMT-1 inhibitor approach. Discov Oncol 2024; 15:640. [PMID: 39527385 PMCID: PMC11555163 DOI: 10.1007/s12672-024-01508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
HER2 antagonists remain the cornerstone of therapy for patients with HER2-positive breast cancer. This study introduces a novel small-molecule inhibitor of DNA methyltransferase 1 (DNMT-1), referred to as DI-1, designed to synergize with HER2 antagonists in treating HER2-positive breast cancer cells. Clinical data reveal a negative correlation between DNMT-1 expression and PTEN levels, and a positive correlation with the methylation rates of PTEN's promoter. In experiments with SKBR3 and BT474 cells, DI-1 effectively reduced the methylation of PTEN's promoter region, thereby upregulating PTEN expression. This upregulation, in turn, enhanced the cells' sensitivity to HER2 antagonists, indicating that DI-1's mechanism involves inhibiting DNMT-1's recruitment to PTEN's promoter region. Consequently, by increasing PTEN expression, DI-1 amplifies the sensitivity of HER2-positive breast cancer cells to treatment, suggesting its potential as a promising therapeutic strategy in this context.
Collapse
Affiliation(s)
- Li-Li Ren
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Yan-Ru Song
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Zhen-Chuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hua Yang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China.
| | - Qian Zhang
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Meng-Meng Ji
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Na Xiao
- Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ming Wen
- Department of Surgery, the Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China
| | - Ji-Hai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, People's Republic of China.
| |
Collapse
|
3
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Zhang XH, Wu SW, Feng YF, Xie YQ, Li M, Hu P, Cao Y. ZBTB7A regulates LncRNA HOTAIR-mediated ELAVL1/SOX17 axis to inhibit malignancy and angiogenesis in endometrial carcinoma. J Cancer Res Clin Oncol 2024; 150:345. [PMID: 38981872 PMCID: PMC11233420 DOI: 10.1007/s00432-024-05860-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND Endometrial cancer (EC) is the sixth most frequent cancer in women worldwide and has higher fatality rates. The pathophysiology of EC is complex, and there are currently no reliable methods for diagnosing and treating the condition. Long non-coding RNA (lncRNA), according to mounting evidence, is vital to the pathophysiology of EC. HOTAIR is regarded as a significant prognostic indicator of EC. ZBTB7A decreased EC proliferation and migration, according to recent studies, however the underlying mechanism still needs to be clarified. METHODS The research utilized RT-qPCR to measure HOTAIR expression in clinical EC tissues and various EC cell lines. Kaplan-Meier survival analysis was employed to correlate HOTAIR levels with patient prognosis. Additionally, the study examined the interaction between ZBTB7A and HOTAIR using bioinformatics tools and ChIP assays. The experimental approach also involved manipulating the expression levels of HOTAIR and ZBTB7A in EC cell lines and assessing the impact on various cellular processes and gene expression. RESULTS The study found significantly higher levels of HOTAIR in EC tissues compared to adjacent normal tissues, with high HOTAIR expression correlating with poorer survival rates and advanced cancer characteristics. EC cell lines like HEC-1 A and KLE showed higher HOTAIR levels compared to normal cells. Knockdown of HOTAIR in these cell lines reduced proliferation, angiogenesis, and migration. ZBTB7A was found to be inversely correlated with HOTAIR, and its overexpression led to a decrease in HOTAIR levels and a reduction in malignant cell behaviors. The study also uncovered that HOTAIR interacts with ELAVL1 to regulate SOX17, which in turn activates the Wnt/β-catenin pathway, promoting malignant behaviors in EC cells. CONCLUSION HOTAIR is a critical regulator in EC, contributing to tumor growth and poor prognosis. Its interaction with ZBTB7A and regulation of SOX17 via the Wnt/β-catenin pathway underlines its potential as a therapeutic target.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230022, P. R. China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
| | - Shu-Wei Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230022, P. R. China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
| | - Yi-Fan Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230022, P. R. China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
| | - Yang-Qin Xie
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230022, P. R. China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
| | - Min Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230022, P. R. China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China
| | - Ping Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230022, P. R. China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230022, P. R. China.
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China.
- Anhui Province Key Laboratory of Reproductive Health and Genetics, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China.
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, 218, Jixi Road, Hefei, Anhui Province, 230032, P. R. China.
| |
Collapse
|
5
|
Fass SB, Mulvey B, Chase R, Yang W, Selmanovic D, Chaturvedi SM, Tycksen E, Weiss LA, Dougherty JD. Relationship between sex biases in gene expression and sex biases in autism and Alzheimer's disease. Biol Sex Differ 2024; 15:47. [PMID: 38844994 PMCID: PMC11157820 DOI: 10.1186/s13293-024-00622-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. METHODS In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-Seq datasets using both within-region and pan-regional frameworks. RESULTS We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-nucleus data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. CONCLUSION Overall, these analyses highlight mechanisms by which sex differences may interact with sex-biased conditions in the brain. Furthermore, we provide region-specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.
Collapse
Affiliation(s)
- Stuart B Fass
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Lieber Institute for Brain Development, 855 North Wolfe St. Ste 300, Baltimore, MD, 21205, USA
| | - Rebecca Chase
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Sneha M Chaturvedi
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Lauren A Weiss
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA, 94143, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA, 94143, USA
- Weill Institute for Neurosciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA, 94143, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA.
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA.
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis, MO, 63110, USA.
- Department of Genetics, 4566 Scott Ave., Campus Box 8232, St. Louis, MO, 63110-1093, USA.
| |
Collapse
|
6
|
Palacios A, Acharya P, Peidl A, Beck M, Blanco E, Mishra A, Bawa-Khalfe T, Pakhrin S. SumoPred-PLM: human SUMOylation and SUMO2/3 sites Prediction using Pre-trained Protein Language Model. NAR Genom Bioinform 2024; 6:lqae011. [PMID: 38327870 PMCID: PMC10849187 DOI: 10.1093/nargab/lqae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
SUMOylation is an essential post-translational modification system with the ability to regulate nearly all aspects of cellular physiology. Three major paralogues SUMO1, SUMO2 and SUMO3 form a covalent bond between the small ubiquitin-like modifier with lysine residues at consensus sites in protein substrates. Biochemical studies continue to identify unique biological functions for protein targets conjugated to SUMO1 versus the highly homologous SUMO2 and SUMO3 paralogues. Yet, the field has failed to harness contemporary AI approaches including pre-trained protein language models to fully expand and/or recognize the SUMOylated proteome. Herein, we present a novel, deep learning-based approach called SumoPred-PLM for human SUMOylation prediction with sensitivity, specificity, Matthew's correlation coefficient, and accuracy of 74.64%, 73.36%, 0.48% and 74.00%, respectively, on the CPLM 4.0 independent test dataset. In addition, this novel platform uses contextualized embeddings obtained from a pre-trained protein language model, ProtT5-XL-UniRef50 to identify SUMO2/3-specific conjugation sites. The results demonstrate that SumoPred-PLM is a powerful and unique computational tool to predict SUMOylation sites in proteins and accelerate discovery.
Collapse
Affiliation(s)
- Andrew Vargas Palacios
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, 1 Main St., Houston, TX 77002, USA
| | - Pujan Acharya
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, 1 Main St., Houston, TX 77002, USA
| | - Anthony Stephen Peidl
- Department of Biology and Biochemistry, Center for Nuclear Receptors & Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Moriah Rene Beck
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St., Wichita, KS 67260, USA
| | - Eduardo Blanco
- Department of Computer Science, University of Arizona, 1040 4th St., Tucson, AZ 85721, USA
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Tasneem Bawa-Khalfe
- Department of Biology and Biochemistry, Center for Nuclear Receptors & Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Subash Chandra Pakhrin
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, 1 Main St., Houston, TX 77002, USA
| |
Collapse
|
7
|
Dong W, Liu Y, Wang P, Ruan X, Liu L, Xue Y, Ma T, E T, Wang D, Yang C, Lin H, Song J, Liu X. U3 snoRNA-mediated degradation of ZBTB7A regulates aerobic glycolysis in isocitrate dehydrogenase 1 wild-type glioblastoma cells. CNS Neurosci Ther 2023; 29:2811-2825. [PMID: 37066523 PMCID: PMC10493654 DOI: 10.1111/cns.14218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023] Open
Abstract
AIMS The isocitrate dehydrogenase (IDH) phenotype is associated with reprogrammed energy metabolism in glioblastoma (GBM) cells. Small nucleolar RNAs (snoRNAs) are known to exert an important regulatory role in the energy metabolism of tumor cells. The purpose of this study was to investigate the role of C/D box snoRNA U3 and transcription factor zinc finger and BTB domain-containing 7A (ZBTB7A) in the regulation of aerobic glycolysis and the proliferative capacity of IDH1 wild-type (IDH1WT ) GBM cells. METHODS Quantitative reverse transcription PCR and western blot assays were utilized to detect snoRNA U3 and ZBTB7A expression. U3 promoter methylation status was analyzed via bisulfite sequencing and methylation-specific PCR. Seahorse XF glycolysis stress assays, lactate production and glucose consumption measurement assays, and cell viability assays were utilized to detect glycolysis and proliferation of IDH1WT GBM cells. RESULTS We found that hypomethylation of the CpG island in the promoter region of U3 led to the upregulation of U3 expression in IDH1WT GBM cells, and the knockdown of U3 suppressed aerobic glycolysis and the proliferation ability of IDH1WT GBM cells. We found that small nucleolar-derived RNA (sdRNA) U3-miR, a small fragment produced by U3, was able to bind to the ZBTB4 3'UTR region and reduce ZBTB7A mRNA stability, thereby downregulating ZBTB7A protein expression. Furthermore, ZBTB7A transcriptionally inhibited the expression of hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA), which are key enzymes of aerobic glycolysis, by directly binding to the HK2 and LDHA promoter regions, thereby forming the U3/ZBTB7A/HK2 LDHA pathway that regulates aerobic glycolysis and proliferation of IDH1WT GBM cells. CONCLUSION U3 enhances aerobic glycolysis and proliferation in IDH1WT GBM cells via the U3/ZBTB7A/HK2 LDHA axis.
Collapse
Affiliation(s)
- Weiwei Dong
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Yunhui Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Ping Wang
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Xuelei Ruan
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Libo Liu
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Yixue Xue
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Teng Ma
- Department of Neurobiology, School of Life SciencesChina Medical UniversityShenyangChina
| | - Tiange E
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Di Wang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Chunqing Yang
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Hongda Lin
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Jian Song
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| | - Xiaobai Liu
- Department of NeurosurgeryShengjing Hospital of China Medical UniversityShenyangChina
- Key Laboratory of Neuro‐oncology in Liaoning ProvinceShenyangChina
- Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research CenterShenyangChina
| |
Collapse
|
8
|
Mulvey B, Selmanovic D, Dougherty JD. Sex Significantly Impacts the Function of Major Depression-Linked Variants In Vivo. Biol Psychiatry 2023; 94:466-478. [PMID: 36803612 PMCID: PMC10425576 DOI: 10.1016/j.biopsych.2023.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Genome-wide association studies have discovered blocks of common variants-likely transcriptional-regulatory-associated with major depressive disorder (MDD), though the functional subset and their biological impacts remain unknown. Likewise, why depression occurs in females more frequently than males is unclear. We therefore tested the hypothesis that risk-associated functional variants interact with sex and produce greater impact in female brains. METHODS We developed techniques to directly measure regulatory variant activity and sex interactions using massively parallel reporter assays in the mouse brain in vivo, in a cell type-specific manner, and applied these approaches to measure activity of >1000 variants from >30 MDD loci. RESULTS We identified extensive sex-by-allele effects in mature hippocampal neurons, suggesting that sex-differentiated impacts of genetic risk may underlie sex bias in disease. Unbiased informatics approaches indicated that functional MDD variants recurrently disrupt a number of transcription factor binding motifs, including those of sex hormone receptors. We confirmed a role for the latter by performing massively parallel reporter assays in neonatal mice on the day of birth (during a sex-differentiating hormone surge) and hormonally quiescent juveniles. CONCLUSIONS Our study provides novel insights into the influence of age, biological sex, and cell type on regulatory variant function and provides a framework for in vivo parallel assays to functionally define interactions between organismal variables such as sex and regulatory variation. Moreover, we experimentally demonstrate that a portion of the sex differences seen in MDD occurrence may be a product of sex-differentiated effects at associated regulatory variants.
Collapse
Affiliation(s)
- Bernard Mulvey
- Division of Biology and Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Din Selmanovic
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri; Intellectual and Developmental Disabilities Research Center, Washington University in St. Louis School of Medicine, St. Louis, Missouri.
| |
Collapse
|
9
|
Fass SB, Mulvey B, Yang W, Selmanovic D, Chaturvedi S, Tycksen E, Weiss LA, Dougherty JD. Relationship between sex biases in gene expression and sex biases in autism and Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.29.23294773. [PMID: 37693465 PMCID: PMC10491382 DOI: 10.1101/2023.08.29.23294773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Sex differences in the brain may play an important role in sex-differential prevalence of neuropsychiatric conditions. In order to understand the transcriptional basis of sex differences, we analyzed multiple, large-scale, human postmortem brain RNA-seq datasets using both within-region and pan-regional frameworks. We find evidence of sex-biased transcription in many autosomal genes, some of which provide evidence for pathways and cell population differences between chromosomally male and female individuals. These analyses also highlight regional differences in the extent of sex-differential gene expression. We observe an increase in specific neuronal transcripts in male brains and an increase in immune and glial function-related transcripts in female brains. Integration with single-cell data suggests this corresponds to sex differences in cellular states rather than cell abundance. Integration with case-control gene expression studies suggests a female molecular predisposition towards Alzheimer's disease, a female-biased disease. Autism, a male-biased diagnosis, does not exhibit a male predisposition pattern in our analysis. Finally, we provide region specific analyses of sex differences in brain gene expression to enable additional studies at the interface of gene expression and diagnostic differences.
Collapse
Affiliation(s)
- Stuart B Fass
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Lieber Institute for Brain Development, 855 North Wolfe St. Ste 300, Baltimore, MD 21205, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| | - Sneha Chaturvedi
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| | - Eric Tycksen
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lauren A Weiss
- Institute for Human Genetics, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA 94143
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA 94143
- Weill Institute for Neurosciences, University of California, San Francisco, 513 Parnassus Ave, HSE901, San Francisco, CA 94143
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, 660 S. Euclid Ave, Saint Louis MO, 63110, USA
| |
Collapse
|
10
|
Bae SY, Bergom HE, Day A, Greene JT, Sychev ZE, Larson G, Corey E, Plymate SR, Freedman TS, Hwang JH, Drake JM. ZBTB7A as a novel vulnerability in neuroendocrine prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1093332. [PMID: 37065756 PMCID: PMC10090553 DOI: 10.3389/fendo.2023.1093332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 03/31/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer. NEPC is characterized by the loss of androgen receptor (AR) signaling and transdifferentiation toward small-cell neuroendocrine (SCN) phenotypes, which results in resistance to AR-targeted therapy. NEPC resembles other SCN carcinomas clinically, histologically and in gene expression. Here, we leveraged SCN phenotype scores of various cancer cell lines and gene depletion screens from the Cancer Dependency Map (DepMap) to identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as a candidate promoting the progression of NEPC. Cancer cells with high SCN phenotype scores showed a strong dependency on RET kinase activity with a high correlation between RET and ZBTB7A dependencies in these cells. Utilizing informatic modeling of whole transcriptome sequencing data from patient samples, we identified distinct gene networking patterns of ZBTB7A in NEPC versus prostate adenocarcinoma. Specifically, we observed a robust association of ZBTB7A with genes promoting cell cycle progression, including apoptosis regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the dependency on ZBTB7A for cell growth via suppression of the G1/S transition in the cell cycle and induction of apoptosis. Collectively, our results highlight the oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a promising therapeutic strategy for targeting NEPC tumors.
Collapse
Affiliation(s)
- Song Yi Bae
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Hannah E. Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Zoi E. Sychev
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Stephen R. Plymate
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs (VA) Puget Sound Health Care System, Seattle, WA, United States
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Department of Urology, University of Washington, Seattle, WA, United States
- Department of Urology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
11
|
Tang W, Xu QH, Chen X, Guo W, Ao Z, Fu K, Ji T, Zou Y, Chen JJ, Zhang Y. Transcriptome sequencing reveals the effects of circRNA on testicular development and spermatogenesis in Qianbei Ma goats. Front Vet Sci 2023; 10:1167758. [PMID: 37180060 PMCID: PMC10172654 DOI: 10.3389/fvets.2023.1167758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Circular RNAs (circRNAs) play an important role in regulating the mammalian reproductive system, especially testicular development and spermatogenesis. However, their functions in testicular development and spermatogenesis in the Qianbei Ma goat, the Guizhou endemic breed are still unclear. In this study, tissue sectioning and circRNAs transcriptome analysis were conducted to compare the changes of morphology and circular RNAs gene expression profile at four different developmental stages (0Y, 0-month-old; 6Y, 6-month-old; 12Y, 12-month-old; 18Y, 18-month-old). The results showed that the circumferences and area of the seminiferous tubule gradually increased with age, and the lumen of the seminiferous tubule in the testis differentiated significantly. 12,784 circRNAs were detected from testicular tissues at four different developmental stages by RNA sequencing, and 8,140 DEcircRNAs (differentially expressed circRNAs) were found in 0Y vs. 6Y, 6Y vs. 12Y, 12Y vs. 18Y and 0Y vs. 18Y, 0Y vs. 12Y, 6Y vs. 18Y Functional enrichment analysis of the source genes showed that they were mainly enriched in testicular development and spermatogenesis. In addition, the miRNAs and mRNAs associated with DECircRNAs in 6 control groups were predicted by bioinformatics, and 81 highly expressed DECircRNAs and their associated miRNAs and mRNAs were selected to construct the ceRNA network. Through functional enrichment analysis of the target genes of circRNAs in the network, some candidate circRNAs related to testicular development and spermatogenesis were obtained. Such as circRNA_07172, circRNA_04859, circRNA_07832, circRNA_00032 and circRNA_07510. These results will help to reveal the mechanism of circRNAs in testicular development and spermatogenesis, and also provide some guidance for goat reproduction.
Collapse
Affiliation(s)
- Wen Tang
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
| | - Qiang Hou Xu
- College of Life Science, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- *Correspondence: Qiang Hou Xu,
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
- Xiang Chen,
| | - Wei Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Zheng Ao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kaibin Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Taotao Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yue Zou
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Jing Jia Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang, China
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Xiang J, Wang C, Yu X, He J. Study on the mechanism of Jin Gui Shen Qi Pill in the treatment of erectile dysfunction based on bioinformatics analysis. Medicine (Baltimore) 2022; 101:e31668. [PMID: 36401440 PMCID: PMC9678517 DOI: 10.1097/md.0000000000031668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Erectile dysfunction (ED) is a male disease, which is easy to cause disharmony in sexual life. However, at present, there are few drugs with small side effects in clinic. Jin Gui Shen Qi Pill (JGSQP) is a traditional Chinese medicine compound with obvious clinical effect in treating ED. Therefore, it is imperative to explore clinical drugs based on inhibiting the pathological characteristics of ED. First, the active ingredients and action targets in JGSQP were screened by applying Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and SWISS Target Prediction. Further, a systematic pharmacological analysis platform for traditional Chinese medicine, and the ED targets were screened by applying Gene Cards and Online Mendelian Inheritance in Man databases to construct drug active ingredient-target-disease mapping, followed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) network analysis. Finally, Molecular docking and molecular dynamics simulations were used to screen the active ingredients of JGSQP acting on PDE-5, and analyze the ligand-receptor interaction relationship and binding free energy. The results showed that there were 212 potential targets of JGSQP for ED disease, and GO analysis revealed that the main pathways were positive regulation of DNA-binding transcription factor activity, regulation of vascular diameter, and negative regulation of vascular diameter, etc. KEGG analysis revealed that the main pathways were HIF-1 signaling pathway, prolactin signaling pathway, fluid shear stress, and atherosclerosis, etc. PPI network analysis revealed that the core targets TGFB1 and EGFR have important roles. Molecular docking and molecular dynamics simulations showed that the main components acting on PDE-5 were MOL000546, MOL011169, MOL000279, MOL000273 and Sildenafil. MOL000546 was able to bind stably to PDE-5. The multi-component, multi-target, and multi-pathway action characteristics of JGSQP were confirmed by network pharmacology, which predicted the possible mechanism of action of JGSQP in the treatment of ED and provided a theoretical reference for further experimental validation.
Collapse
Affiliation(s)
- Jingjing Xiang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Chaoyang Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Xiaoming Yu
- Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Jing He
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, China
- Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, Hubei, China
- * Correspondence: Jing He, Hubei Provincial Hospital of Traditional Chinese Medicine, No. 4 huayuanshan, Wuchang District, Wuhan City, Hubei Province, China (e-mail: )
| |
Collapse
|
13
|
Xie X, Bian Y, Li H, Yin J, Tian L, Jiang R, Zeng Z, Shi X, Lei Z, Hou C, Qu Y, Wang L, Shen J. A Comprehensive Understanding of the Genomic Bone Tumor Landscape: A Multicenter Prospective Study. Front Oncol 2022; 12:835004. [PMID: 35756627 PMCID: PMC9213736 DOI: 10.3389/fonc.2022.835004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Complexity and heterogeneity increases the difficulty of diagnosis and treatment of bone tumors. We aimed to identify the mutational characterization and potential biomarkers of bone tumors. In this study, a total of 357 bone tumor patients were recruited and the next generation sequencing (NGS)-based YuanSu450 panel, that includes both DNA and RNA sequencing, was performed for genomic alteration identification. The most common mutated genes in bone tumors included TP53, NCOR1, VEGFA, RB1, CCND3, CDKN2A, GID4, CCNE1, TERT, and MAP2K4. The amplification of genes such as NCOR1, VEGFA, and CCND3 mainly occurred in osteosarcoma. Germline mutation analysis reveal a high frequency of HRD related mutations (46.4%, 13/28) in this cohort. With the assistance of RNA sequencing, 16.8% (19/113) gene fusions were independently detected in 20% (16/79) of patients. Nearly 34.2% of patients harbored actionable targeted mutations, of which the most common mutation is CDKN2A deletion. The different mutational characterizations between juvenile patients and adult patients indicated the potential effect of age in bone tumor treatment. According to the genomic alterations, the diagnosis of 26 (7.28%) bone tumors were corrected. The most easily misdiagnosed bone tumor included malignant giant cell tumors of bone (2.8%, 10/357) and fibrous dysplasia of bone (1.7%, 6/357). Meanwhile, we found that the mutations of MUC16 may be a potential biomarker for the diagnosis of mesenchymal chondrosarcomas. Our results indicated that RNA sequencing effectively complements DNA sequencing and increased the detection rate of gene fusions, supporting that NGS technology can effectively assist the diagnosis of bone tumors.
Collapse
Affiliation(s)
- Xianbiao Xie
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yiying Bian
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lantian Tian
- Department of Hepatobiliary Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Renbing Jiang
- Department of Bone and Soft Tissue, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Ziliang Zeng
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoliang Shi
- Department of Medicine, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Zixiong Lei
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Changhe Hou
- Department of Musculoskeletal Oncology, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yueting Qu
- Department of Medicine, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Liwei Wang
- Department of Medicine, Shanghai OrigiMed Co., Ltd, Shanghai, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Target Protein for Xklp2 Functions as Coactivator of Androgen Receptor and Promotes the Proliferation of Prostate Carcinoma Cells. JOURNAL OF ONCOLOGY 2022; 2022:6085948. [PMID: 35444697 PMCID: PMC9015851 DOI: 10.1155/2022/6085948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/05/2022] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
The activation of the androgen receptor (AR) pathway is crucial in the progression of human prostate cancer. Results of the present study indicated that the target protein xenopus kinesin-like protein (TPX2) enhanced the transcription activation of AR and promoted the proliferation of LNCaP (ligand-dependent prostate carcinoma) cells. The protein-protein interaction between AR and TPX2 was investigated using coimmunoprecipitation assays. Results of the present study further demonstrated that TPX2 enhanced the transcription factor activation of AR and enhanced the expression levels of the downstream gene prostate-specific antigen (PSA). TPX2 did this by promoting the accumulation of AR in the nucleus and also promoting the recruitment of AR to the androgen response element, located in the promoter region of the PSA gene. Overexpression of TPX2 enhanced both the in vitro and in vivo proliferation of LNCaP cells. By revealing a novel role of TPX2 in the AR signaling pathway, the present study indicated that TPX2 may be an activator of AR and thus exhibits potential as a novel target for prostate carcinoma treatment.
Collapse
|
15
|
Liu J, Yang C, Huang XM, Lv PP, Yang YK, Zhao JN, Zhao SY, Sun WJ. Knockdown of FBI-1 Inhibits the Warburg Effect and Enhances the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents via miR-3692/HIF-1α. Front Oncol 2021; 11:796839. [PMID: 34869045 PMCID: PMC8633402 DOI: 10.3389/fonc.2021.796839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 01/20/2023] Open
Abstract
The transcription suppressor factor FBI-1 (the factor that binds to inducer of short transcripts-1) is an important regulator of hepatocellular carcinoma (HCC). In this work, the results showed that FBI-1 promoted the Warburg effect and enhances the resistance of hepatocellular carcinoma cells to molecular targeted agents. Knockdown of FBI-1 via its small-interfering RNA (siRNA) inhibited the ATP level, lactate productions, glucose uptake or lactate dehydrogenase (LDH) activation of HCC cells. Transfection of siFBI-1 also decreased the expression of the Warburg-effect-related factors: hypoxia-inducible factor-1 alpha (HIF-1α), lactate dehydrogenase A (LDHA), or GLUT1, and the epithelial-mesenchymal transition-related factors, Vimentin or N-cadherin. The positive correlation between the expression of FBI-1 with HIF-1α, LDHA, or GLUT1 was confirmed in HCC tissues. Mechanistically, the miR-30c repressed the expression of HIF-1α by binding to the 3'-untranslated region (3'-UTR) of HIF-1α in a sequence-specific manner, and FBI-1 enhanced the expression of HIF-1α and HIF-1α pathway's activation by repressing the expression of miR. By modulating the miR-30c/HIF-1α, FBI-1 promoted the Warburg effect or the epithelial-mesenchymal transition of HCC cells and promoted the resistance of HCC cells to molecular targeted agents.
Collapse
Affiliation(s)
- Juan Liu
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Chao Yang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xiao-Mei Huang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Pan-Pan Lv
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Ya-Kun Yang
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jin-Na Zhao
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Si-Yuan Zhao
- Department of Neurosurgery, Beijing Huicheng Medical Research Institute, Beijing, China
| | - Wan-Jun Sun
- Department of Hematology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
16
|
Ren H, Wei ZC, Sun YX, Qiu CY, Zhang WJ, Zhang W, Liu T, Che X. ATF2-Induced Overexpression of lncRNA LINC00882, as a Novel Therapeutic Target, Accelerates Hepatocellular Carcinoma Progression via Sponging miR-214-3p to Upregulate CENPM. Front Oncol 2021; 11:714264. [PMID: 34513693 PMCID: PMC8429907 DOI: 10.3389/fonc.2021.714264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Long intergenic non-protein coding RNA 882 (LINC00882) are abnormally expressed in several tumors. Our research aimed to uncover the functions and the potential mechanisms of LINC00882 in hepatocellular carcinoma (HCC) progression. Methods RT-qPCR was applied to identify LINC00882 and miR-214-3p levels in HCC specimens and cells. Luciferase reporter was applied for the exploration of whether activating transcription factor 2 (ATF2) could bind to the promoter region of LINC00882. Cell proliferation, invasion, and migration were evaluated. In vivo tumor xenograft models were constructed to assess tumorigenicity. RT-PCR, Western blot and Luciferase reporter assays were conducted to examine the regulatory relationships among LINC00882, miR-214-3p and ATF2. Results LINC00882 was markedly upregulated in HCC cells and clinical specimens. Additionally, ATF2 could bind directly to the LINC00882 promoter region and activate its transcription. Loss-of-function studies further demonstrated that LINC00882 knockdown inhibited proliferation, invasion, and migration of HCC cells. Mechanistically, LINC00882 adsorbed miR-214-3p, thus promoting the expressions of CENPM. Rescue assays demonstrated that functions of LINC00882 deficiency in HCC cells were reversed through suppressing miR-214-3p. Conclusion Our group identified a novel regulatory axis of ATF2/LINC00882/miR-214-3p/CENPM, which may provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Hua Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhi-Cheng Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yan-Xia Sun
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Yan Qiu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wen-Jue Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Katainen R, Donner I, Räisänen M, Berta D, Kuosmanen A, Kaasinen E, Hietala M, Aaltonen LA. Novel germline variant in the histone demethylase and transcription regulator KDM4C induces a multi-cancer phenotype. J Med Genet 2021; 59:644-651. [PMID: 34281993 PMCID: PMC9252859 DOI: 10.1136/jmedgenet-2021-107747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/25/2021] [Indexed: 11/10/2022]
Abstract
Background Genes involved in epigenetic regulation are central for chromatin structure and gene expression. Specific mutations in these might promote carcinogenesis in several tissue types. Methods We used exome, whole-genome and Sanger sequencing to detect rare variants shared by seven affected individuals in a striking early-onset multi-cancer family. The only variant that segregated with malignancy resided in a histone demethylase KDM4C. Consequently, we went on to study the epigenetic landscape of the mutation carriers with ATAC, ChIP (chromatin immunoprecipitation) and RNA-sequencing from lymphoblastoid cell lines to identify possible pathogenic effects. Results A novel variant in KDM4C, encoding a H3K9me3 histone demethylase and transcription regulator, was found to segregate with malignancy in the family. Based on Roadmap Epigenomics Project data, differentially accessible chromatin regions between the variant carriers and controls enrich to normally H3K9me3-marked chromatin. We could not detect a difference in global H3K9 trimethylation levels. However, carriers of the variant seemed to have more trimethylated H3K9 at transcription start sites. Pathway analyses of ChIP-seq and differential gene expression data suggested that genes regulated through KDM4C interaction partner EZH2 and its interaction partner PLZF are aberrantly expressed in mutation carriers. Conclusions The apparent dysregulation of H3K9 trimethylation and KDM4C-associated genes in lymphoblastoid cells supports the hypothesis that the KDM4C variant is causative of the multi-cancer susceptibility in the family. As the variant is ultrarare, located in the conserved catalytic JmjC domain and predicted pathogenic by the majority of available in silico tools, further studies on the role of KDM4C in cancer predisposition are warranted.
Collapse
Affiliation(s)
- Riku Katainen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Iikki Donner
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Maritta Räisänen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Davide Berta
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Anna Kuosmanen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Eevi Kaasinen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| | - Marja Hietala
- Department of Clinical Genetics, TYKS Turku University Hospital and University of Turku Institute of Biomedicine, Turku, Finland
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, University of Helsinki Faculty of Medicine, Helsinki, Finland
| |
Collapse
|
18
|
Zhou Q, Liu M, Shao T, Xie P, Zhu S, Wang W, Miao Q, Peng J, Zhang P. TPX2 Enhanced the Activation of the HGF/ETS-1 Pathway and Increased the Invasion of Endocrine-Independent Prostate Carcinoma Cells. Front Oncol 2021; 11:618540. [PMID: 34123781 PMCID: PMC8193931 DOI: 10.3389/fonc.2021.618540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
The prognosis for endocrine-independent prostate carcinoma is still poor due to its highly metastatic feature. In the present work, TPX2 (the targeting protein for Xklp2), which is known as a micro-tubulin interacted protein, was identified as a novel coactivator of ETS-1, a transcription factor that plays a central role in mediating the metastasis of human malignancies. TPX2 enhanced the transcription factor activation of ETS-1 and increased the expression of ETS-1's downstream metastasis-related genes, such as mmp3 or mmp9, induced by HGF (hepatocyte growth factor), a typical agonist of the HGF/c-MET/ETS-1 pathway. The protein-interaction between TPX2 and ETS-1 was examined using immunoprecipitation (IP). TPX2 enhanced the accumulation of ETS-1 in the nuclear and the recruitment of its binding element (EST binding site, EBS) located in the promoter region of its downstream gene, mmp9. Moreover, TPX2 enhanced the in vitro or in vivo invasion of a typical endocrine-independent prostate carcinoma cell line, PC-3. Therefore, TPX2 enhanced the activation of the HGF/ETS-1 pathway to enhance the invasion of endocrine-independent prostate carcinoma cells and thus it would be a promising target for prostate carcinoma treatment.
Collapse
Affiliation(s)
- Qinghong Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tao Shao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Pingbo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Shaojie Zhu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Qiong Miao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Jiaxi Peng
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Peng Zhang
- Department of Urology, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing, China
| |
Collapse
|
19
|
Singh AK, Verma S, Kushwaha PP, Prajapati KS, Shuaib M, Kumar S, Gupta S. Role of ZBTB7A zinc finger in tumorigenesis and metastasis. Mol Biol Rep 2021; 48:4703-4719. [PMID: 34014468 DOI: 10.1007/s11033-021-06405-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/08/2021] [Indexed: 02/08/2023]
Abstract
The zinc finger and BTB (broad-complex, tramtrack and bric a brac) domain containing protein 7A (ZBTB7A) is a pleiotropic transcription factor that plays an important role in various stages of cell proliferation, differentiation, and other developmental processes. ZBTB7A is a member of the POK family that directly and specifically binds to short DNA recognition sites located near their target genes thereby acting as transcriptional activator or repressor. ZBTB7A overexpression has been associated with tumorigenesis and metastasis in various human cancer types, including breast, prostate, lung, ovarian, and colon cancer. However in some instances downregulation of ZBTB7A results in tumor progression, suggesting its role as a tumor suppressor. ZBTB7A is involved with complicated regulatory networks which include protein-protein and protein-nucleic acid interactions. ZBTB7A involvement in cancer progression and metastasis is perhaps enabled through the regulation of various signaling pathways depending on the type and genetic context of cancer. The association of ZBTB7A with other proteins affects cancer aggressiveness, therapeutic resistance and clinical outcome. This review focuses on the involvement of ZBTB7A in various signaling pathways and its role in cancer progression. We will also review the literature on ZBTB7A and cancer which could be potentially explored for its therapeutic implications.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shiv Verma
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Prem Prakash Kushwaha
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Kumari Sunita Prajapati
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Mohd Shuaib
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Shashank Kumar
- Molecular Signaling and Drug Discovery Laboratory, Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
20
|
Li B, Feng F, Jia H, Jiang Q, Cao S, Wei L, Zhang Y, Lu J. Rhamnetin decelerates the elimination and enhances the antitumor effect of the molecular-targeting agent sorafenib in hepatocellular carcinoma cells via the miR-148a/PXR axis. Food Funct 2021; 12:2404-2417. [PMID: 33570057 DOI: 10.1039/d0fo02270e] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR) mediates the resistance of sorafenib in hepatocellular carcinoma (HCC) by promoting the clearance or elimination of sorafenib via the drug resistance-related downstream genes of the PXR. Previously, we revealed that rhamnetin (a flavonoid functioning as an inhibitor of sirtuin (Sirt)1) could inhibit expression of the downstream gene of the PXR: multidrug resistance 1 (mdr-1). However, how rhamnetin regulates the PXR pathway in HCC cells is not known. Here, we demonstrated that rhamnetin decelerated elimination of the molecular-targeting agent sorafenib in HCC cells via the microRNA (miR)-148a/PXR axis. Rhamnetin treatment decreased expression of the drug resistance-related downstream genes of PXR (cyp3a4 [cytochrome P-450] or mdr-1 [multi-drug resistance 1]), which mediate the metabolism or elimination of sorafenib in HCC cells. Mechanistically, rhamnetin increased expression of miR-148a (which is tumor-suppressive) in a P53-dependent manner, leading to inhibition of PXR expression and decrease in expression of its downstream genes. Rhamnetin enhanced miRNA-148a transcription by repressing Sirt1 activation to enhance acetylation at residue-373 of P53. Rhamnetin treatment decelerated the metabolic clearance of sorafenib in HCC cells and enhanced the sensitivity of HCC cells to sorafenib. Our results suggest that rhamnetin could be a potential agent for overcoming sorafenib resistance in HCC treatment.
Collapse
Affiliation(s)
- Boan Li
- Center for Clinical Laboratory, The Fifth Medical Center, General Hospital of Chinese PLA, Beijing 100039, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
LRF/ZBTB7A conservation accentuates its potential as a therapeutic target for the hematopoietic disorders. Gene 2020; 760:145020. [PMID: 32755656 DOI: 10.1016/j.gene.2020.145020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
Conserved sequences across species have always provided valuable insights to improve our understanding on the human genome's entity and the interplay among different loci. Lymphoma/leukemia related factor (LRF) is encoded by ZBTB7A gene and belongs to an evolutionarily conserved family of transcription factors, implicated in vital cellular functions. The present data, demonstrating the wide-spread and the high overlap of the LRF/ZBTB7A recognition sites with genomic segments identified as CpG islands in the human genome, suggest that its binding capacity strongly depends on a specific sequence-encoded feature within CpGs. We have previously shown that de-methylation of the CpG island 326 lying in the ZBTB7A gene promoter is associated with impaired pharmacological induction of fetal hemoglobin in β-type hemoglobinopathies patients. Within this context we aimed to investigate the extent of the LRF/ZBTB7A conservation among primates and mouse genome, focusing our interest also on the CpG island flanking the gene's promoter region, in an effort to further establish its epigenetic regulatory role in human hematopoiesis and pharmacological involvement in hematopoietic disorders. Comparative analysis of the human ZBTB7A nucleotide and amino acid sequences and orthologous sequences among non-human primates and mouse, exhibited high conservation scores. Pathway analysis, clearly indicated that LRF/ZBTB7A influences conserved cellular processes. These data in conjunction with the high levels of expression foremost in hematopoietic tissues, highlighted LRF/ZBTB7A as an essential factor operating indisputably during hematopoiesis.
Collapse
|
22
|
Gupta S, Singh AK, Prajapati KS, Kushwaha PP, Shuaib M, Kumar S. Emerging role of ZBTB7A as an oncogenic driver and transcriptional repressor. Cancer Lett 2020; 483:22-34. [PMID: 32348807 DOI: 10.1016/j.canlet.2020.04.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023]
Abstract
ZBTB7A is a member of the POK family of transcription factors that possesses a POZ-domain at the N-terminus and Krüppel-like zinc-finger at the c-terminus. ZBTB7A was initially isolated as a protein that binds to the inducer of the short transcript of HIV-1 virus TAT gene promoter. The protein forms a homodimer through protein-protein interaction via the N-terminus POZ-domains. ZBTB7A typically binds to the DNA elements through its zinc-finger domains and represses transcription both by modification of the chromatin organization and through the direct recruitment of transcription factors to gene regulatory regions. ZBTB7A is involved in several fundamental biological processes including cell proliferation, differentiation, and development. It also participates in hematopoiesis, adipogenesis, chondrogenesis, cellular metabolism and alternative splicing of BCLXL, DNA repair, development of oligodendrocytes, osteoclast and unfolded protein response. Aberrant ZBTB7A expression promotes oncogenic transformation and tumor progression, but also maintains a tumor suppressive role depending on the type and genetic context of cancer. In this comprehensive review we provide information about the structure, function, targets, and regulators of ZBTB7A and its role as an oncogenic driver and transcriptional repressor in various human diseases.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Urology, Case Western Reserve University, Cleveland, OH 44106, USA; The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA; Divison of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA; Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | - Atul Kumar Singh
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Kumari Sunita Prajapati
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Prem Prakash Kushwaha
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Mohd Shuaib
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| | - Shashank Kumar
- Department of Biochemistry, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India.
| |
Collapse
|
23
|
Zhang P, Yang Y, Qian K, Li L, Zhang C, Fu X, Zhang X, Chen H, Liu Q, Cao S, Cui J. A novel tumor suppressor ZBTB1 regulates tamoxifen resistance and aerobic glycolysis through suppressing HER2 expression in breast cancer. J Biol Chem 2020; 295:14140-14152. [PMID: 32690611 DOI: 10.1074/jbc.ra119.010759] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Transcriptional repressor zinc finger and BTB domain containing 1 (ZBTB1) is required for DNA repair. Because DNA repair defects often underlie genome instability and tumorigenesis, we determined to study the role of ZBTB1 in cancer. In this study, we found that ZBTB1 is down-regulated in breast cancer and this down-regulation is associated with poor outcome of breast cancer patients. ZBTB1 suppresses breast cancer cell proliferation and tumor growth. The majority of breast cancers are estrogen receptor (ER) positive and selective estrogen receptor modulators such as tamoxifen have been widely used in the treatment of these patients. Unfortunately, many patients develop resistance to endocrine therapy. Tamoxifen-resistant cancer cells often exhibit higher HER2 expression and an increase of glycolysis. Our data revealed that ZBTB1 plays a critical role in tamoxifen resistance in vitro and in vivo To see if ZBTB1 regulates HER2 expression, we tested the recruitments of ZBTB1 on HER2 regulatory sequences. We observed that over-expressed ZBTB1 occupies the estrogen receptor α (ERα)-binding site of the HER2 intron in tamoxifen-resistant cells, suppressing tamoxifen-induced transcription. In an effort to identify potential microRNAs (miRNAs) regulating ZBTB1, we found that miR-23b-3p directly targets ZBTB1. MiR-23b-3p regulates HER2 expression and tamoxifen resistance via targeting ZBTB1. Finally, we found that miR-23b-3p/ZBTB1 regulates aerobic glycolysis in tamoxifen-resistant cells. Together, our data demonstrate that ZBTB1 is a tumor suppressor in breast cancer cells and that targeting the miR-23b-3p/ZBTB1 may serve as a potential therapeutic approach for the treatment of tamoxifen resistant breast cancer.
Collapse
Affiliation(s)
- Panhong Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Yutao Yang
- Department of Neurobiology, Capital Medical University, Beijing, P.R. China
| | - Kai Qian
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Lianlian Li
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoyi Fu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China.,Department of Pathology, 2nd Affiliated Hospital, Yichun University, Yichun, Jiangxi, P.R. China
| | - Xiumei Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Huan Chen
- Department of Pathology, The 1st affiliated Hospital, Yichun University, Yichun, Jiangxi, P.R. China
| | - Qiongqing Liu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Shengnan Cao
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Jiajun Cui
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| |
Collapse
|
24
|
Gong L, Hu Y, He D, Zhu Y, Xiang L, Xiao M, Bao Y, Liu X, Zeng Q, Liu J, Zhou M, Zhou Y, Cheng Y, Zhang Y, Deng L, Zhu R, Lan H, Cao K. Ubiquitin ligase CHAF1B induces cisplatin resistance in lung adenocarcinoma by promoting NCOR2 degradation. Cancer Cell Int 2020; 20:194. [PMID: 32508530 PMCID: PMC7249347 DOI: 10.1186/s12935-020-01263-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 05/14/2020] [Indexed: 12/16/2022] Open
Abstract
Background Lung cancer is the most common malignant tumor in the world. The Whole-proteome microarray showed that ubiquitin ligase chromatin assembly factor 1 subunit B (CHAF1B) expression in A549/DDP cells is higher than in A549 cells. Our study explored the molecular mechanism of CHAF1B affecting cisplatin resistance in lung adenocarcinoma (LUAD). Methods Proteome microarray quantify the differentially expressed proteins between LUAD cell line A549 and its cisplatin-resistant strain A549/DDP. Quantitative real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot (WB) confirmed the CHAF1B expression. Public databases analyzed the prognosis of LUAD patients with varied LUAD expression followed by the substrates prediction of CHAF1B. Public databases showed that nuclear receptor corepressor 2 (NCOR2) may be substrates of CHAF1B. WB detected that CHAF1B expression affected the expression of NCOR2. Cell and animal experiments and clinical data detected function and integrating mechanism of CHAF1B compounds. Results Proteome chips results indicated that CHAF1B, PPP1R13L, and CDC20 was higher than A549 in A549/DDP. Public databases showed that high expression of CHAF1B, PPP1R13L, and CDC20 was negatively correlated with prognosis in LUAD patients. PCR and WB results indicated higher CHAF1B expression in A549/DDP cells than that in A549 cells. NCOR2 and PPP5C were confirmed to be substrates of CHAF1B. CHAF1B knockdown significantly increased the sensitivity of cisplatin in A549/DDP cells and the upregulated NCOR2 expression. CHAF1B and NCOR2 are interacting proteins and the position of interaction between CHAF1B and NCOR2 was mainly in the nucleus. CHAF1B promotes ubiquitination degradation of NCOR2. Cells and animal experiments showed that under the action of cisplatin, after knockdown of CHAF1B and NCOR2 in A549/DDP group compared with CHAF1B knockdown alone, the cell proliferation and migratory ability increased and apoptotic rate decreased, and the growth rate and size of transplanted tumor increased significantly. Immunohistochemistry suggested that Ki-67 increased, while apoptosis-related indicators caspase-3 decreased significantly. Clinical data showed that patients with high expression of CHAF1B are more susceptible to cisplatin resistance. Conclusion Ubiquitin ligase CAHF1B can induce cisplatin resistance in LUAD by promoting the ubiquitination degradation of NCOR2.
Collapse
Affiliation(s)
- Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Yi Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, 410007 China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Ying Bao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, 410078 China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, 410078 China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Yeyu Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Rongrong Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Hua Lan
- Department of Gynaecology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, 410013 China
| |
Collapse
|
25
|
Crumbaker M, Chan EKF, Gong T, Corcoran N, Jaratlerdsiri W, Lyons RJ, Haynes AM, Kulidjian AA, Kalsbeek AMF, Petersen DC, Stricker PD, Jamieson CAM, Croucher PI, Hovens CM, Joshua AM, Hayes VM. The Impact of Whole Genome Data on Therapeutic Decision-Making in Metastatic Prostate Cancer: A Retrospective Analysis. Cancers (Basel) 2020; 12:E1178. [PMID: 32392735 PMCID: PMC7280976 DOI: 10.3390/cancers12051178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND While critical insights have been gained from evaluating the genomic landscape of metastatic prostate cancer, utilizing this information to inform personalized treatment is in its infancy. We performed a retrospective pilot study to assess the current impact of precision medicine for locally advanced and metastatic prostate adenocarcinoma and evaluate how genomic data could be harnessed to individualize treatment. METHODS Deep whole genome-sequencing was performed on 16 tumour-blood pairs from 13 prostate cancer patients; whole genome optical mapping was performed in a subset of 9 patients to further identify large structural variants. Tumour samples were derived from prostate, lymph nodes, bone and brain. RESULTS Most samples had acquired genomic alterations in multiple therapeutically relevant pathways, including DNA damage response (11/13 cases), PI3K (7/13), MAPK (10/13) and Wnt (9/13). Five patients had somatic copy number losses in genes that may indicate sensitivity to immunotherapy (LRP1B, CDK12, MLH1) and one patient had germline and somatic BRCA2 alterations. CONCLUSIONS Most cases, whether primary or metastatic, harboured therapeutically relevant alterations, including those associated with PARP inhibitor sensitivity, immunotherapy sensitivity and resistance to androgen pathway targeting agents. The observed intra-patient heterogeneity and presence of genomic alterations in multiple growth pathways in individual cases suggests that a precision medicine model in prostate cancer needs to simultaneously incorporate multiple pathway-targeting agents. Our whole genome approach allowed for structural variant assessment in addition to the ability to rapidly reassess an individual's molecular landscape as knowledge of relevant biomarkers evolve. This retrospective oncological assessment highlights the genomic complexity of prostate cancer and the potential impact of assessing genomic data for an individual at any stage of the disease.
Collapse
Affiliation(s)
- Megan Crumbaker
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Kinghorn Cancer Centre, Department of Medical Oncology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Eva K. F. Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
| | - Tingting Gong
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- Central Clinical School, University of Sydney, Sydney, Camperdown, NSW 2050, Australia
| | - Niall Corcoran
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC 3121, Australia;
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
- Division of Urology, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Weerachai Jaratlerdsiri
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Ruth J. Lyons
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Anne-Maree Haynes
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Anna A. Kulidjian
- Department of Orthopedic Surgery, Scripps Clinic, La Jolla, CA 92037, USA.;
- Orthopedic Oncology Program, Scripps MD Anderson Cancer Center, La Jolla, CA 92037, USA
| | - Anton M. F. Kalsbeek
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
| | - Desiree C. Petersen
- The Centre for Proteomic and Genomic Research, Cape Town 7925, South Africa;
| | - Phillip D. Stricker
- Department of Urology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia;
| | - Christina A. M. Jamieson
- Department of Urology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA;
| | - Peter I. Croucher
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
| | - Christopher M. Hovens
- Australian Prostate Cancer Research Centre Epworth, Richmond, VIC 3121, Australia;
- Department of Surgery, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Anthony M. Joshua
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Kinghorn Cancer Centre, Department of Medical Oncology, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
| | - Vanessa M. Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (M.C.); (E.K.F.C.); (T.G.); (W.J.); (R.J.L.); (A.-M.H.); (A.M.F.K.); (P.I.C.)
- St. Vincent’s Clinical School, University of New South Wales, Sydney, Randwick, NSW 2031, Australia
- Central Clinical School, University of Sydney, Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
26
|
Chu PH, Chen G, Kuo D, Braisted J, Huang R, Wang Y, Simeonov A, Boehm M, Gerhold DL. Stem Cell-Derived Endothelial Cell Model that Responds to Tobacco Smoke Like Primary Endothelial Cells. Chem Res Toxicol 2020; 33:751-763. [PMID: 32119531 DOI: 10.1021/acs.chemrestox.9b00363] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To clarify how smoking leads to heart attack and stroke, we developed an endothelial cell model (iECs) generated from human induced Pluripotent Stem Cells (iPSC) and evaluated its responses to tobacco smoke. These iECs exhibited a uniform endothelial morphology, and expressed markers PECAM1/CD31, VWF/ von Willebrand Factor, and CDH5/VE-Cadherin. The iECs also exhibited tube formation and acetyl-LDL uptake comparable to primary endothelial cells (EC). RNA sequencing (RNA-Seq) revealed a robust correlation coefficient between iECs and EC (R = 0.76), whereas gene responses to smoke were qualitatively nearly identical between iECs and primary ECs (R = 0.86). Further analysis of transcriptional responses implicated 18 transcription factors in regulating responses to smoke treatment, and identified gene sets regulated by each transcription factor, including pathways for oxidative stress, DNA damage/repair, ER stress, apoptosis, and cell cycle arrest. Assays for 42 cytokines in HUVEC cells and iECs identified 23 cytokines that responded dynamically to cigarette smoke. These cytokines and cellular stress response pathways describe endothelial responses for lymphocyte attachment, activation of coagulation and complement, lymphocyte growth factors, and inflammation and fibrosis; EC-initiated events that collectively lead to atherosclerosis. Thus, these studies validate the iEC model and identify transcriptional response networks by which ECs respond to tobacco smoke. Our results systematically trace how ECs use these response networks to regulate genes and pathways, and finally cytokine signals to other cells, to initiate the diverse processes that lead to atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Guibin Chen
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David Kuo
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John Braisted
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yuhong Wang
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), 10 Center Drive, Bethesda, Maryland 20892, United States
| | - David L Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
27
|
Adam AHB, de Haan LHJ, Estruch IM, Hooiveld GJEJ, Louisse J, Rietjens IMCM. Estrogen receptor alpha (ERα)-mediated coregulator binding and gene expression discriminates the toxic ERα agonist diethylstilbestrol (DES) from the endogenous ERα agonist 17β-estradiol (E2). Cell Biol Toxicol 2020; 36:417-435. [PMID: 32088792 PMCID: PMC7505815 DOI: 10.1007/s10565-020-09516-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022]
Abstract
Diethylstilbestrol (DES) is a synthetic estrogen and proven human teratogen and carcinogen reported to act via the estrogen receptor α (ERα). Since the endogenous ERα ligand 17β-estradiol (E2) does not show these adverse effects to a similar extent, we hypothesized that DES' interaction with the ERα differs from that of E2. The current study aimed to investigate possible differences between DES and E2 using in vitro assays that detect ERα-mediated effects, including ERα-mediated reporter gene expression, ERα-mediated breast cancer cell (T47D) proliferation and ERα-coregulator interactions and gene expression in T47D cells. Results obtained indicate that DES and E2 activate ERα-mediated reporter gene transcription and T47D cell proliferation in a similar way. However, significant differences between DES- and E2-induced binding of the ERα to 15 coregulator motifs and in transcriptomic signatures obtained in the T47D cells were observed. It is concluded that differences observed in binding of the ERα with several co-repressor motifs, in downregulation of genes involved in histone deacetylation and DNA methylation and in upregulation of CYP26A1 and CYP26B1 contribute to the differential effects reported for DES and E2.
Collapse
Affiliation(s)
- Aziza Hussein Bakheit Adam
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands.
| | - Laura H J de Haan
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Ignacio Miro Estruch
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Guido J E J Hooiveld
- Division of Human Nutrition and Health, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Jochem Louisse
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, PO Box 8000, 6700 EA, Wageningen, The Netherlands
| |
Collapse
|
28
|
Qin Q, Fan J, Zheng R, Wan C, Mei S, Wu Q, Sun H, Brown M, Zhang J, Meyer CA, Liu XS. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol 2020; 21:32. [PMID: 32033573 PMCID: PMC7007693 DOI: 10.1186/s13059-020-1934-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
We developed Lisa (http://lisa.cistrome.org/) to predict the transcriptional regulators (TRs) of differentially expressed or co-expressed gene sets. Based on the input gene sets, Lisa first uses histone mark ChIP-seq and chromatin accessibility profiles to construct a chromatin model related to the regulation of these genes. Using TR ChIP-seq peaks or imputed TR binding sites, Lisa probes the chromatin models using in silico deletion to find the most relevant TRs. Applied to gene sets derived from targeted TF perturbation experiments, Lisa boosted the performance of imputed TR cistromes and outperformed alternative methods in identifying the perturbed TRs.
Collapse
Affiliation(s)
- Qian Qin
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
- Center of Molecular Medicine, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jingyu Fan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Rongbin Zheng
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Changxin Wan
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Shenglin Mei
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Qiu Wu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Hanfei Sun
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200433, China
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA
| | - Jing Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200065, China.
| | - Clifford A Meyer
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| | - X Shirley Liu
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, MA, 02215, USA.
| |
Collapse
|
29
|
Abnormally localized DLK1 interacts with NCOR1 in non-small cell lung cancer cell nuclear. Biosci Rep 2019; 39:220954. [PMID: 31661545 PMCID: PMC6911156 DOI: 10.1042/bsr20192362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023] Open
Abstract
Delta-like homolog 1 (DLK1) regulates noncanonical Notch signaling pathway as ligand. DLK1 was abnormally expressed in a variety of tumors, affecting tumorigenesis and developments. The biological function of DLK1 toward cell proliferation and signaling activation was controversial across different cell types. Two currently known isoforms of DLK1, which are membrane-tethered isoform and soluble isoform, are believed to be the key of DLK1 dual behaviors. While these isoforms are not enough to explain the phenomena, our observations offer the possibility of a third isoform of DLK1. In the present study, we verified the nuclear localization of DLK1 in lung cancer cells. The nuclear localized DLK1 was observed in 107 of 351 non-small cell lung cancer (NSCLC) samples and was associated with tissue differentiation and tumor size. Through co-immunoprecipitation (co-IP) combined mass spectrometry (MS), we identified nuclear receptor corepressor 1 (NCOR1) as DLK1's novel interaction protein and confirmed their interaction in nuclear. We analyzed the expression of NCOR1 in two independent cohorts and demonstrated that NCOR1 is a tumor suppressor and has prognosis potential in lung squamous carcinomas. At last, we analyzed the colocalization of DLK1 and NCOR1 in 147 NSCLC samples by immunohistochemistry (IHC). The result indicated NCOR1 might participate with nuclear localized DLK1 in regulating cell differentiation.
Collapse
|
30
|
Constantinou C, Spella M, Chondrou V, Patrinos GP, Papachatzopoulou A, Sgourou A. The multi-faceted functioning portrait of LRF/ZBTB7A. Hum Genomics 2019; 13:66. [PMID: 31823818 PMCID: PMC6905007 DOI: 10.1186/s40246-019-0252-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Transcription factors (TFs) consisting of zinc fingers combined with BTB (for broad-complex, tram-track, and bric-a-brac) domain (ZBTB) are a highly conserved protein family that comprises a multifunctional and heterogeneous group of TFs, mainly modulating cell developmental events and cell fate. LRF/ZBTB7A, in particular, is reported to be implicated in a wide variety of physiological and cancer-related cell events. These physiological processes include regulation of erythrocyte maturation, B/T cell differentiation, adipogenesis, and thymic insulin expression affecting consequently insulin self-tolerance. In cancer, LRF/ZBTB7A has been reported to act either as oncogenic or as oncosuppressive factor by affecting specific cell processes (proliferation, apoptosis, invasion, migration, metastasis, etc) in opposed ways, depending on cancer type and molecular interactions. The molecular mechanisms via which LRF/ZBTB7A is known to exert either physiological or cancer-related cellular effects include chromatin organization and remodeling, regulation of the Notch signaling axis, cellular response to DNA damage stimulus, epigenetic-dependent regulation of transcription, regulation of the expression and activity of NF-κB and p53, and regulation of aerobic glycolysis and oxidative phosphorylation (Warburg effect). It is a pleiotropic TF, and thus, alterations to its expression status become detrimental for cell survival. This review summarizes its implication in different cellular activities and the commonly invoked molecular mechanisms triggered by LRF/ZBTB7A’s orchestrated action.
Collapse
Affiliation(s)
- Caterina Constantinou
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.,Laboratory of Pharmacology, Department of Medicine, University of Patras, Patras, Greece
| | - Magda Spella
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.,Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Medical Faculty, University of Patras, Patras, Greece
| | - Vasiliki Chondrou
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - George P Patrinos
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece.,Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE
| | | | - Argyro Sgourou
- Biology laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece.
| |
Collapse
|
31
|
Han D, Chen S, Han W, Gao S, Owiredu JN, Li M, Balk SP, He HH, Cai C. ZBTB7A Mediates the Transcriptional Repression Activity of the Androgen Receptor in Prostate Cancer. Cancer Res 2019; 79:5260-5271. [PMID: 31444154 PMCID: PMC6801099 DOI: 10.1158/0008-5472.can-19-0815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/09/2019] [Accepted: 08/20/2019] [Indexed: 01/15/2023]
Abstract
Loss of expression of context-specific tumor suppressors is a critical event that facilitates the development of prostate cancer. Zinc finger and BTB domain containing transcriptional repressors, such as ZBTB7A and ZBTB16, have been recently identified as tumor suppressors that play important roles in preventing prostate cancer progression. In this study, we used combined ChIP-seq and RNA-seq analyses of prostate cancer cells to identify direct ZBTB7A-repressed genes, which are enriched for transcriptional targets of E2F, and identified that the androgen receptor (AR) played a critical role in the transcriptional suppression of these E2F targets. AR recruitment of the retinoblastoma protein (Rb) was required to strengthen the E2F-Rb transcriptional repression complex. In addition, ZBTB7A was rapidly recruited to the E2F-Rb binding sites by AR and negatively regulated the transcriptional activity of E2F1 on DNA replication genes. Finally, ZBTB7A suppressed the growth of castration-resistant prostate cancer (CRPC) in vitro and in vivo, and overexpression of ZBTB7A acted in synergy with high-dose testosterone treatment to effectively prevent the recurrence of CRPC. Overall, this study provides novel molecular insights of the role of ZBTB7A in CRPC cells and demonstrates globally its critical role in mediating the transcriptional repression activity of AR. SIGNIFICANCE: ZBTB7A is recruited to the E2F-Rb binding sites by AR and negatively regulates the transcriptional activity of E2F1 on DNA replication genes.
Collapse
Affiliation(s)
- Dong Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wanting Han
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Shuai Gao
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Jude N Owiredu
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Muqing Li
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Changmeng Cai
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts.
| |
Collapse
|
32
|
Zhang X, Zhang B, Zhang P, Lian L, Li L, Qiu Z, Qian K, Chen A, Liu Q, Jiang Y, Cui J, Qi B. Norcantharidin regulates ERα signaling and tamoxifen resistance via targeting miR-873/CDK3 in breast cancer cells. PLoS One 2019; 14:e0217181. [PMID: 31120927 PMCID: PMC6532885 DOI: 10.1371/journal.pone.0217181] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022] Open
Abstract
MiR-873/CDK3 has been shown to play a critical role in ERα signaling and tamoxifen resistance. Thus, targeting this pathway may be a potential therapeutic approach for the treatment of ER positive breast cancer especially tamoxifen resistant subtype. Here we report that Norcantharidin (NCTD), currently used clinically as an ani-cancer drug in China, regulates miR-873/CDK3 axis in breast cancer cells. NCTD decreases the transcriptional activity of ERα but not ERβ through the modulation of miR-873/CDK3 axis. We also found that NCTD inhibits cell proliferation and tumor growth and miR-873/CDK3 axis mediates cell proliferation suppression of NCTD. More important, we found that NCTD sensitizes resistant cells to tamoxifen. NCTD inhibits tamoxifen induced the transcriptional activity as well ERα downstream gene expressions in tamoxifen resistant breast cancer cells. In addition, we found that NCTD restores tamoxifen induced recruitments of ERα co-repressors N-CoR and SMRT. Knockdown of miR-873 and overexpression of CDK3 diminish the effect of NCTD on tamoxifen resistance. Our data shows that NCTD regulates ERα signaling and tamoxifen resistance by targeting miR-873/CDK3 axis in breast cancer cells. This study may provide an alternative therapy strategy for tamoxifen resistant breast cancer.
Collapse
Affiliation(s)
- Xiumei Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, P.R. China
| | - Bingfeng Zhang
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, P.R. China
| | - Panhong Zhang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, P.R. China
| | - Lihui Lian
- Department of Cell Biology, College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, P.R. China
| | - Lianlian Li
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Zhihong Qiu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Kai Qian
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - An Chen
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Qiongqing Liu
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
- College of Chemistry and Bio-engineering, Yichun University, Yichun, Jiangxi, P.R. China
| | - Yinjie Jiang
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
| | - Jiajun Cui
- The Center for Translational Medicine, Yichun University, Yichun, Jiangxi, P.R. China
- * E-mail: (JC); (BQ)
| | - Bing Qi
- Department of Cell Biology, College of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, P.R. China
- * E-mail: (JC); (BQ)
| |
Collapse
|
33
|
Chen L, Zhong J, Liu JH, Liao DF, Shen YY, Zhong XL, Xiao X, Ding WJ, Peng XD, Xiong W, Zu XY. Pokemon Inhibits Transforming Growth Factor β-Smad4-Related Cell Proliferation Arrest in Breast Cancer through Specificity Protein 1. J Breast Cancer 2019; 22:15-28. [PMID: 30941230 PMCID: PMC6438826 DOI: 10.4048/jbc.2019.22.e11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/17/2018] [Indexed: 02/08/2023] Open
Abstract
Purpose Pokemon, also known as ZBTB7A, belongs to the POZ and Krüppel (POK) family of transcription repressors and is implicated in tumor progression as a key proto-oncogene. This present study aimed at determining the mechanism by which Pokemon inhibits transforming growth factor β (TGFβ)-Smad4 pathway-dependent proliferation arrest of breast cancer cells via specificity protein 1 (SP1). Methods Over-expressing plasmid or small interfering RNA (siRNA) transfection was used to regulate Pokemon levels. The EdU incorporation assay, MTS assay, and clone formation were used to identify the inhibitory effect of Pokemon siRNA on cell proliferation. Quantitative real-time polymerase chain reaction assay confirmed that Pokemon deletion inhibited the expression of proliferation-associated genes. The dual-luciferase reporter assay, electrophoretic mobility shift assay, and co-immunoprecipitation assay were used to analyze binding between Pokemon, Smad4, and SP1. Results Pokemon deletion induced proliferation arrest of breast cancer cells and inhibited the expression of proliferation-associated genes, especially Smad4. Pokemon bound with SP1 to interdict Smad4 promoter activity. Information on clinical samples was obtained from The Cancer Genome Atlas data, in which the Pokemon mRNA levels showed a negative correlation with Smad4 levels in different subtypes of breast cancer in two independent datasets. Conclusion We demonstrated that Pokemon binds to SP1 to down-regulate Smad4 expression, thereby promoting proliferation of breast cancer cells. This suggests that Pokemon is a potential TGFβ-signaling participant in breast cancer progression.
Collapse
Affiliation(s)
- Ling Chen
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Jiang-Hua Liu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, China
| | - Ying-Ying Shen
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiao-Lin Zhong
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiao Xiao
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Wen-Jun Ding
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiu-Da Peng
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis of Ministry of Health and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Xu-Yu Zu
- Institute of Clinical Medicine, the First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
34
|
Ren H, Ren B, Zhang J, Zhang X, Li L, Meng L, Li Z, Li J, Gao Y, Ma X. Androgen enhances the activity of ETS-1 and promotes the proliferation of HCC cells. Oncotarget 2017; 8:109271-109288. [PMID: 29312607 PMCID: PMC5752520 DOI: 10.18632/oncotarget.22669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/12/2017] [Indexed: 01/15/2023] Open
Abstract
The expression of androgen receptor (AR) has been detected in hepatocellular cancer (HCC). However, there is no universal model detailing AR’s function and mechanism in HCC. This study’s results show that treatment with dihydrotestosterone (DHT), an endogenous androgen, promoted HCC cells’ proliferation and up-regulated the transcription factor activity of ETS-1 (E26 transformation specific sequence 1), which mediates the migration and invasion of cancer cells via protein-protein interaction between AR and ETS-1. Results from luciferase assays showed that ETS-1’s activity was significantly up-regulated following androgen treatment. AR mediated ETS-1’s DHT-induced transcription factor activity. A potential protein-protein interaction between ETS-1 and AR was identified via glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. The mechanisms’ data indicated that enhancing AR activity increases ETS-1’s activity by modulating its cytoplasmic/nuclear translocation and recruiting ETS-1 to its target genes’ promoter. Moreover, while overexpression of AR significantly increased the proliferation or in vitro migration or invasion of HepG2 cells in the presence of androgen, inhibiting AR’s activity reduced these abilities. Thus, AR’s function as a novel ETS-1 co-activator or potentially therapeutic target of HCC has been demonstrated.
Collapse
Affiliation(s)
- Hui Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Bo Ren
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jiabin Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xiaofeng Zhang
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lixin Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Lingzhan Meng
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Zhijie Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Jia Li
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Yinjie Gao
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| | - Xuemei Ma
- Liver Transplantation and Research Center, 302 Hospital, Beijing 100039, China
| |
Collapse
|
35
|
Yang Y, Li Y, Di F, Cui J, Wang Y, David Xu ZQ. Pokemon decreases the transcriptional activity of RARα in the absence of ligand. Biol Chem 2017; 398:331-340. [DOI: 10.1515/hsz-2016-0142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023]
Abstract
Abstract
Pokemon is a transcriptional repressor that belongs to the POZ and Krüppel (POK) protein family. In this study, we investigated the potential interaction between Pokemon and retinoic acid receptor alpha (RARα) and determined the role of Pokemon in regulation of RARα transcriptional activity in the absence of ligand. We found that Pokemon could directly interact with RARα. Moreover, we demonstrated that Pokemon could decrease the transcriptional activity of RARα in the absence of ligand. Furthermore, we showed that Pokemon could repress the transcriptional activity of RARα by increasing the recruitment of nuclear receptor co-repressor (NCoR) and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) to the retinoic acid response element (RARE) element. Taken together, these data suggest that Pokemon is a novel partner of RARα that acts as a co-repressor to regulate RARα transcriptional activity in the absence of ligand.
Collapse
|
36
|
Zhao J, Bai Z, Feng F, Song E, Du F, Zhao J, Shen G, Ji F, Li G, Ma X, Hang X, Xu B. Cross-talk between EPAS-1/HIF-2α and PXR signaling pathway regulates multi-drug resistance of stomach cancer cell. Int J Biochem Cell Biol 2016; 72:73-88. [DOI: 10.1016/j.biocel.2016.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/27/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
|
37
|
Wang T, Song W, Chen Y, Chen R, Liu Z, Wu L, Li M, Yang J, Wang L, Liu J, Ye Z, Wang C, Chen K. Flightless I Homolog Represses Prostate Cancer Progression through Targeting Androgen Receptor Signaling. Clin Cancer Res 2015; 22:1531-44. [PMID: 26527749 DOI: 10.1158/1078-0432.ccr-15-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/25/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Flightless I (FLII), member of the gelsolin superfamily of actin-remodeling proteins, functions as a transcriptional coregulator. We aim to evaluate a tumor-suppressive function of FLII in regulating androgen receptor (AR) in prostate cancer progression. EXPERIMENTAL DESIGN We examined FLII protein and mRNA expression in clinical prostate cancer specimens by immunohistochemistry. Kaplan-Meier analysis was conducted to evaluate the difference in disease-overall survival associated with the expression levels of FLII and AR. Prostate cancer cells stably expressing FLII or shRNA knockdown were used for functional analyses. Immunoprecipitation, Luciferase reporter, and immunofluorescence staining assays were performed to examine the functional interaction between FLII and AR. RESULTS Our analysis of the expression levels of FLII in a clinical gene expression array dataset showed that the expression of FLII was positively correlated with the overall survival of prostate cancer patients exhibiting high levels of AR expression. Examination of protein and mRNA levels of FLII showed a significant decrease of FLII expression in human prostate cancers. AR and FLII formed a complex in a ligand-dependent manner through the ligand-binding domain (LBD) of AR. Subsequently, we observed a competitive binding to AR between FLII and the ligand. FLII inhibited AR transactivation and decreased AR nuclear localization. Furthermore, FLII contributed to castration-sensitive and castration-resistant prostate cancer cell growth through AR-dependent signaling, and reintroduction of FLII in prostate cancer cells sensitized the cells to bicalutamide and enzalutamide treatment. CONCLUSIONS FLII plays a tumor-suppressive role and serves as a crucial determinant of resistance of prostate cancer to endocrine therapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wen Song
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuan Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruibao Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Licheng Wu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingchao Li
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Yang
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Wang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhangqun Ye
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Ke Chen
- Department of Urology, Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China. Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Cao P, Feng F, Dong G, Yu C, Feng S, Song E, Shi G, Liang Y, Liang G. Estrogen receptor α enhances the transcriptional activity of ETS-1 and promotes the proliferation, migration and invasion of neuroblastoma cell in a ligand dependent manner. BMC Cancer 2015; 15:491. [PMID: 26122040 PMCID: PMC4486695 DOI: 10.1186/s12885-015-1495-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND It is well known that estrogen receptor α (ERα) participates in the pathogenic progress of breast cancer, hepatocellular carcinoma and head and neck squamous cell carcinoma. In neuroblastoma cells and related cancer clinical specimens, moreover, the ectopic expression of ERα has been identified. However, the detailed function of ERα in the proliferation of neuroblastoma cell is yet unclear. METHODS The transcriptional activity of ETS-1 (E26 transformation specific sequence 1) was measured by luciferase analysis. Western blot assays and Real-time RT-PCR were used to examine the expression of ERα, ETS-1 and its targeted genes. The protein-protein interaction between ERα and ETS-1 was determined by co-IP and GST-Pull down assays. The accumulation of ETS-1 in nuclear was detected by western blot assays, and the recruitment of ETS-1 to its targeted gene's promoter was tested by ChIP assays. Moreover, SH-SY5Y cells' proliferation, anchor-independent growth, migration and invasion were quantified using the MTT, soft agar or Trans-well assay, respectively. RESULTS The transcriptional activity of ETS-1 was significantly increased following estrogen treatment, and this effect was related to ligand-mediated activation of ERα. The interaction between the ERα and ETS-1 was identified, and enhancement of ERα activation would up-regulate the ETS-1 transcription factor activity via modulating its cytoplasm/nucleus translocation and the recruitment of ETS-1 to its target gene's promoter. Furthermore, treatment of estrogen increased proliferation, migration and invasion of neuroblastoma cells, whereas the antagonist of ERα reduced those effects. CONCLUSIONS In this study, we provided evidences that activation of ERα promoted neuroblastoma cells proliferation and up-regulated the transcriptional activity of ETS-1. By investigating the role of ERα in the ETS-1 activity regulation, we demonstrated that ERα may be a novel ETS-1 co-activator and thus a potential therapeutic target in human neuroblastoma treatment.
Collapse
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| | - Guofu Dong
- Institute of Radiation Medicine, Military Medical Science Academy of the Chinese PLA, 27 Taiping Road, Beijing City, 100850, PR China.
| | - Chunyong Yu
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| | - Sizhe Feng
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| | - Erlin Song
- Department of Urology, General Hospital of the Chinese PLA, 28 Fuxing Road, Beijing City, 100853, PR China. .,Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, PR China.
| | - Guobing Shi
- Department of Pharmacy, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| | - Yong Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| | - Guobiao Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang Northern Hospital, 83 Wenhua Road, Shenhe District, Shenyang City, Liaoning Province, 110016, PR China.
| |
Collapse
|
39
|
Yang Y, Cui J, Xue F, Overstreet AM, Zhan Y, Shan D, Li H, Li H, Wang Y, Zhang M, Yu C, Xu ZQD. Resveratrol Represses Pokemon Expression in Human Glioma Cells. Mol Neurobiol 2015; 53:1266-1278. [PMID: 25875864 DOI: 10.1007/s12035-014-9081-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/29/2014] [Indexed: 01/10/2023]
Abstract
POK erythroid myeloid ontogenic factor (Pokemon), an important proto-oncoprotein, is a transcriptional repressor that regulates the expression of many genes and plays an important role in tumorigenesis. Resveratrol (RSV), a natural polyphenolic compound, has many beneficial biological effects on health. In this study, we investigated the role of Pokemon in RSV-induced biological effects and the effect of RSV on the expression of Pokemon in glioma cells. We found that overexpression of Pokemon decreased RSV-induced cell apoptosis, senescence, and anti-proliferative effects. Moreover, we showed that RSV could efficiently decrease the activity of the Pokemon promoter and the expression of Pokemon. Meanwhile, RSV also inhibited Sp1 DNA binding activity to the Pokemon promoter; whereas, it did not influence the expression and nuclear translocation of Sp1. In addition, we found that RSV could increase the recruitment of HDAC1, but decreased p300 to the Pokemon promoter. Taken together, all these results extended our understanding on the anti-cancer mechanism of RSV in glioma cells.
Collapse
Affiliation(s)
- Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Jiajun Cui
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Anne-Marie Overstreet
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yiping Zhan
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.,Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dapeng Shan
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Hui Li
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, 40536, USA
| | - Hui Li
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | | | - Mengmeng Zhang
- Jiaxing Entry-Exit Inspection and Quarantine, Jiaxing, 314001, China
| | - Chunjiang Yu
- Department of Neurosurgery, Beijing Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (MOST), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
40
|
Cui J, Yang Y, Li H, Leng Y, Qian K, Huang Q, Zhang C, Lu Z, Chen J, Sun T, Wu R, Sun Y, Song H, Wei X, Jing P, Yang X, Zhang C. MiR-873 regulates ERα transcriptional activity and tamoxifen resistance via targeting CDK3 in breast cancer cells. Oncogene 2014; 34:3895-907. [PMID: 25531331 DOI: 10.1038/onc.2014.430] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 12/21/2022]
Abstract
miRNAs (microRNAs) are frequently and aberrantly expressed in many cancers. MiR-873 has been revealed to be downregulated in colorectal cancer and glioblastoma. However, its function remains unclear. Here we report that miR-873 is downregulated in breast tumor compared with normal tissue. Enforced expression of miR-873 decreases the transcriptional activity of ER (estrogen receptor)-α but not ERβ through the modulation of ERα phosphorylation in ER-positive breast cancer cells. We also found that miR-873 inhibits breast cancer cell proliferation and tumor growth in nude mice. Reporter gene assays revealed cyclin-dependent kinase 3 (CDK3) as a direct target of miR-873. CDK3 was shown to be overexpressed in breast cancer and phosphorylate ERα at Ser104/116 and Ser118. Furthermore, we found that Mir-873 inhibits ER activity and cell growth via targeting CDK3. Interestingly, miR-873 was observed to be downregulated in tamoxifen-resistant MCF-7/TamR cells, while CDK3 is overexpressed in these cells. More importantly, re-expression of miR-873 reversed tamoxifen resistance in MCF-7/TamR cells. Our data demonstrate that miR-873 is a novel tumor suppressor in ER-positive breast cancer and a potential therapeutic approach for treatment of tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
- J Cui
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - Y Yang
- Beijing Institute for Neuroscience, Capital Medical University, Beijing, China
| | - H Li
- Department of Molecular & Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Y Leng
- The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - K Qian
- The Affiliated Hospital of Jiujiang University, Jiujiang, China
| | - Q Huang
- Department of Animal Sciences and Technology, Jilin Agriculture University, Changchun, China
| | - C Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Z Lu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - J Chen
- Urology Department, the First Hospital of Nanchang University, Nanchang, China
| | - T Sun
- Urology Department, the First Hospital of Nanchang University, Nanchang, China
| | - R Wu
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - Y Sun
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - H Song
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| | - X Wei
- Department of Applied Chemistry, College of Chemistry & Molecular Engineering, Peking University, Beijing, China
| | - P Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne Fort Wayne, IN, USA
| | - X Yang
- Institute of Health Sciences, Anhui University, Hefei, China
| | - C Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|
41
|
Yang Y, Cui J, Xue F, Zhang C, Mei Z, Wang Y, Bi M, Shan D, Meredith A, Li H, Xu ZQD. Pokemon (FBI-1) interacts with Smad4 to repress TGF-β-induced transcriptional responses. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:270-81. [PMID: 25514493 DOI: 10.1016/j.bbagrm.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/20/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022]
Abstract
Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-β pathway, plays an essential role in TGF-β-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-β-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-β1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-β pathway.
Collapse
Affiliation(s)
- Yutao Yang
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China.
| | - Jiajun Cui
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA; Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, 100071, China
| | - Feng Xue
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chuanfu Zhang
- Institute of Disease Control and Prevention, Chinese Academy of Military Medical Sciences, Beijing, 100071, China
| | - Zhu Mei
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China
| | - Yue Wang
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Mingjun Bi
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA
| | - Dapeng Shan
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, 361005, China
| | - Alex Meredith
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, 45267, USA
| | - Hui Li
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington KY, 40536, USA
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Major Brain Disorders, Capital Medical University, Beijing,100069, China.
| |
Collapse
|
42
|
Cui L, Li M, Feng F, Yang Y, Hang X, Cui J, Gao J. MEIS1 functions as a potential AR negative regulator. Exp Cell Res 2014; 328:58-68. [DOI: 10.1016/j.yexcr.2014.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/15/2014] [Accepted: 08/17/2014] [Indexed: 02/07/2023]
|
43
|
Wang X, Cao P, Li Z, Wu D, Wang X, Liang G. EPAS-1 mediates SP-1-dependent FBI-1 expression and regulates tumor cell survival and proliferation. Int J Mol Sci 2014; 15:15689-99. [PMID: 25192290 PMCID: PMC4200855 DOI: 10.3390/ijms150915689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/27/2014] [Accepted: 08/28/2014] [Indexed: 01/01/2023] Open
Abstract
Factor binding IST-1 (FBI-1) plays an important role in oncogenic transformation and tumorigenesis. As FBI-1 is over-expressed in multiple human cancers, the regulation of itself would provide new effective options for cancer intervention. In this work, we aimed to study the role that EPAS-1 plays in regulating FBI-1. We use the fact that specificity protein-1 (SP-1) is one of the crucial transcription factors of FBI-1, and that SP-1 can interact with the endothelial pas domain protein-1 (EPAS-1) for the induction of hypoxia related genes. The study showed that EPAS-1 plays an indispensible role in SP-1 transcription factor-mediated FBI-1 induction, and participated in tumor cell survival and proliferation. Thus, EPAS-1 could be a novel target for cancer therapeutics.
Collapse
Affiliation(s)
- Xiaogang Wang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang 110016, China.
| | - Peng Cao
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang 110016, China.
| | - Zhiqing Li
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang 110016, China.
| | - Dongyang Wu
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang 110016, China.
| | - Xi Wang
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China.
| | - Guobiao Liang
- Department of Neurosurgery, Institute of Neurology, General Hospital of Shenyang Military Area Command, Shenyang 110016, China.
| |
Collapse
|
44
|
Zhu M, Li M, Zhang F, Feng F, Chen W, Yang Y, Cui J, Zhang D, Linghu E. FBI-1 enhances ETS-1 signaling activity and promotes proliferation of human colorectal carcinoma cells. PLoS One 2014; 9:e98041. [PMID: 24857950 PMCID: PMC4032333 DOI: 10.1371/journal.pone.0098041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/28/2014] [Indexed: 01/29/2023] Open
Abstract
In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma.
Collapse
Affiliation(s)
- Min Zhu
- Department of oncology, Nan Lou Division, Chinese PLA General Hospital, Beijing, P. R. China
| | - Mingyang Li
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, P. R. China
| | - Fan Zhang
- Tumor Center, Chinese PLA General Hospital, Beijing, P. R. China
| | - Fan Feng
- Department of Pharmacy, General Hospital of Shenyang Military Command, Shenyang, P. R. China
| | - Weihao Chen
- Department of Urology, Chinese PLA General Hospital, Beijing, P. R. China
| | - Yutao Yang
- Beijing Institute for Neuroscience, Capital Medical University, Beijing, P. R. China
| | - Jiajun Cui
- Department of Cancer and cell Biology, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Dong Zhang
- Department of oncology, Nan Lou Division, Chinese PLA General Hospital, Beijing, P. R. China
| | - Enqiang Linghu
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing, P. R. China
| |
Collapse
|
45
|
Kim Y, Kim J, Jang SW, Ko J. The role of sLZIP in cyclin D3-mediated negative regulation of androgen receptor transactivation and its involvement in prostate cancer. Oncogene 2014; 34:226-36. [DOI: 10.1038/onc.2013.538] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 11/05/2013] [Accepted: 11/15/2013] [Indexed: 01/10/2023]
|
46
|
Yang Q, Feng F, Zhang F, Wang C, Lu Y, Gao X, Zhu Y, Yang Y. LINE-1 ORF-1p functions as a novel HGF/ETS-1 signaling pathway co-activator and promotes the growth of MDA-MB-231 cell. Cell Signal 2013; 25:2652-60. [PMID: 24012497 DOI: 10.1016/j.cellsig.2013.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/25/2013] [Accepted: 08/27/2013] [Indexed: 02/07/2023]
Abstract
Long interspersed nucleotide element (LINE)-1 ORF-1p is encoded by the human pro-oncogene LINE-1. It is involved in the development and progression of several human carcinomas, such as hepatocellular carcinoma and lung and breast cancers. The hepatocyte growth factor (HGF)/ETS-1 signaling pathway is involved in regulation of cancer cell proliferation, metastasis and invasion. The biological function of the interaction between LINE-1 ORF-1p and the HGF/ETS-1 signaling pathway in regulation of human breast cancer proliferation remains largely unknown. Here, we showed that LINE-1 ORF-1p enhanced ETS-1 transcriptional activity and increased expression of downstream genes of ETS-1. Interaction between ETS-1 and LINE-1 ORF-1p was identified by immunoprecipitation assays. LINE-1 ORF-1p modulated ETS-1 activity through cytoplasm/nucleus translocation and recruitment to the ETS-1 binding element in the MMP1 gene promoter. We also showed that LINE-1 ORF-1p promoted proliferation and anchorage-independent growth of MDA-MB-231 breast cancer cells. By investigating a novel role of the LINE-1 ORF-1p in the HGF/ETS-1 signaling pathway and MDA-MB-231 cells, we demonstrated that LINE-1 ORF-1p may be a novel ETS-1 coactivator and molecular target for therapy of human triple negative breast cancer.
Collapse
Affiliation(s)
- Qian Yang
- College of Clinical Medicine, Second Military Medical University, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the human genome, 43 different genes are found that encode proteins belonging to the family of the POK (poxvirus and zinc finger and Krüppel)/ZBTB (zinc finger and broad complex, tramtrack, and bric à brac) factors. Generally considered transcriptional repressors, several of these genes play fundamental roles in cell lineage fate decision in various tissues, programming specific tasks throughout the life of the organism. Here, we focus on functions of leukemia/lymphoma-related factor/POK erythroid myeloid ontogenic factor, which is probably one of the most exciting and yet enigmatic members of the POK/ZBTB family.
Collapse
|
48
|
Lu Y, Feng F, Yang Y, Gao X, Cui J, Zhang C, Zhang F, Xu Z, Qv J, Wang C, Zeng Z, Zhu Y, Yang Y. LINE-1 ORF-1p functions as a novel androgen receptor co-activator and promotes the growth of human prostatic carcinoma cells. Cell Signal 2013; 25:479-89. [DOI: 10.1016/j.cellsig.2012.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 11/27/2022]
|
49
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
50
|
Jeon BN, Kim MK, Choi WI, Koh DI, Hong SY, Kim KS, Kim M, Yun CO, Yoon J, Choi KY, Lee KR, Nephew KP, Hur MW. KR-POK interacts with p53 and represses its ability to activate transcription of p21WAF1/CDKN1A. Cancer Res 2012; 72:1137-48. [PMID: 22253232 DOI: 10.1158/0008-5472.can-11-2433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcriptional regulation by p53 is thought to play a role in its ability to suppress tumorigenesis. However, there remain gaps in understanding about how p53 regulates transcription and how disrupting this function may promote cancer. Here we report a role in these processes for the kidney cancer-related gene KR-POK (ZBTB7C), a POZ domain and Krüppel-like zinc finger transcription factor that we found to physically interact with p53. Murine embryonic fibroblasts isolated from genetically deficient mice (Kr-pok(-/-) MEFs) exhibited a proliferative defect relative to wild-type mouse embryonic fibroblasts (MEF). The zinc finger domain of Kr-pok interacted directly with the DNA binding and oligomerization domains of p53. This interaction was essential for Kr-pok to bind the distal promoter region of the CDKN1A gene, an important p53 target gene encoding the cell-cycle regulator p21WAF1, and to inhibit p53-mediated transcriptional activation of CDKN1A. Kr-pok also interacted with the transcriptional corepressors NCoR and BCoR, acting to repress histone H3 and H4 deacetylation at the proximal promoter region of the CDKN1A gene. Importantly, Kr-pok(-/-) MEFs displayed an enhancement in CDKN1A transactivation by p53 during the DNA damage response, without any parallel changes in transcription of either the p53 or Kr-pok genes themselves. Furthermore, Kr-pok promoted cell proliferation in vitro and in vivo, and its expression was increased in more than 50% of the malignant human kidney cancer cases analyzed. Together, our findings define KR-POK as a transcriptional repressor with a pro-oncogenic role that relies upon binding to p53 and inhibition of its transactivation function.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- Department of Biochemistry and Molecular Biology, Brain Korea 21 Project for Medical Science, Severance Institute of Biomedical Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|