1
|
The Role of Thermosensitive Ion Channels in Mammalian Thermoregulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:355-370. [DOI: 10.1007/978-981-16-4254-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Kaewpitak A, Bauer CS, Seward EP, Boissonade FM, Douglas CWI. Porphyromonas gingivalis
lipopolysaccharide rapidly activates trigeminal sensory neurons and may contribute to pulpal pain. Int Endod J 2020; 53:846-858. [DOI: 10.1111/iej.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/12/2020] [Indexed: 01/19/2023]
Affiliation(s)
- A. Kaewpitak
- School of Clinical Dentistry University of Sheffield Sheffield UK
| | - C. S. Bauer
- Department of Biomedical Science University of Sheffield Sheffield UK
| | - E. P. Seward
- Department of Biomedical Science University of Sheffield Sheffield UK
| | - F. M. Boissonade
- School of Clinical Dentistry University of Sheffield Sheffield UK
| | - C. W. I. Douglas
- School of Clinical Dentistry University of Sheffield Sheffield UK
| |
Collapse
|
3
|
Zhang S, Zhao J, Meng Q. AAV-mediated siRNA against TRPV1 reduces nociception in a rat model of bone cancer pain. Neurol Res 2019; 41:972-979. [PMID: 31296147 DOI: 10.1080/01616412.2019.1639317] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangli Zhang
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Jun Zhao
- Department of Neurosurgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang Province, China
| | - Qinggang Meng
- Department of Orthpedics, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Tóth DM, Ocskó T, Balog A, Markovics A, Mikecz K, Kovács L, Jolly M, Bukiej AA, Ruthberg AD, Vida A, Block JA, Glant TT, Rauch TA. Amelioration of Autoimmune Arthritis in Mice Treated With the DNA Methyltransferase Inhibitor 5'-Azacytidine. Arthritis Rheumatol 2019; 71:1265-1275. [PMID: 30835944 DOI: 10.1002/art.40877] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Disease-associated, differentially hypermethylated regions have been reported in rheumatoid arthritis (RA), but no DNA methyltransferase inhibitors have been evaluated in either RA or any animal models of RA. The present study was conducted to evaluate the therapeutic potential of 5'-azacytidine (5'-azaC), a DNA methyltransferase inhibitor, and explore the cellular and gene regulatory networks involved in the context of autoimmune arthritis. METHODS A disease-associated genome-wide DNA methylation profile was explored by methylated CpG island recovery assay-chromatin immunoprecipitation (ChIP) in arthritic B cells. Mice with proteoglycan-induced arthritis (PGIA) were treated with 5'-azaC. The effect of 5'-azaC on the pathogenesis of PGIA was explored by measuring serum IgM and IgG1 antibody levels using enzyme-linked immunosorbent assay, investigating the efficiency of class-switch recombination (CSR) and Aicda gene expression using real-time quantitative polymerase chain reaction, monitoring germinal center (GC) formation by immunohistochemistry, and determining alterations in B cell subpopulations by flow cytometry. The 5'-azaC-induced regulation of the Aicda gene was explored using RNA interference, ChIP, and luciferase assays. RESULTS We explored arthritis-associated hypermethylated regions in mouse B cells and demonstrated that DNA demethylation had a beneficial effect on autoimmune arthritis. The 5'-azaC-mediated demethylation of the epigenetically inactivated Ahr gene resulted in suppressed expression of the Aicda gene, reduced CSR, and compromised GC formation. Ultimately, this process led to diminished IgG1 antibody production and amelioration of autoimmune arthritis in mice. CONCLUSION DNA hypermethylation plays a leading role in the pathogenesis of autoimmune arthritis and its targeted inhibition has therapeutic potential in arthritis management.
Collapse
Affiliation(s)
| | - Timea Ocskó
- Rush University Medical Center, Chicago, Illinois
| | - Attila Balog
- Albert Szent-Györgyi Clinical Center, Szeged, Hungary
| | | | | | - László Kovács
- Albert Szent-Györgyi Clinical Center, Szeged, Hungary
| | | | | | | | - András Vida
- Rush University Medical Center, Chicago, Illinois
| | - Joel A Block
- Rush University Medical Center, Chicago, Illinois
| | | | - Tibor A Rauch
- Rush University Medical Center, Chicago, Illinois, and University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
O'Leary VB, O'Connell M, Antyborzec I, Ntziachristos V, Oliver Dolly J, Ovsepian SV. Alleviation of Trigeminal Nociception Using p75 Neurotrophin Receptor Targeted Lentiviral Interference Therapy. Neurotherapeutics 2018; 15:489-499. [PMID: 29427180 PMCID: PMC5935639 DOI: 10.1007/s13311-018-0608-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute and chronic trigeminal (TG) neuropathies are the cause of considerable distress, with limited treatments available at present. Nociceptive neurons enriched with the vanilloid type 1 receptor (VR1) partake in pain sensation and sensitization in the TG system. While VR1 blockers with anti-nociceptive potential are of substantial medical interest, their use remains limited due to poor selectivity and lack of cell-targeting capabilities. This study describes a methodology for the alleviation of nociception via targeted depletion of VR1 in TG sensory neurons in rats. In cultured TG ganglion neurons, VR1 expression was virtually abolished by lentiviral short hairpin RNA (LV-VR1). By decorating GFP encoding LV (LV-GFP) and LV-VR1 with IgG192 for targeting TG sensory neurons enriched with the p75 neurotrophin receptor (p75NTR), transduction of a reporter GFP and VR1 depletion was achieved after injection of targeted vectors into the whisker pad. In IgG192/LV-VR1-injected rats, the behavioral response to capsaicin exposure as well as Erk 1/2 phosphorylation and VR1 current activation by capsaicin were significantly reduced. This pioneering investigation, thus, provides a proof of principle for a means of attenuating TG nociception, revealing therapeutic potential.
Collapse
Affiliation(s)
- Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Marie O'Connell
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany.
| |
Collapse
|
6
|
Nishizawa Y, Takahashi K, Oguma N, Tominaga M, Ohta T. Possible involvement of transient receptor potential ankyrin 1 in Ca2+
signaling via T-type Ca2+
channel in mouse sensory neurons. J Neurosci Res 2017; 96:901-910. [DOI: 10.1002/jnr.24208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/06/2017] [Accepted: 11/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Yuki Nishizawa
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Naoko Oguma
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| | - Makoto Tominaga
- Division of Cell Signaling; Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences; Okazaki Japan
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture; Tottori University; Tottori Japan
| |
Collapse
|
7
|
Yadav R, Jaryal AK, Mallick HN. Participation of preoptic area TRPV4 ion channel in regulation of body temperature. J Therm Biol 2017; 66:81-86. [DOI: 10.1016/j.jtherbio.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
|
8
|
Fernandes ES, Cerqueira ARA, Soares AG, Costa SKP. Capsaicin and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:91-125. [PMID: 27771922 DOI: 10.1007/978-3-319-41342-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A significant number of experimental and clinical studies published in peer-reviewed journals have demonstrated promising pharmacological properties of capsaicin in relieving signs and symptoms of non-communicable diseases (chronic diseases). This chapter provides an overview made from basic and clinical research studies of the potential therapeutic effects of capsaicin, loaded in different application forms, such as solution and cream, on chronic diseases (e.g. arthritis, chronic pain, functional gastrointestinal disorders and cancer). In addition to the anti-inflammatory and analgesic properties of capsaicin largely recognized via, mainly, interaction with the TRPV1, the effects of capsaicin on different cell signalling pathways will be further discussed here. The analgesic, anti-inflammatory or apoptotic effects of capsaicin show promising results in arthritis, neuropathic pain, gastrointestinal disorders or cancer, since evidence demonstrates that the oral or local application of capsaicin reduce inflammation and pain in rheumatoid arthritis, promotes gastric protection against ulcer and induces apoptosis of the tumour cells. Sadly, these results have been paralleled by conflicting studies, which indicate that high concentrations of capsaicin are likely to evoke deleterious effects, thus suggesting that capsaicin activates different pathways at different concentrations in both human and rodent tissues. Thus, to establish effective capsaicin doses for chronic conditions, which can be benefited from capsaicin therapeutic effects, is a real challenge that must be pursued.
Collapse
Affiliation(s)
- E S Fernandes
- Programa de Pós-Graduação, Universidade Ceuma, São Luís-MA, Brazil.,Vascular Biology Section, Cardiovascular Division, King's College London, London, UK
| | - A R A Cerqueira
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - A G Soares
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of São Paulo (USP), Av. Prof. Lineu Prestes, 1524 - Room 326, Butantan, São Paulo, 05508-900, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Huang WX, Yu F, Sanchez RM, Liu YQ, Min JW, Hu JJ, Bsoul NB, Han S, Yin J, Liu WH, He XH, Peng BW. TRPV1 promotes repetitive febrile seizures by pro-inflammatory cytokines in immature brain. Brain Behav Immun 2015; 48:68-77. [PMID: 25801060 DOI: 10.1016/j.bbi.2015.01.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 10/23/2022] Open
Abstract
Febrile seizure (FS) is the most common seizure disorder in children, and children with FS are regarded as a high risk for the eventual development of epilepsy. Brain inflammation may be implicated in the mechanism of FS. Transient receptor potential vanilloid 1 (TRPV1) is believed to act as a monitor and regulator of body temperature. The role of inflammation in synaptic plasticity mediation indicates that TRPV1 is relevant to several nervous system diseases, such as epilepsy. Here, we report a critical role for TRPV1 in a febrile seizure mouse model and reveal increased levels of pro-inflammatory factors in the immature brain. Animals were subjected to hyperthermia for 30 min, which generates seizures lasting approximately 20 min, and then were used for experiments. To invoke frequently repetitive febrile seizures, mice are exposed to hyperthermia for three times daily at an interval of 4h between every time induced seizure, and a total of 4 days to induce. Behavioral testing for febrile seizures revealed that a TRPV1 knock-out mouse model demonstrated a prolonged onset latency and a shortened duration and seizure grade of febrile seizure when compared with wild type (WT) mice. The expression levels of both TRPV1 mRNA and protein increased after a hyperthermia-induced febrile seizure in WT mice. Notably, TRPV1 activation resulted in a significant elevation in the expression of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and HMGB1) in the hippocampus and cortex. These data indicate that the reduction of TRPV1 expression parallels a decreased susceptibility to febrile seizures. Thus, preventative strategies might be developed for use during febrile seizures.
Collapse
Affiliation(s)
- Wen-Xian Huang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Fang Yu
- Department of Pathology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Russell M Sanchez
- Dept of Surgery, College of Medicine, Texas A&M Health Science Center, Neuroscience Institute, Scott & White Hospital, & Central Texas Veterans Health Care System, Temple, TX, United States
| | - Yu-Qiang Liu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jia-Wei Min
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiang-Jian Hu
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Najeeb Bassam Bsoul
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Song Han
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jun Yin
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiao-Hua He
- Department of Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disorder, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 319] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
11
|
Szolcsányi J. Effect of capsaicin on thermoregulation: an update with new aspects. Temperature (Austin) 2015; 2:277-96. [PMID: 27227029 PMCID: PMC4843897 DOI: 10.1080/23328940.2015.1048928] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 01/07/2023] Open
Abstract
Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these neurons have also integrator function. Fever is enhanced in capsaicin-desensitized rats and the inhibition observed after pretreatment with low i.p. doses does not support in the light of their warmth sensitivity the concept that abdominal TRPV1-expressing nerve terminals serve as nonthermal chemosensors for reference signals in thermoregulation.
Collapse
Key Words
- (s)EPSC(s), (spontaneous) excitatory postsynaptic current(s)
- DRG, dorsal root ganglion (ganglia)
- EGFP, enhanced green fluorescent protein
- LC, locus coeruleus
- LPS, lipopolysaccharide
- NTS, nucleus of the solitary tract
- PG(s), prostaglandin(s)
- POA, the preoptic area (of the hypothalamus)
- RTX, resiniferatoxin
- TRP, transient receptor potential
- TRPM8
- TRPV1
- Ta(s), ambient temperature(s)
- Tr, rectal temperature
- Ts, skin temperature
- Tt, tail temperature
- capsaicin
- fever
- preoptic area
- thermoregulation
- visceral thermoreceptors
- warm receptors
Collapse
Affiliation(s)
- János Szolcsányi
- Department of Pharmacology and Pharmacotherapy; University Medical School of Pécs; Pécs, Hungary; Szentágothai Research Centre University of Pécs; Pécs, Hungary
| |
Collapse
|
12
|
Hatakeyama Y, Takahashi K, Tominaga M, Kimura H, Ohta T. Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 2015; 11:24. [PMID: 25934637 PMCID: PMC4428232 DOI: 10.1186/s12990-015-0023-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/23/2015] [Indexed: 11/18/2022] Open
Abstract
Background Hydrogen sulfide (H2S) is oxidized to polysulfide. Recent reports show that this sulfur compound modulates various biological functions. We have reported that H2S is involved in inflammatory pain in mice. On the other hand, little is known about the functional role of polysulfide in sensory neurons. Here we show that polysulfide selectively stimulates nociceptive TRPA1 and evokes acute pain, using TRPA1-gene deficient mice (TRPA1(−/−)), a heterologous expression system and a TRPA1-expressing cell line. Results In wild-type mouse sensory neurons, polysulfide elevated the intracellular Ca concentration ([Ca2+]i) in a dose-dependent manner. The half maximal effective concentration (EC50) of polysulfide was less than one-tenth that of H2S. The [Ca2+]i responses to polysulfide were observed in neurons responsive to TRPA1 agonist and were inhibited by blockers of TRPA1 but not of TRPV1. Polysulfide failed to evoke [Ca2+]i increases in neurons from TRPA1(−/−) mice. In RIN-14B cells, constitutively expressing rat TRPA1, polysulfide evoked [Ca2+]i increases with the same EC50 value as in sensory neurons. Heterologously expressed mouse TRPA1 was activated by polysulfide and that was suppressed by dithiothreitol. Analyses of the TRPA1 mutant channel revealed that cysteine residues located in the internal domain were related to the sensitivity to polysulfide. Intraplantar injection of polysulfide into the mouse hind paw induced acute pain and edema which were significantly less than in TRPA1(−/−) mice. Conclusions The present data suggest that polysulfide functions as pronociceptive substance through the activation of TRPA1 in sensory neurons. Since the potency of polysulfide is higher than parental H2S and this sulfur compound is generated under pathophysiological conditions, it is suggested that polysulfide acts as endogenous ligand for TRPA1. Therefore, TRPA1 may be a promising therapeutic target for endogenous sulfur compound-related algesic action.
Collapse
Affiliation(s)
- Yukari Hatakeyama
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| | - Kenji Takahashi
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| | - Makoto Tominaga
- Division of Cell Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural Sciences, Okazaki, 444-8787, Japan.
| | - Hideo Kimura
- Natinal Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, 187-8551, Japan.
| | - Toshio Ohta
- Department of Veterinary Pharmacology, Faculty of Agriculture, Tottori University, Tottori, 680-8553, Japan.
| |
Collapse
|
13
|
Rossi S, Motta C, Studer V, Macchiarulo G, Volpe E, Barbieri F, Ruocco G, Buttari F, Finardi A, Mancino R, Weiss S, Battistini L, Martino G, Furlan R, Drulovic J, Centonze D. Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol Neurodegener 2014; 9:56. [PMID: 25495224 PMCID: PMC4292815 DOI: 10.1186/1750-1326-9-56] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022] Open
Abstract
Background Understanding how inflammation causes neuronal damage is of paramount importance in multiple sclerosis (MS) and in other neurodegenerative diseases. Here we addressed the role of the apoptotic cascade in the synaptic abnormalities and neuronal loss caused by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor (TNF-α) in brain tissues, and disease progression caused by inflammation in relapsing-remitting MS (RRMS) patients. Results The effect of IL-1β, but not of TNF-α, on glutamate-mediated excitatory postsynaptic currents was blocked by pifithrin-α (PFT), inhibitor of p53. The protein kinase C (PKC)/transient receptor potential vanilloid 1 (TRPV1) pathway was involved in IL-1β-p53 interaction at glutamatergic synapses, as pharmacological modulation of this inflammation-relevant molecular pathway affected PFT effects on the synaptic action of IL-1β. IL-1β-induced neuronal swelling was also blocked by PFT, and IL-1β increased the expression of p21, a canonical downstream target of activated p53. Consistent with these in vitro results, the Pro/Pro genotype of p53, associated with low efficiency of transcription of p53-regulated genes, abrogated the association between IL-1β cerebrospinal fluid (CSF) levels and disability progression in RRMS patients. The interaction between p53 and CSF IL-1β was also evaluated at the optical coherence tomography (OCT), showing that IL-1β-driven neurodegenerative damage, causing alterations of macular volume and of retinal nerve fibre layer thickness, was modulated by the p53 genotype. Conclusions Inflammatory synaptopathy and neurodegeneration caused by IL-1β in RRMS patients involve the apoptotic cascade. Targeting IL-1β-p53 interaction might result in significant neuroprotection in MS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Diego Centonze
- Clinica Neurologica, Dipartimento di Medicina dei Sistemi, Università Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
14
|
Nash MS, Verkuyl JM, Bhalay G. TRPV1 Antagonism: From Research to Clinic. ION CHANNEL DRUG DISCOVERY 2014. [DOI: 10.1039/9781849735087-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capsaicin receptor, TRPV1, has been one of the most extensively studied molecules in sensory research. Its contribution to the sensation of pain in numerous pre-clinical inflammatory and neuropathic paradigms has been well-established and expression analysis suggests a potential role clinically in pain and bladder conditions. The field has now reached an exciting point in time with the development of a number of high quality TRPV1 antagonist drug candidates and the release of clinical data. What has become apparent from this work is that inhibition of TRPV1 function brings with it the potential liabilities of increased body temperature and altered thermal perception. However, there is cause for optimism because it appears that not all antagonists have the same properties and compounds can be identified that lack significant on-target side-effects whilst retaining efficacy, at least pre-clinically. What is perhaps now more critical to address is the question of how effective the analgesia provided by a TRPV1 antagonist will be. Although tantalizing clinical data showing effects on experimentally-induced pain or pain following molar extraction have been reported, no clear efficacy in a chronic pain condition has yet been demonstrated making it difficult to perform an accurate risk-benefit analysis for TRPV1 antagonists. Here we provide an overview of some of the most advanced clinical candidates and discuss the approaches being taken to avoid the now well established on-target effects of TRPV1 antagonists.
Collapse
Affiliation(s)
- Mark S. Nash
- Novartis Institutes for Biomedical Research Forum 1, Novartis Campus CH - 4056 Basel Switzerland
| | - J. Martin Verkuyl
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| | - Gurdip Bhalay
- Novartis Institutes for Biomedical Research Wimblehurst Road Horsham, West Sussex RH12 5AB UK
| |
Collapse
|
15
|
Abstract
Channels are integral membrane proteins that form a pore, allowing the passive movement of ions or molecules across a membrane (along a gradient), either between compartments within a cell, between intracellular and extracellular environments or between adjacent cells. The ability of cells to communicate with one another and with their environment is a crucial part of the normal physiology of a tissue that allows it to carry out its function. Cell communication is particularly important during keratinocyte differentiation and formation of the skin barrier. Keratinocytes in the skin epidermis undergo a programme of apoptosis-driven terminal differentiation, whereby proliferating keratinocytes in the basal (deepest) layer of the epidermis stop proliferating, exit the basal layer and move up through the spinous and granular layers of the epidermis to form the stratum corneum, the external barrier. Genes encoding different families of channel proteins have been found to harbour mutations linked to a variety of rare inherited monogenic skin diseases. In this Commentary, we discuss how human genetic findings in aquaporin (AQP) and transient receptor potential (TRP) channels reveal different mechanisms by which these channel proteins function to ensure the proper formation and maintenance of the skin barrier.
Collapse
Affiliation(s)
- Diana C Blaydon
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, E1 2AT, UK
| | - David P Kelsell
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, E1 2AT, UK
| |
Collapse
|
16
|
Abstract
TRPV1 is a well-characterised channel expressed by a subset of peripheral sensory neurons involved in pain sensation and also at a number of other neuronal and non-neuronal sites in the mammalian body. Functionally, TRPV1 acts as a sensor for noxious heat (greater than ~42 °C). It can also be activated by some endogenous lipid-derived molecules, acidic solutions (pH < 6.5) and some pungent chemicals and food ingredients such as capsaicin, as well as by toxins such as resiniferatoxin and vanillotoxins. Structurally, TRPV1 subunits have six transmembrane (TM) domains with intracellular N- (containing 6 ankyrin-like repeats) and C-termini and a pore region between TM5 and TM6 containing sites that are important for channel activation and ion selectivity. The N- and C- termini have residues and regions that are sites for phosphorylation/dephosphorylation and PI(4,5)P2 binding, which regulate TRPV1 sensitivity and membrane insertion. The channel has several interacting proteins, some of which (e.g. AKAP79/150) are important for TRPV1 phosphorylation. Four TRPV1 subunits form a non-selective, outwardly rectifying ion channel permeable to monovalent and divalent cations with a single-channel conductance of 50-100 pS. TRPV1 channel kinetics reveal multiple open and closed states, and several models for channel activation by voltage, ligand binding and temperature have been proposed. Studies with TRPV1 agonists and antagonists and Trpv1 (-/-) mice have suggested a role for TRPV1 in pain, thermoregulation and osmoregulation, as well as in cough and overactive bladder. TRPV1 antagonists have advanced to clinical trials where findings of drug-induced hyperthermia and loss of heat sensitivity have raised questions about the viability of this therapeutic approach.
Collapse
|
17
|
Marics I, Malapert P, Reynders A, Gaillard S, Moqrich A. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels. PLoS One 2014; 9:e99828. [PMID: 24925072 PMCID: PMC4055713 DOI: 10.1371/journal.pone.0099828] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/19/2014] [Indexed: 01/22/2023] Open
Abstract
The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.
Collapse
Affiliation(s)
- Irène Marics
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Stéphane Gaillard
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Marseille, France
- * E-mail:
| |
Collapse
|
18
|
Szolcsányi J. Capsaicin and sensory neurones: a historical perspective. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 68:1-37. [PMID: 24941663 DOI: 10.1007/978-3-0348-0828-6_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Capsaicin, the pungent ingredient of red pepper has become not only a "hot" topic in neuroscience but its new target-related unique actions have opened the door for the drug industry to introduce a new chapter of analgesics. After several lines of translational efforts with over 1,000 patents and clinical trials, the 8% capsaicin dermal patch reached the market and its long-lasting local analgesic effect in some severe neuropathic pain states is now well established. This introductory chapter outlines on one hand the historical background based on the author's 50 years of experience in this field and on the other hand emphasizes new scopes, fascinating perspectives in pharmaco-physiology, and molecular pharmacology of nociceptive sensory neurons. Evidence for the effect of capsaicin on C-polymodal nociceptors (CMH), C-mechanoinsensitive (CHMi), and silent C-nociceptors are listed and the features of the capsaicin-induced blocking effects of nociceptors are demonstrated. Common and different characteristics of nociceptor-blocking actions after systemic, perineural, local, intrathecal, and in vitro treatments are summarized. Evidence for the misleading conclusions drawn from neonatal capsaicin pretreatment is presented. Perspectives opened from cloning the capsaicin receptor "Transient Receptor Potential Vanilloid 1" (TRPV1) are outlined and potential molecular mechanisms behind the long-lasting functional, ultrastructural, and nerve terminal-damaging effects of capsaicin and other TRPV1 agonists are summarized. Neurogenic inflammation and the long-list of "capsaicin-sensitive" tissue responses are mediated by an unorthodox dual sensory-efferent function of peptidergic TRPV1-expressing nerve terminals which differ from the classical efferent and sensory nerve endings that have a unidirectional role in neuroregulation. Thermoregulatory effects of capsaicin are discussed in detail. It is suggested that since hyperthermia and burn risk due to enhanced noxious heat threshold are the major obstacles of some TRPV1 antagonists, they could be overcome. The special "multisteric" gating function of the TRPV1 cation channel provides the structural ground for blocking chemical activation of TRPV1 without affecting its responsiveness to physical stimuli. A new chapter of potential analgesics targeting nociceptors is now already supported for pain relief in persistent pathological pain states.
Collapse
|
19
|
Winter Z, Buhala A, Ötvös F, Jósvay K, Vizler C, Dombi G, Szakonyi G, Oláh Z. Functionally important amino acid residues in the transient receptor potential vanilloid 1 (TRPV1) ion channel--an overview of the current mutational data. Mol Pain 2013; 9:30. [PMID: 23800232 PMCID: PMC3707783 DOI: 10.1186/1744-8069-9-30] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/17/2013] [Indexed: 12/30/2022] Open
Abstract
This review aims to create an overview of the currently available results of site-directed mutagenesis studies on transient receptor potential vanilloid type 1 (TRPV1) receptor. Systematization of the vast number of data on the functionally important amino acid mutations of TRPV1 may provide a clearer picture of this field, and may promote a better understanding of the relationship between the structure and function of TRPV1. The review summarizes information on 112 unique mutated sites along the TRPV1, exchanged to multiple different residues in many cases. These mutations influence the effect or binding of different agonists, antagonists, and channel blockers, alter the responsiveness to heat, acid, and voltage dependence, affect the channel pore characteristics, and influence the regulation of the receptor function by phosphorylation, glycosylation, calmodulin, PIP2, ATP, and lipid binding. The main goal of this paper is to publish the above mentioned data in a form that facilitates in silico molecular modelling of the receptor by promoting easier establishment of boundary conditions. The better understanding of the structure-function relationship of TRPV1 may promote discovery of new, promising, more effective and safe drugs for treatment of neurogenic inflammation and pain-related diseases and may offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Zoltán Winter
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Szolcsányi J, Pintér E. Transient receptor potential vanilloid 1 as a therapeutic target in analgesia. Expert Opin Ther Targets 2013; 17:641-57. [PMID: 23421411 DOI: 10.1517/14728222.2013.772580] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The selective excitatory action of capsaicin followed by long-term chemoanalgesia due to an action on the 'capsaicin receptor' of C-polymodal nociceptors, cloned 15 years ago, opened up fascinating perspectives for a class of nociceptor blocking analgesics. AREAS COVERED The TRPV1/capsaicin receptor is an integrative, chemoceptive, noxious heat-gated cation channel also gated by several endogenous ligands and sensitized by phosphorylation through intracellular cascades triggered from receptors of bradykinin, prostanoids, NGF and interactions with TRPA1. In this review, types of sensory receptors and unique mechanisms for blocking nociceptor action, e.g., 'pore dilation' intracellular acidosis and the long-term function-related mitochondrial swelling at the nerve terminals and sensory neurons are summarized. In humans the 8% capsaicin dermal patch is already in usage for nondiabetic neuropathic pain and two topical preparations of civamide have also been approved recently for cluster headache and osteoarthritis. Evidence for epidermal nerve terminal loss in humans after topical applications and misleading results on sensory neuron death evoked by TRPV1 agonism in animals are discussed. EXPERT OPINION The unique 'multisteric' gating of TRPV1 channel which is opened and modulated in various conformational changes to natural stimuli differs from the operation of canonical ligand-gated channels and makes it suitable to initiate development of second generation of TRPV1 antagonists without on-target side effects of hyperthermia and risk of burn injury.
Collapse
Affiliation(s)
- János Szolcsányi
- University of Pécs Medical School, Department of Pharmacology and Pharmacotherapy , H-7624 Pécs, Szigeti u. 12 , Hungary.
| | | |
Collapse
|
21
|
Lack of transient receptor potential vanilloid 1 channel modulates the development of neurogenic bladder dysfunction induced by cross-sensitization in afferent pathways. J Neuroinflammation 2013; 10:3. [PMID: 23305398 PMCID: PMC3556132 DOI: 10.1186/1742-2094-10-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/21/2012] [Indexed: 12/30/2022] Open
Abstract
Background Bladder pain of unknown etiology has been associated with co-morbid conditions and functional abnormalities in neighboring pelvic organs. Mechanisms underlying pain co-morbidities include cross-sensitization, which occurs predominantly via convergent neural pathways connecting distinct pelvic organs. Our previous results showed that colonic inflammation caused detrusor instability via activation of transient receptor potential vanilloid 1 (TRPV1) signaling pathways, therefore, we aimed to determine whether neurogenic bladder dysfunction can develop in the absence of TRPV1 receptors. Methods Adult male C57BL/6 wild-type (WT) and TRPV1−/− (knockout) mice were used in this study. Colonic inflammation was induced by intracolonic trinitrobenzene sulfonic acid (TNBS). The effects of transient colitis on abdominal sensitivity and function of the urinary bladder were evaluated by cystometry, contractility and relaxation of detrusor smooth muscle (DSM) in vitro to various stimuli, gene and protein expression of voltage-gated sodium channels in bladder sensory neurons, and pelvic responses to mechanical stimulation. Results Knockout of TRPV1 gene did not eliminate the development of cross-sensitization between the colon and urinary bladder. However, TRPV1−/− mice had prolonged intermicturition interval and increased number of non-voiding contractions at baseline followed by reduced urodynamic responses during active colitis. Contractility of DSM was up-regulated in response to KCl in TRPV1−/− mice with inflamed colon. Application of Rho-kinase inhibitor caused relaxation of DSM in WT but not in TRPV1−/− mice during colonic inflammation. TRPV1−/− mice demonstrated blunted effects of TNBS-induced colitis on expression and function of voltage-gated sodium channels in bladder sensory neurons, and delayed development of abdominal hypersensitivity upon colon-bladder cross-talk in genetically modified animals. Conclusions The lack of TRPV1 receptors does not eliminate the development of cross-sensitization in the pelvis. However, the function of the urinary bladder significantly differs between WT and TRPV−/− mice especially upon development of colon-bladder cross-sensitization induced by transient colitis. Our results suggest that TRPV1 pathways may participate in the development of chronic pelvic pain co-morbidities in humans.
Collapse
|
22
|
Malykhina AP, Lei Q, Erickson CS, Epstein ML, Saban MR, Davis CA, Saban R. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity. BMC PHYSIOLOGY 2012; 12:15. [PMID: 23249422 PMCID: PMC3543727 DOI: 10.1186/1472-6793-12-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/11/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. RESULTS In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. CONCLUSIONS For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and enhanced VEGF content may be associated with visceral hyperalgesia, abdominal discomfort, and/or pelvic pain.
Collapse
Affiliation(s)
- Anna P Malykhina
- Department of Surgery, Division of Urology, University of Pennsylvania School of Medicine, Glenolden, 19036-2307, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fernandes ES, Fernandes MA, Keeble JE. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br J Pharmacol 2012; 166:510-21. [PMID: 22233379 DOI: 10.1111/j.1476-5381.2012.01851.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively) channels are members of the TRP superfamily of structurally related, non-selective cation channels. It is rapidly becoming clear that the functions of TRPV1 and TRPA1 interlink with each other to a considerable extent. This is especially clear in relation to pain and neurogenic inflammation where TRPV1 is coexpressed on the vast majority of TRPA1-expressing sensory nerves and both integrate a variety of noxious stimuli. The more recent discovery that both TRPV1 and TRPA1 are expressed on a multitude of non-neuronal sites has led to a plethora of research into possible functions of these receptors. Non-neuronal cells on which TRPV1 and TRPA1 are expressed vary from vascular smooth muscle to keratinocytes and endothelium. This review will discuss the expression, functionality and roles of these non-neuronal TRP channels away from sensory nerves to demonstrate the diverse nature of TRPV1 and TRPA1 in addition to a direct role in pain and neurogenic inflammation.
Collapse
Affiliation(s)
- E S Fernandes
- Cardiovascular Division, School of Medicine, King's College London, London, UK
| | | | | |
Collapse
|
24
|
Gene therapy for cisplatin-induced ototoxicity: a systematic review of in vitro and experimental animal studies. Otol Neurotol 2012; 33:302-10. [PMID: 22388732 DOI: 10.1097/mao.0b013e318248ee66] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Ototoxicity is a frequent adverse event of cisplatin treatment. No therapy is currently available for cisplatin-induced ototoxicity. A systematic review of experimental animal studies and in vitro experiments was conducted to evaluate gene therapy as a potential future therapeutic option. DATA SOURCES Eligible studies were identified through searches of electronic databases Ovid MEDLINE, Ovid MEDLINE In-Process, Embase, PubMed, Biosis Previews, Scopus, ISI Web of Science, and The Cochrane Library. STUDY SELECTION Articles obtained from the search were independently reviewed by 2 authors using specific criteria to identify experimental animal studies and in vitro experiments conducted to evaluate gene therapy for cisplatin-induced ototoxicity. No restriction was applied to publication dates or languages. DATA EXTRACTION Data extracted included experiment type, cell type, species, targeted gene, gene expression, method, administration, inner ear site evaluated, outcome measures for cytotoxicity, and significant results. RESULTS Fourteen articles were included in this review. In vitro and in vivo experiments have been performed to evaluate the potential of gene expression manipulation for cisplatin-induced ototoxicity. Twelve different genes were targeted including NTF3, GDNF, HO-1, XIAP, Trpv1, BCL2, Otos, Nfe2l2, Nox1, Nox3, Nox4, and Ctr1. All of the included articles demonstrated a benefit of gene therapy on cytotoxicity caused by cisplatin. CONCLUSION Experimental animal studies and in vitro experiments have demonstrated the efficacy of gene therapy for cisplatin-induced ototoxicity. However, further investigation regarding safety, immunogenicity, and consequences of genetic manipulation in the inner ear tissues must be completed to develop future therapeutic options.
Collapse
|
25
|
Moran MM, McAlexander MA, Bíró T, Szallasi A. Transient receptor potential channels as therapeutic targets. Nat Rev Drug Discov 2011; 10:601-20. [PMID: 21804597 DOI: 10.1038/nrd3456] [Citation(s) in RCA: 427] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transient receptor potential (TRP) cation channels have been among the most aggressively pursued drug targets over the past few years. Although the initial focus of research was on TRP channels that are expressed by nociceptors, there has been an upsurge in the amount of research that implicates TRP channels in other areas of physiology and pathophysiology, including the skin, bladder and pulmonary systems. In addition, mutations in genes encoding TRP channels are the cause of several inherited diseases that affect a variety of systems including the renal, skeletal and nervous system. This Review focuses on recent developments in the TRP channel-related field, and highlights potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Magdalene M Moran
- Hydra Biosciences, 790 Memorial Drive, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|