1
|
Chen N, Peng C, Li D. Epigenetic Underpinnings of Inflammation: A Key to Unlock the Tumor Microenvironment in Glioblastoma. Front Immunol 2022; 13:869307. [PMID: 35572545 PMCID: PMC9100418 DOI: 10.3389/fimmu.2022.869307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, and immunotherapies and genetic therapies for GBM have evolved dramatically over the past decade, but GBM therapy is still facing a dilemma due to the high recurrence rate. The inflammatory microenvironment is a general signature of tumors that accelerates epigenetic changes in GBM and helps tumors avoid immunological surveillance. GBM tumor cells and glioma-associated microglia/macrophages are the primary contributors to the inflammatory condition, meanwhile the modification of epigenetic events including DNA methylation, non-coding RNAs, and histone methylation and deacetylases involved in this pathological process of GBM, finally result in exacerbating the proliferation, invasion, and migration of GBM. On the other hand, histone deacetylase inhibitors, DNA methyltransferases inhibitors, and RNA interference could reverse the inflammatory landscapes and inhibit GBM growth and invasion. Here, we systematically review the inflammatory-associated epigenetic changes and regulations in the microenvironment of GBM, aiming to provide a comprehensive epigenetic profile underlying the recognition of inflammation in GBM.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Feng RY, Chen Q, Yang WJ, Tong XG, Sun ZM, Yan H. Immune Tolerance Therapy: A New Method for Treatment of Traumatic Brain Injury. Chin Med J (Engl) 2018; 131:1990-1998. [PMID: 30082532 PMCID: PMC6085845 DOI: 10.4103/0366-6999.238147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Objective: Due to the special anatomical structure and pathophysiological mechanism of the central nervous system (CNS), there is a big difference between the repair of brain injury and other systems of the body. More and more evidence shows that targetedly reducing the autoimmune response of brain tissue without affecting the immune function in other parts of the body will be the best optimized treatment for brain injury. Data Sources: This review was based on data in articles published in PubMed up to June 5, 2017, with the following keywords: “immune tolerance”, “traumatic brain injury”, and “central nervous system”. Study Selection: Original articles and critical reviews on immune tolerance and brain damage were selected for this review. References of the retrieved articles were also screened to search for potentially relevant papers. Results: The CNS is isolated from the immune system through the blood-brain barrier. After brain injury, brain antigens are released into the systemic circulation to induce damaging immune responses. Immune tolerance can effectively reduce the brain edema and neurological inflammatory response after brain injury, which is beneficial to the recovery of neurological function. The clinical application prospect and theoretical research value of the treatment of immune tolerance on traumatic brain injury (TBI) is worth attention. Conclusions: The establishment of immune tolerance mechanism has a high clinical value in the treatment of TBI. It opens up new opportunities for the treatment of brain damage.
Collapse
Affiliation(s)
- Ruo-Yang Feng
- Department of Neurosurgery, Tianjin Medical University, Tianjin 300070, China
| | - Qian Chen
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases; Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Wei-Jian Yang
- Department of Neurosurgery, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Guang Tong
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Zhi-Ming Sun
- Department of Spine Surgery, Tianjin Huanhu Hospital, Tianjin 300350, China
| | - Hua Yan
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China
| |
Collapse
|
3
|
Rajasekaran A, Shivakumar V, Kalmady SV, Narayanaswamy JC, Subbana M, Venugopal D, Amaresha AC, Venkatasubramanian G, Berk M, Debnath M. The impact of HLA-G 3' UTR variants and sHLA-G on risk and clinical correlates of schizophrenia. Hum Immunol 2016; 77:1166-1171. [PMID: 27567986 DOI: 10.1016/j.humimm.2016.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/19/2022]
Abstract
The Major Histocompatibility Complex (MHC)/Human Leukocyte Antigen (HLA) is known to influence the pathogenesis of several complex human diseases resulting from gene-environmental interactions. Recently, it has emerged as one of the risk determinants of schizophrenia. The HLA-G protein (a non-classical MHC class I molecule), encoded by the HLA-G gene, is shown to play important role in embryonic development. Importantly, its genetic variations and aberrant expression have been implicated in pregnancy complications like preeclampsia, inflammation, and autoimmunity. Converging evidence implicates these phenomena as risk mechanisms of schizophrenia. However, the functional implications of HLA-G in schizophrenia are yet to be empirically examined. The impact of two functional polymorphisms [14bp Insertion/Deletion (INDEL) and +3187 A>G] and soluble HLA-G (sHLA-G) levels on schizophrenia risk was evaluated. In this exploratory study, the Ins/Ins genotype of 14bp INDEL was found to confer a strong risk for schizophrenia. Further, low levels of sHLA-G were shown to have a significant impact on Clinical Global Impression (CGI) severity in people with schizophrenia.
Collapse
Affiliation(s)
- Ashwini Rajasekaran
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sunil V Kalmady
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Manjula Subbana
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Deepthi Venugopal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anekal C Amaresha
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India; Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT Strategic Research Centre, Geelong, Victoria, Australia; Department of Psychiatry, The Florey Institute of Neuroscience and Mental Health, and Orygen Youth Health Research Centre, University of Melbourne, Parkville, Australia
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Grimholt U. MHC and Evolution in Teleosts. BIOLOGY 2016; 5:biology5010006. [PMID: 26797646 PMCID: PMC4810163 DOI: 10.3390/biology5010006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/18/2022]
Abstract
Major histocompatibility complex (MHC) molecules are key players in initiating immune responses towards invading pathogens. Both MHC class I and class II genes are present in teleosts, and, using phylogenetic clustering, sequences from both classes have been classified into various lineages. The polymorphic and classical MHC class I and class II gene sequences belong to the U and A lineages, respectively. The remaining class I and class II lineages contain nonclassical gene sequences that, despite their non-orthologous nature, may still hold functions similar to their mammalian nonclassical counterparts. However, the fact that several of these nonclassical lineages are only present in some teleost species is puzzling and questions their functional importance. The number of genes within each lineage greatly varies between teleost species. At least some gene expansions seem reasonable, such as the huge MHC class I expansion in Atlantic cod that most likely compensates for the lack of MHC class II and CD4. The evolutionary trigger for similar MHC class I expansions in tilapia, for example, which has a functional MHC class II, is not so apparent. Future studies will provide us with a more detailed understanding in particular of nonclassical MHC gene functions.
Collapse
Affiliation(s)
- Unni Grimholt
- Department of Virology, Norwegian Veterinary Institute, Ullevaalsveien 68, Oslo N-0106, Norway.
| |
Collapse
|
5
|
Airas L. Hormonal and gender-related immune changes in multiple sclerosis. Acta Neurol Scand 2015; 132:62-70. [PMID: 26046561 DOI: 10.1111/ane.12433] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2015] [Indexed: 01/10/2023]
Abstract
Similarly to many other autoimmune diseases, multiple sclerosis (MS) is more common among women than men, and its incidence among women is rising. There are also qualitative differences in the disease course between men and women, with male patients experiencing increased disease progression, brain atrophy, and cognitive impairment. During pregnancy, women with MS typically have a greatly reduced relapse rate, whereas very soon after the delivery, the disease activity returns, often even at a higher level than seen in the prepregnancy year. The reasons for the increased postpartum activity are not entirely clear, but factors such as the abrupt decrease in estrogen levels immediately after the delivery and the loss of the immunosuppressive state of pregnancy are likely of importance. There is compelling evidence that estrogen, progesterone, and testosterone control MS pathology by influencing immune responses and by contributing to repair mechanisms in the nervous system. Hormones may thus offer important insights into MS disease prevention and treatment. In this review, the possible reasons for the sex bias in autoimmune diseases will be discussed. The pregnancy-related alterations in MS, including the effect of pregnancy on disease activity, long-term disability accumulation, and prevalence will be reviewed, as well as the hormonal and immunological mechanisms potentially underlying these changes. Finally, the present thinking on the effect of hormones on the changing incidence of MS will be elucidated.
Collapse
Affiliation(s)
- L. Airas
- Division of Clinical Neurosciences; Turku University Hospital; Turku Finland
| |
Collapse
|
6
|
Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM. A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 2015; 15:32. [PMID: 25888517 PMCID: PMC4364491 DOI: 10.1186/s12862-015-0309-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND MHC class I (MHCI) molecules are the key presenters of peptides generated through the intracellular pathway to CD8-positive T-cells. In fish, MHCI genes were first identified in the early 1990's, but we still know little about their functional relevance. The expansion and presumed sub-functionalization of cod MHCI and access to many published fish genome sequences provide us with the incentive to undertake a comprehensive study of deduced teleost fish MHCI molecules. RESULTS We expand the known MHCI lineages in teleosts to five with identification of a new lineage defined as P. The two lineages U and Z, which both include presumed peptide binding classical/typical molecules besides more derived molecules, are present in all teleosts analyzed. The U lineage displays two modes of evolution, most pronouncedly observed in classical-type alpha 1 domains; cod and stickleback have expanded on one of at least eight ancient alpha 1 domain lineages as opposed to many other teleosts that preserved a number of these ancient lineages. The Z lineage comes in a typical format present in all analyzed ray-finned fish species as well as lungfish. The typical Z format displays an unprecedented conservation of almost all 37 residues predicted to make up the peptide binding groove. However, also co-existing atypical Z sub-lineage molecules, which lost the presumed peptide binding motif, are found in some fish like carps and cavefish. The remaining three lineages, L, S and P, are not predicted to bind peptides and are lost in some species. CONCLUSIONS Much like tetrapods, teleosts have polymorphic classical peptide binding MHCI molecules, a number of classical-similar non-classical MHCI molecules, and some members of more diverged MHCI lineages. Different from tetrapods, however, is that in some teleosts the classical MHCI polymorphism incorporates multiple ancient MHCI domain lineages. Also different from tetrapods is that teleosts have typical Z molecules, in which the residues that presumably form the peptide binding groove have been almost completely conserved for over 400 million years. The reasons for the uniquely teleost evolution modes of peptide binding MHCI molecules remain an enigma.
Collapse
Affiliation(s)
| | - Kentaro Tsukamoto
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| | - Teruo Azuma
- Fisheries Technology Division, National Research Institute of Fisheries Engineering, 7620-7, Hasaki, Kamisu-shi, Ibaraki, Japan.
| | - Jong Leong
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada.
| | - Ben F Koop
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020 STN CSC, Victoria, Canada.
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
7
|
Human leucocyte antigen-G (HLA-G) and its murine functional homolog Qa2 in the Trypanosoma cruzi Infection. Mediators Inflamm 2015; 2015:595829. [PMID: 25688175 PMCID: PMC4320874 DOI: 10.1155/2015/595829] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/17/2014] [Indexed: 12/28/2022] Open
Abstract
Genetic susceptibility factors, parasite strain, and an adequate modulation of the immune system seem to be crucial for disease progression after Trypanosoma cruzi infection. HLA-G and its murine functional homolog Qa2 have well-recognized immunomodulatory properties. We evaluated the HLA-G 3′ untranslated region (3′UTR) polymorphic sites (associated with mRNA stability and target for microRNA binding) and HLA-G tissue expression (heart, colon, and esophagus) in patients presenting Chagas disease, stratified according to the major clinical variants. Further, we investigated the transcriptional levels of Qa2 and other pro- and anti-inflammatory genes in affected mouse tissues during T. cruzi experimental acute and early chronic infection induced by the CL strain. Chagas disease patients exhibited differential HLA-G 3′UTR susceptibility allele/genotype/haplotype patterns, according to the major clinical variant (digestive/cardiac/mixed/indeterminate). HLA-G constitutive expression on cardiac muscle and colonic cells was decreased in Chagasic tissues; however, no difference was observed for Chagasic and non-Chagasic esophagus tissues. The transcriptional levels of Qa2 and other anti and proinflammatory (CTLA-4, PDCD1, IL-10, INF-γ, and NOS-2) genes were induced only during the acute T. cruzi infection in BALB/c and C57BL/6 mice. We present several lines of evidence indicating the role of immunomodulatory genes and molecules in human and experimental T. cruzi infection.
Collapse
|
8
|
Pankratz S, Bittner S, Herrmann AM, Schuhmann MK, Ruck T, Meuth SG, Wiendl H. Human CD4+ HLA-G+ regulatory T cells are potent suppressors of graft-versus-host disease in vivo. FASEB J 2014; 28:3435-45. [PMID: 24744146 DOI: 10.1096/fj.14-251074] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CD4(+) T cells expressing the immunotolerizing molecule HLA-G have been described as a unique human thymus-derived regulatory T (tTreg) cell subset involved in immunoregulation and parenchymal homeostasis during infectious and autoimmune inflammation. We compared properties and molecular characteristics of human CD4(+)HLA-G(+) with those of CD4(+)CD25(+)FoxP3-expressing tTreg cells using in vitro studies of T-cell receptor (TCR) signaling, single-cell electrophysiology, and functional in vivo studies. Both tTreg populations are characterized by alterations in proximal-signaling pathways on TCR stimulation and a hyperpolarization of the plasma membrane when compared to conventional CD4(+) T cells. However, both clearly differ in phenotype and pattern of secreted cytokines, which results in distinct mechanisms of suppression: While CD4(+)HLA-G(+) cells secrete high levels of inhibitory molecules (IL-10, soluble HLA-G, IL-35), CD4(+)CD25(+)FoxP3(+) cells express these molecules at significantly lower levels and seem to exert their function mainly in a contact-dependent manner via cyclic adenosine-monophosphate. Finally we demonstrate that human CD4(+)HLA-G(+) tTreg cells significantly ameliorated graft-versus-host disease in a humanized mouse model as a first proof of their in vivo relevance. Our data further characterize and establish CD4(+)HLA-G(+) cells as a potent human tTreg population that can modulate polyclonal adaptive immune responses in vivo and thus being a promising candidate for potential clinical applications in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven G Meuth
- Department of Neurology and Institute of Physiology I, Department of Neuropathophysiology, University of Münster, Münster, Germany; and
| | | |
Collapse
|
9
|
Courtin D, Milet J, Sabbagh A, Massaro JD, Castelli EC, Jamonneau V, Bucheton B, Sese C, Favier B, Rouas-Freiss N, Moreau P, Donadi EA, Garcia A. HLA-G 3′ UTR-2 haplotype is associated with Human African trypanosomiasis susceptibility. INFECTION GENETICS AND EVOLUTION 2013; 17:1-7. [DOI: 10.1016/j.meegid.2013.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
10
|
Sehrawat S, Rouse BT. Tregs and infections: on the potential value of modifying their function. J Leukoc Biol 2011; 90:1079-87. [PMID: 21914856 DOI: 10.1189/jlb.0611271] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
CD4(+) T cells, which express a master transcription factor, Foxp3, have been recognized as bona fide Tregs. These cells are essential to maintain immune homeostasis in healthy as well as infected mice and humans. Extensive investigations in the last decade have provided ways to manipulate the Foxp3(+) Treg response therapeutically so the role of such cells in microbe-induced inflammatory reactions can be evaluated. This review focuses on our current understanding of the mechanisms required for the generation and sustenance of Tregs in vivo and the potential value of modulating Tregs to control microbe-induced immunopathological responses.
Collapse
Affiliation(s)
- Sharvan Sehrawat
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|