1
|
Zhang W, Wu Y, Yuan Y, Wang L, Yu B, Li X, Yao Z, Liang B. Identification of key biomarkers for predicting atherosclerosis progression in polycystic ovary syndrome via bioinformatics analysis and machine learning. Comput Biol Med 2024; 183:109239. [PMID: 39396400 DOI: 10.1016/j.compbiomed.2024.109239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Polycystic ovary syndrome (PCOS) is one of the most significant cardiovascular risk factors, playing vital roles in various cardiovascular diseases such as atherosclerosis (AS). This study attempted to explore key biomarkers for predicting AS in patients with PCOS and to investigate the role of immune cell infiltration in this process. METHODS We downloaded the expression matrix of AS (GSE100927, GSE28829) and PCOS (GSE54248) from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify PCOS-related genes in AS. Functional enrichment analysis was employed to reveal underlying mechanisms. Then, Protein-protein interaction (PPI) and three machine learning algorithms were used to screen the hub genes, including the Least Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF). Moreover, the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA) were applied to evaluate the diagnostic value of the nomogram model. Finally, we performed immune cell infiltration and single-gene GSEA. RESULTS A total of 41 genes were identified as PCOS-related genes in AS, with functional analysis indicating that the potential pathogenesis lies in inflammatory and immune responses. Furthermore, we identified two hub genes (MMP9 and P2RY13) by three machine learning algorithms. The nomogram model based on MMP9 and P2RY13 can be used as a new diagnostic model to differentiate AS in PCOS women (AUC>0.9). The calibration curves and DCA curves demonstrated the excellent discriminative ability and clinical practicality of this nomogram. Finally, immune infiltration analysis revealed the disorder of immunocytes in AS. The two gene expressions were negatively correlated with Monocyte and Macrophages M1, while positively correlated with Macrophages M0. Single gene GSEA analysis suggested that the MMP9 and P2RY13 might be involved in the metabolism and inflammation responses. CONCLUSION We identified MMP9 and P2RY13 as the biomarkers and developed a new nomogram for early diagnosing AS based on them in PCOS patients. Our findings may provide new insights into the diagnosis, prevention, and treatment targets of PCOS-associated AS.
Collapse
Affiliation(s)
- Wenjing Zhang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yalin Wu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Yalin Yuan
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Leigang Wang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bing Yu
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Xin Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Zhong Yao
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China
| | - Bin Liang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030000, China.
| |
Collapse
|
2
|
Guan L, Ge R, Ma S. Newsights of endoplasmic reticulum in hypoxia. Biomed Pharmacother 2024; 175:116812. [PMID: 38781866 DOI: 10.1016/j.biopha.2024.116812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
The endoplasmic reticulum (ER) is important to cells because of its essential functions, including synthesizing three major nutrients and ion transport. When cellular homeostasis is disrupted, ER quality control (ERQC) system is activated effectively to remove misfolded and unfolded proteins through ER-phagy, ER-related degradation (ERAD), and molecular chaperones. When unfolded protein response (UPR) and ER stress are activated, the cell may be suffering a huge blow, and the most probable consequence is apoptosis. The membrane contact points between the ER and sub-organelles contribute to communication between the organelles. The decrease in oxygen concentration affects the morphology and structure of the ER, thereby affecting its function and further disrupting the stable state of cells, leading to the occurrence of disease. In this study, we describe the functions of ER-, ERQC-, and ER-related membrane contact points and their changes under hypoxia, which will help us further understand ER and treat ER-related diseases.
Collapse
Affiliation(s)
- Lu Guan
- Qinghai University, Xining, Qinghai, China
| | - Rili Ge
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China
| | - Shuang Ma
- Key Laboratory of the Ministry of High Altitude Medicine, Qinghai University, Xining, Qinghai, China; Key Laboratory of Applied Fundamentals of High Altitude Medicine, (Qinghai-Utah Joint Key Laboratory of Plateau Medicine), Qinghai University, Xining, Qinghai, China; Laboratory for High Altitude Medicine of Qinghai Province, Qinghai University, Xining, Qinghai, China.
| |
Collapse
|
3
|
Wu X, Wei S, Chen M, Li J, Wei Y, Zhang J, Dong W. P2RY13 Exacerbates Intestinal Inflammation by Damaging the Intestinal Mucosal Barrier via Activating IL-6/STAT3 Pathway. Int J Biol Sci 2022; 18:5056-5069. [PMID: 35982893 PMCID: PMC9379400 DOI: 10.7150/ijbs.74304] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is unclear, while genetic factors have been confirmed to play an important role in its development. P2RY13 is a G protein-coupled receptor (GPCRs), which are involved in the pathogenesis of inflammation and immune disorders. According to GEO database analysis, we first observed that the expression of P2Y13 was increased in UC patients. Therefore, we sought to determine the role of P2Y13 in the development of colitis. Our data showed that P2RY13 was highly expressed in the inflamed intestinal tissues of UC patients. In mice, pharmacological antagonism of P2Y13 can significantly attenuate the intestinal mucosal barrier disruption. In LPS-induced NCM460 cell, knockdown or pharmacological inhibition of P2RY13 increased the expression of intestinal tight junction protein and reduced apoptosis. In addition, we found that the effect of P2Y13 on colitis is related to the activation of the IL-6/STAT3 pathway. Activation of P2Y13 increases IL-6 expression and promotes STAT3 phosphorylation and nuclear transport. Deletion of the STAT3 gene in the intestinal epithelial cells of mice significantly mitigated the exacerbation of colitis due to P2Y13 activation. Thus, P2Y13 can aggravate intestinal mucosal barrier destruction by activating the IL-6/STAT3 pathway. P2Y13 might be a potential drug target for UC.
Collapse
Affiliation(s)
- Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Meilin Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Jinting Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Yuping Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China.,Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Prolonged proteasome inhibition antagonizes TGFβ1-dependent signalling by promoting the lysosomal-targeting of TGFβ receptors. Cell Signal 2022; 98:110414. [PMID: 35901932 DOI: 10.1016/j.cellsig.2022.110414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 01/18/2023]
Abstract
Impairing autophagy disrupts transforming growth factor beta 1 (TGFβ1) signalling and epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Since autophagy and proteasome-mediated degradation are interdependent, we investigated how prolonged downregulation of proteasomal catalytic activity affected TGFβ1-dependent signalling and EMT. Proteasome-dependent degradation was inhibited in A549 and H1299 NSCLC cells using MG132 and lactacystin, which are reversible and irreversible proteasome inhibitors, respectively. We observed that inhibiting proteasomal activity for 24 h decreased TGFβ-dependent nuclear accumulation of Smad2/3. Time course studies were then carried out to characterize the time frame of this observation. Short-term (< 8 h) proteasome inhibition resulted in increased receptor regulated Smad (R-Smad) phosphorylation and steady-state TGFβ receptor type II (TGFβRII) levels. However, prolonged (8-24 h) proteasome inhibition decreased TGFβ1-dependent R-Smad phosphorylation and steady-state TGFβRI and TGFβRII levels. Furthermore, proteasome inhibition blunted TGFβ-dependent E- to N-Cadherin shift, stress fiber formation, and increased cellular apoptosis via the TAK-1-TRAF6-p38 MAPK pathway. Interestingly, proteasome inhibition also increased autophagic flux, steady-state microtubule-associated protein light chain 3B-II and active uncoordinated 51-like autophagy activating kinase 1 levels, and co-localization of lysosomes with autophagy cargo proteins and autophagy-related proteins. Finally, we observed that proteasome inhibition increased TGFβRII endocytosis and trafficking to lysosomes and we conclude that prolonged proteasome inhibition disrupts TGFβ signalling outcomes through altered TGFβ receptor trafficking.
Collapse
|
5
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
6
|
Raj K, Akundi RS. Mutant Ataxin-3-Containing Aggregates (MATAGGs) in Spinocerebellar Ataxia Type 3: Dynamics of the Disorder. Mol Neurobiol 2021; 58:3095-3118. [PMID: 33629274 DOI: 10.1007/s12035-021-02314-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/25/2021] [Indexed: 11/25/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of SCA worldwide caused by abnormal polyglutamine expansion in the coding region of the ataxin-3 gene. Ataxin-3 is a multi-faceted protein involved in various cellular processes such as deubiquitination, cytoskeletal organisation, and transcriptional regulation. The presence of an expanded poly(Q) stretch leads to altered processing and misfolding of the protein culminating in the production of insoluble protein aggregates in the cell. Various post-translational modifications affect ataxin-3 fibrillation and aggregation. This review provides an exhaustive assessment of the various pathogenic mechanisms undertaken by the mutant ataxin-3-containing aggregates (MATAGGs) for disease induction and neurodegeneration. This includes in-depth discussion on MATAGG dynamics including their formation, role in neuronal pathogenesis, and the debate over the toxic v/s protective nature of the MATAGGs in disease progression. Additionally, the currently available therapeutic strategies against SCA3 have been reviewed. The shift in the focus of such strategies, from targeting the steps that lead to or reduce aggregate formation to targeting the expression of mutant ataxin-3 itself via RNA-based therapeutics, has also been presented. We also discuss the intriguing promise that various growth and neurotrophic factors, especially the insulin pathway, hold in the modulation of SCA3 progression. These emerging areas show the newer directions through which SCA3 can be targeted including various preclinical and clinical trials. All these advances made in the last three decades since the discovery of the ataxin-3 gene have been critically reviewed here.
Collapse
Affiliation(s)
- Kritika Raj
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
| |
Collapse
|
7
|
Liao S, Long X, Zou Y, Liu F, Li Q. Mulberry leaf phenolics and fiber exert anti-obesity through the gut microbiota-host metabolism pathway. J Food Sci 2021; 86:1432-1447. [PMID: 33761137 DOI: 10.1111/1750-3841.15679] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
The effect of mulberry leaf powder and components on preventing obesity and regulating lipid metabolism were investigated in the present study. The mechanism of action was explored by examining the gut microbiota and lipid metabolism-related signaling pathways. As evidenced by the nutritional obesity rats model experiments, the middle concentration mulberry leaf powder (MLP) group (0.8 g/kg·d) significantly reduced Lee's index (25.1, compared with model control group [MC] 25.7) and had the strongest lipid metabolism regulation effect. Furthermore, the suppression effects of different mulberry leaf components on nutritional obesity were compared and the mulberry leaf phenolics and fiber mixture (Mulberry leaf mixture [MLM]) group (0.6 g/kg·d) was found to have the strongest efficacy (body weight [BW] reduced 12.4%). Real time PCR (RT-qPCR) and western blot analyses demonstrated that MLP (0.8 g/kg·d) and its components inhibited adipocyte differentiation and triglyceride synthesis through the PPAR-γ- C/EBP-α signaling pathway, resulting in lipid metabolism regulation. Gut microbiota analysis indicated that MLM (0.6 g/kg·d) prevented the reduction in intestinal flora diversity (reach 491 species) caused by high-energy feed, and reduced the Firmicutes/Bacteroidetes ratio (to 7.99%) and the obesity associated flora, Lachnospiraceae (to 19.1%), whereas it improved the content of the beneficial flora, Lactobacilli, Lactobacillus_johnsonii (reach 11.77%). MLM improved the bioaccessibility and bioavailability of the two functional components (phenolics and fiber) and maximized the anti-obesity effect through the gut microbiota-host metabolism pathway. PRACTICAL APPLICATION: The anti-obesity and lipid metabolism regulation effect of mulberry leaf components were evaluated in this study. The fiber and phenolics of this plant have the potential for development of weight-loss functional foods.
Collapse
Affiliation(s)
- Sentai Liao
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Xiaoshan Long
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Yuxiao Zou
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Fan Liu
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| | - Qian Li
- Guangdong Academy of Agricultural Sciences, Sericultural & Agri-Food Research Institute/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou, 510610, China
| |
Collapse
|
8
|
Kyrargyri V, Madry C, Rifat A, Arancibia‐Carcamo IL, Jones SP, Chan VTT, Xu Y, Robaye B, Attwell D. P2Y 13 receptors regulate microglial morphology, surveillance, and resting levels of interleukin 1β release. Glia 2020; 68:328-344. [PMID: 31520551 PMCID: PMC6916289 DOI: 10.1002/glia.23719] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/19/2022]
Abstract
Microglia sense their environment using an array of membrane receptors. While P2Y12 receptors are known to play a key role in targeting directed motility of microglial processes to sites of damage where ATP/ADP is released, little is known about the role of P2Y13 , which transcriptome data suggest is the second most expressed neurotransmitter receptor in microglia. We show that, in patch-clamp recordings in acute brain slices from mice lacking P2Y13 receptors, the THIK-1 K+ current density evoked by ADP activating P2Y12 receptors was increased by ~50%. This increase suggested that the P2Y12 -dependent chemotaxis response should be potentiated; however, the time needed for P2Y12 -mediated convergence of microglial processes onto an ADP-filled pipette or to a laser ablation was longer in the P2Y13 KO. Anatomical analysis showed that the density of microglia was unchanged, but that they were less ramified with a shorter process length in the P2Y13 KO. Thus, chemotactic processes had to grow further and so arrived later at the target, and brain surveillance was reduced by ~30% in the knock-out. Blocking P2Y12 receptors in brain slices from P2Y13 KO mice did not affect surveillance, demonstrating that tonic activation of these high-affinity receptors is not needed for surveillance. Strikingly, baseline interleukin-1β release was increased fivefold while release evoked by LPS and ATP was not affected in the P2Y13 KO, and microglia in intact P2Y13 KO brains were not detectably activated. Thus, P2Y13 receptors play a role different from that of their close relative P2Y12 in regulating microglial morphology and function.
Collapse
Affiliation(s)
- Vasiliki Kyrargyri
- Department of Neuroscience, Physiology, & PharmacologyUniversity College LondonLondonUK
- Department of Immunology, Laboratory of Molecular GeneticsHellenic Pasteur InstituteAthensGreece
| | - Christian Madry
- Department of Neuroscience, Physiology, & PharmacologyUniversity College LondonLondonUK
- Institute of NeurophysiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | - Ali Rifat
- Institute of NeurophysiologyCharité – Universitätsmedizin BerlinBerlinGermany
| | | | - Steffan P. Jones
- Department of Neuroscience, Physiology, & PharmacologyUniversity College LondonLondonUK
| | - Victor T. T. Chan
- Department of Neuroscience, Physiology, & PharmacologyUniversity College LondonLondonUK
| | - Yajing Xu
- Department of Neuroscience, Physiology, & PharmacologyUniversity College LondonLondonUK
| | - Bernard Robaye
- Faculté de MédecineUniversité Libre de BruxellesBruxellesBelgium
| | - David Attwell
- Department of Neuroscience, Physiology, & PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
9
|
Garcia C, Maurel-Ribes A, Nauze M, N'Guyen D, Martinez LO, Payrastre B, Sénard JM, Galés C, Pons V. Deciphering biased inverse agonism of cangrelor and ticagrelor at P2Y 12 receptor. Cell Mol Life Sci 2019; 76:561-576. [PMID: 30406277 PMCID: PMC11105710 DOI: 10.1007/s00018-018-2960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/15/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
Abstract
P2Y12 receptor (P2Y12-R) is one of the major targets for drug inhibiting platelet aggregation in the treatment/prevention of arterial thrombosis. However, the clinical use of P2Y12-R antagonists faces some limitations, such as a delayed onset of action (clopidogrel) or adverse effect profile (ticagrelor, cangrelor), justifying the development of a new generation of P2Y12-R antagonists with a better clinical benefit-risk balance. Although the recent concept of biased agonism offers the possibility to alleviate undesirable adverse effects while preserving therapeutic outcomes, it has never been explored at P2Y12-R. For the first time, using highly sensitive BRET2-based probes, we accurately delineated biased ligand efficacy at P2Y12-R in living HEK293T cells on G protein activation and downstream effectors. We demonstrated that P2Y12-R displayed constitutive Gi/o-dependent signaling that is impaired by the R122C mutation, previously associated with a bleeding disorder. More importantly, we reported the biased inverse agonist efficacy of cangrelor and ticagrelor that could underlie their clinical efficacy. Our study points out that constitutive P2Y12-R signaling is a normal feature of the receptor that might be essential for platelets to respond faster to a vessel injury. From a therapeutic standpoint, our data suggest that the beneficial advantages of antiplatelet drugs might be more related to inverse agonism at P2Y12-R than to antagonism of ADP-mediated signaling. In the future, deciphering P2Y12-R constitutive activity should allow the discovery of more selective biased P2Y12-R blockers demonstrating therapeutic advantages over classical antiplatelet drugs by improving therapeutic outcomes and concomitantly relieving undesirable adverse effects.
Collapse
Affiliation(s)
- Cédric Garcia
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, 31000, Toulouse, France
| | - Agnès Maurel-Ribes
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, 31000, Toulouse, France
| | - Michel Nauze
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Du N'Guyen
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Laurent O Martinez
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Bernard Payrastre
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, 31000, Toulouse, France
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Jean-Michel Sénard
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
- Service de Pharmacologie Clinique, Centre Hospitalier Universitaire de Toulouse, Université de Toulouse, 31000, Toulouse, France
| | - Céline Galés
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France
| | - Véronique Pons
- INSERM U1048, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, 1 Avenue Jean Poulhès, BP 84225, 31432, Toulouse Cedex 04, France.
| |
Collapse
|
10
|
Verdier C, Ruidavets JB, Genoux A, Combes G, Bongard V, Taraszkiewicz D, Galinier M, Elbaz M, Ferrières J, Martinez LO, Perret B. Common p2y 13 polymorphisms are associated with plasma inhibitory factor 1 and lipoprotein(a) concentrations, heart rate and body fat mass: The GENES study. Arch Cardiovasc Dis 2019; 112:124-134. [PMID: 30600215 DOI: 10.1016/j.acvd.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/07/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The P2Y13 purinergic receptor regulates hepatic high-density lipoprotein uptake and biliary sterol secretion; it acts downstream of the membrane ecto-F1-adenosine triphosphatase, which generates extracellular adenosine diphosphate that selectively activates P2Y13, resulting in high-density lipoprotein endocytosis. Previous studies have shown that the serum concentration of the F1-adenosine triphosphatase inhibitor inhibitory factor 1 is negatively associated with cardiovascular risk. AIM To evaluate whether p2y13 genetic variants affect cardiovascular risk. METHODS Direct sequencing of the p2y13 coding and flanking regions was performed in a subcohort of 168 men aged 45-74 years with stable coronary artery disease and 173 control subjects from the GENES study. The two most frequent mutations, rs3732757 and rs1466684, were genotyped in 767 patients with coronary artery disease and 789 control subjects, and their association with cardiovascular risk markers was analysed. RESULTS Carriers of the rs3732757 261T and rs1466684 557G alleles represented 9% and 27.5% of the entire population, respectively. The allele frequencies were identical in patients with coronary artery disease and control subjects. The presence of 261T was associated with higher concentrations of plasma lipoprotein A-I and inhibitory factor 1, increased fat mass and a lower heart rate. Moreover, the proportion of patients with coronary artery disease with a pejorative systolic ankle-brachial index was lower in carriers of the 261T allele. In both populations, the 557G allele was associated with increased concentrations of lipoprotein(a), and an allele dose effect was observed. CONCLUSIONS Two frequent p2y13 variants are associated with specific bioclinical markers of cardiovascular risk. Although neither one of these variants appears to be related to the development of atherosclerotic disease, they may modulate the risk of additional cardiovascular complications.
Collapse
Affiliation(s)
- Céline Verdier
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| | - Jean-Bernard Ruidavets
- Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Inserm, UMR 1027, épidémiologie et analyse en santé publique, 31000 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Annelise Genoux
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| | - Guillaume Combes
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| | - Vanina Bongard
- Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Inserm, UMR 1027, épidémiologie et analyse en santé publique, 31000 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Dorota Taraszkiewicz
- Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Michel Galinier
- Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Meyer Elbaz
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Jean Ferrières
- Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Inserm, UMR 1027, épidémiologie et analyse en santé publique, 31000 Toulouse, France; Department of Cardiology, hôpital de Rangueil, CHU de Toulouse, 31400 Toulouse, France
| | - Laurent O Martinez
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France.
| | - Bertrand Perret
- Inserm, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, France; Paul Sabatier University, University of Toulouse, 31330 Toulouse, France; Service de biochimie, Pôle Biologie, Hôpital Purpan, CHU de Toulouse, 31300 Toulouse, France
| |
Collapse
|
11
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
12
|
Cardouat G, Duparc T, Fried S, Perret B, Najib S, Martinez LO. Ectopic adenine nucleotide translocase activity controls extracellular ADP levels and regulates the F 1-ATPase-mediated HDL endocytosis pathway on hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:832-841. [PMID: 28504211 DOI: 10.1016/j.bbalip.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 04/22/2017] [Accepted: 05/09/2017] [Indexed: 11/26/2022]
Abstract
Ecto-F1-ATPase is a complex related to mitochondrial ATP synthase which has been identified as a plasma membrane receptor for apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), and has been shown to contribute to HDL endocytosis in several cell types. On hepatocytes, apoA-I binding to ecto-F1-ATPase stimulates extracellular ATP hydrolysis into ADP, which subsequently activates a P2Y13-mediated HDL endocytosis pathway. Interestingly, other mitochondrial proteins have been found to be expressed at the plasma membrane of several cell types. Among these, adenine nucleotide translocase (ANT) is an ADP/ATP carrier but its role in controlling extracellular ADP levels and F1-ATPase-mediated HDL endocytosis has never been investigated. Here we confirmed the presence of ANT at the plasma membrane of human hepatocytes. We then showed that ecto-ANT activity increases or reduces extracellular ADP level, depending on the extracellular ADP/ATP ratio. Interestingly, ecto-ANT co-localized with ecto-F1-ATPase at the hepatocyte plasma membrane and pharmacological inhibition of ecto-ANT activity increased extracellular ADP level when ecto-F1-ATPase was activated by apoA-I. This increase in the bioavailability of extracellular ADP accordingly translated into an increase of HDL endocytosis on human hepatocytes. This study thus uncovered a new location and function of ANT for which activity at the cell surface of hepatocytes modulates the concentration of extracellular ADP and regulates HDL endocytosis.
Collapse
Affiliation(s)
- G Cardouat
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - T Duparc
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - S Fried
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France
| | - B Perret
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France; Service de Biochimie, Pôle biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - S Najib
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| | - L O Martinez
- Institute of Metabolic and Cardiovascular diseases, I2MC, Inserm, Université de Toulouse, UMR 1048, Toulouse 31000, France.
| |
Collapse
|
13
|
Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An Update on P2Y 13 Receptor Signalling and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:139-168. [PMID: 28815513 DOI: 10.1007/5584_2017_91] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The distribution of nucleotide P2Y receptors across different tissues suggests that they fulfil key roles in a number of physiological and pathological conditions. P2Y13 is one of the latest P2Y receptors identified, a novel member of the Gi-coupled P2Y receptor subfamily that responds to ADP, together with P2Y12 and P2Y14. Pharmacological studies drew attention to this new ADP receptor, with a pharmacology that overlaps that of P2Y12 receptors but with unique features and roles. The P2RY12-14 genes all reside on human chromosome 3 at 3q25.1 and their strong sequence homology supports their evolutionary origin through gene duplication. Polymorphisms of P2Y13 receptors have been reported in different human populations, yet their consequences remain unknown. The P2Y13 receptor is versatile in its signalling, extending beyond the canonical signalling of a Gi-coupled receptor. Not only can it couple to different G proteins (Gs/Gq) but the P2Y13 receptor can also trigger several intracellular pathways related to the activation of MAPKs (mitogen-activated protein kinases) and the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 axis. Moreover, the availability of P2Y13 receptor knockout mice has highlighted the specific functions in which it is involved, mainly in the regulation of cholesterol and glucose metabolism, bone homeostasis and aspects of central nervous system function like pain transmission and neuroprotection. This review summarizes our current understanding of this elusive receptor, not only at the pharmacological and molecular level but also, in terms of its signalling properties and specific functions, helping to clarify the involvement of P2Y13 receptors in pathological situations.
Collapse
Affiliation(s)
- Raquel Pérez-Sen
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Rosa Gómez-Villafuertes
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Felipe Ortega
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Javier Gualix
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain
| | - Esmerilda G Delicado
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| | - María Teresa Miras-Portugal
- Departamento de Bioquímica y Biología Molecular IV, Facultad de Veterinaria, Instituto Universitario de Investigación en Neuroquímica, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Universidad Complutense Madrid, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Boal F, Puhar A, Xuereb JM, Kunduzova O, Sansonetti PJ, Payrastre B, Tronchère H. PI5P Triggers ICAM-1 Degradation in Shigella Infected Cells, Thus Dampening Immune Cell Recruitment. Cell Rep 2016; 14:750-759. [PMID: 26776508 DOI: 10.1016/j.celrep.2015.12.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/19/2015] [Accepted: 12/16/2015] [Indexed: 12/13/2022] Open
Abstract
Shigella flexneri, the pathogen responsible for bacillary dysentery, has evolved multiple strategies to control the inflammatory response. Here, we show that Shigella subverts the subcellular trafficking of the intercellular adhesion molecule-1 (ICAM-1), a key molecule in immune cell recruitment, in a mechanism dependent on the injected bacterial enzyme IpgD and its product, the lipid mediator PI5P. Overexpression of IpgD, but not a phosphatase dead mutant, induced the internalization and the degradation of ICAM-1 in intestinal epithelial cells. Remarkably, addition of permeant PI5P reproduced IpgD effects and led to the inhibition of neutrophil recruitment. Finally, these results were confirmed in an in vivo model of Shigella infection where IpgD-dependent ICAM-1 internalization reduced neutrophil adhesion. In conclusion, we describe here an immune evasion mechanism used by the pathogen Shigella to divert the host cell trafficking machinery in order to reduce immune cell recruitment.
Collapse
Affiliation(s)
- Frédéric Boal
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Andrea Puhar
- INSERM U1202, Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France; The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR) and Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| | - Jean-Marie Xuereb
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Oksana Kunduzova
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France
| | - Philippe J Sansonetti
- INSERM U1202, Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | - Bernard Payrastre
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France; CHU de Toulouse, Laboratoire d'Hématologie, 31059 Toulouse Cedex 03, France
| | - Hélène Tronchère
- INSERM U1048, I2MC and Université Paul Sabatier, 31432 Toulouse, France.
| |
Collapse
|
15
|
Ferrari D, Vitiello L, Idzko M, la Sala A. Purinergic signaling in atherosclerosis. Trends Mol Med 2015; 21:184-92. [PMID: 25637413 DOI: 10.1016/j.molmed.2014.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 11/19/2014] [Accepted: 12/19/2014] [Indexed: 12/28/2022]
Abstract
Cell surface expression of specific receptors and ecto-nucleotidases makes extracellular nucleotides such as ATP, ADP, UTP, and adenosine suitable as signaling molecules for physiological and pathological events, including tissue stress and damage. Recent data have revealed the participation of purinergic signaling in atherosclerosis, depicting a scenario in which, in addition to some exceptions reflecting dual effects of individual receptor subtypes, adenosine and most P1 receptors, as well as ecto-nucleotidases, show a protective, anti-atherosclerotic function. By contrast, P2 receptors promote atherosclerosis. In consideration of these findings, modulation of purinergic signaling would represent an innovative and valuable tool to counteract atherosclerosis. We summarize recent developments on the participation of the purinergic network in atheroma formation and evolution.
Collapse
Affiliation(s)
- Davide Ferrari
- Department of Life Sciences and Biotechnology, Biotechnology Centre, University of Ferrara, 44121 Ferrara, Italy.
| | - Laura Vitiello
- Laboratory of Molecular and Cellular Immunology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Pisana, 00166 Rome, Italy
| | - Marco Idzko
- Department of Pneumology, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany
| | - Andrea la Sala
- Laboratory of Molecular and Cellular Immunology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), San Raffaele Pisana, 00166 Rome, Italy
| |
Collapse
|
16
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
17
|
Fiebich BL, Akter S, Akundi RS. The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 2014; 8:260. [PMID: 25225473 PMCID: PMC4150257 DOI: 10.3389/fncel.2014.00260] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/14/2014] [Indexed: 11/13/2022] Open
Abstract
Brain inflammation is a common occurrence following responses to varied insults such as bacterial infections, stroke, traumatic brain injury and neurodegenerative disorders. A common mediator for these varied inflammatory responses is prostaglandin E2 (PGE2), produced by the enzymatic activity of cyclooxygenases (COX) 1 and 2. Previous attempts to reduce neuronal inflammation through COX inhibition, by use of nonsteroidal anti-inflammatory drugs (NSAIDs), have met with limited success. We are proposing the two-hit model for neuronal injury—an initial localized inflammation mediated by PGE2 (first hit) and the simultaneous release of adenosine triphosphate (ATP) by injured cells (second hit), which significantly enhances the inflammatory response through increased synthesis of PGE2. Several evidences on the role of exogenous ATP in inflammation have been reported, including contrary instances where extracellular ATP reduces inflammatory events. In this review, we will examine the current literature on the role of P2 receptors, to which ATP binds, in modulating inflammatory reactions during neurodegeneration. Targeting the P2 receptors, therefore, provides a therapeutic alternative to reduce inflammation in the brain. P2 receptor-based anti-inflammatory drugs (PBAIDs) will retain the activities of essential COX enzymes, yet will significantly reduce neuroinflammation by decreasing the enhanced production of PGE2 by extracellular ATP.
Collapse
Affiliation(s)
- Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Neurochemistry Research Laboratory, University of Freiburg Medical School Freiburg, Germany
| | - Shamima Akter
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University New Delhi, Delhi, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University New Delhi, Delhi, India
| |
Collapse
|