1
|
Allen BG, Merlen C, Branco AF, Pétrin D, Hébert TE. Understanding the impact of nuclear-localized GPCRs on cellular signalling. Cell Signal 2024; 123:111358. [PMID: 39181220 DOI: 10.1016/j.cellsig.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
G protein-coupled receptors (GPCRs) have historically been associated with signalling events driven from the plasma membrane. More recently, signalling from endosomes has been recognized as a feature of internalizing receptors. However, there was little consideration given to the notion that GPCRs can be targeted to distinct subcellular locations that did not involve an initial trafficking to the cell surface. Here, we focus on the evidence for and the potential impact of GPCR signalling specifically initiated from the nuclear membrane. We also discuss the possibilities for selectively targeting this and other internal pools of receptors as novel venues for drug discovery.
Collapse
Affiliation(s)
- Bruce G Allen
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada; Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | - Ana F Branco
- Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
2
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
3
|
Yang H, Li GP, Liu Q, Zong SB, Li L, Xu ZL, Zhou J, Cao L, Wang ZZ, Zhang QC, Li M, Fan QR, Hu HF, Xiao W. Neuroprotective effects of Ginkgolide B in focal cerebral ischemia through selective activation of prostaglandin E2 receptor EP4 and the downstream transactivation of epidermal growth factor receptor. Phytother Res 2021; 35:2727-2744. [PMID: 33452698 DOI: 10.1002/ptr.7018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 11/07/2022]
Abstract
The present study was undertaken to identify whether prostaglandin E2 receptor is the potential receptor/binding site for Ginkgolide A, Ginkgolide B, Ginkgolide K, and Bilobalide, the four main ingredients of the Ginkgo biloba L., leaves. Using functional assays, we identified EP4, coupled with Gs protein, as a target of Ginkgolide B. In human neuroblastoma SH-SY5Y cells suffered from oxygen-glucose deprivation/reperfusion, Ginkgolide B-activated PKA, Akt, and ERK1/2 as well as Src-mediated transactivation of epidermal growth factor receptor. These resulted in downstream signaling pathways, which enhanced cell survival and inhibited apoptosis. Knockdown of EP4 prevented Ginkgolide B-mediated Src, epidermal growth factor receptor (EGFR), Akt, and ERK1/2 phosphorylation and neuroprotective effects. Moreover, Src inhibitor prevented Ginkgolide B-mediated EGFR transactivation and the downstream Akt and ERK1/2 activation, while the phosphorylation of PKA induced by Ginkgolide B was not affected, indicating Ginkgolide B might transactivate EGFR in a ligand-independent manner. EP4 knockdown in a rat middle cerebral artery occlusion (MCAO) model prevented Ginkgolide B-mediated infarct size reduction and neurological assessment improvement. At the same time, the increased expressions of p-Akt, p-ERK1/2, p-PKA, p-Src, and p-EGFR and the deceased expression of cleaved capases-3 induced by Ginkgolide B in cerebral cortex were blocked due to EP4 knockdown. In conclusion, Ginkgolide B exerts neuroprotective effects in rat MCAO model through the activation of EP4 and the downstream transactivation of EGFR.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Gui-Ping Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qiu Liu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Shao-Bo Zong
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhi-Liang Xu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Jun Zhou
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Liang Cao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Zhen-Zhong Wang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Quan-Chang Zhang
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Ming Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Qi-Ru Fan
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Han-Fei Hu
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutic Process, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang, China
| |
Collapse
|
4
|
Intracellular prostaglandin E2 contributes to hypoxia-induced proximal tubular cell death. Sci Rep 2021; 11:7047. [PMID: 33782420 PMCID: PMC8007803 DOI: 10.1038/s41598-021-86219-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Proximal tubular cells (PTC) are particularly vulnerable to hypoxia-induced apoptosis, a relevant factor for kidney disease. We hypothesized here that PTC death under hypoxia is mediated by cyclo-oxygenase (COX-2)-dependent production of prostaglandin E2 (PGE2), which was confirmed in human proximal tubular HK-2 cells because hypoxia (1% O2)-induced apoptosis (i) was prevented by a COX-2 inhibitor and by antagonists of prostaglandin (EP) receptors and (ii) was associated to an increase in intracellular PGE2 (iPGE2) due to hypoxia-inducible factor-1α-dependent transcriptional up-regulation of COX-2. Apoptosis was also prevented by inhibitors of the prostaglandin uptake transporter PGT, which indicated that iPGE2 contributes to hypoxia-induced apoptosis (on the contrary, hypoxia/reoxygenation-induced PTC death was exclusively due to extracellular PGE2). Thus, iPGE2 is a new actor in the pathogenesis of hypoxia-induced tubular injury and PGT might be a new therapeutic target for the prevention of hypoxia-dependent lesions in renal diseases.
Collapse
|
5
|
Madrigal‐Martínez A, Constâncio V, Lucio‐Cazaña FJ, Fernández‐Martínez AB. PROSTAGLANDIN E
2
stimulates cancer‐related phenotypes in prostate cancer PC3 cells through cyclooxygenase‐2. J Cell Physiol 2018; 234:7548-7559. [DOI: 10.1002/jcp.27515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 09/10/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Vera Constâncio
- Departamento de Biología de Sistemas Universidad de Alcalá Madrid Spain
| | | | | |
Collapse
|
6
|
Zepeda-Orozco D, Wen HM, Hamilton BA, Raikwar NS, Thomas CP. EGF regulation of proximal tubule cell proliferation and VEGF-A secretion. Physiol Rep 2017; 5:5/18/e13453. [PMID: 28963126 PMCID: PMC5617933 DOI: 10.14814/phy2.13453] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 11/24/2022] Open
Abstract
Proximal tubule cell (PTC) proliferation is critical for tubular regeneration and recovery from acute kidney injury. Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF‐A) are important for the maintenance of tubulointerstitial integrity and can stimulate PTC proliferation. We utilized HK‐2 cells, an immortalized human PTC line, to characterize the EGF‐dependent regulation of VEGF‐A secretion and proliferation in PTCs. We demonstrate that EGF stimulates VEGF‐A secretion via the EGF receptor (EGFR) and stimulates cell proliferation via activation of the VEGF receptor, VEGFR‐2. EGFR activation promotes MAPK (ERK1/2) activation and HIF‐1α expression, which are required for basal and EGF‐stimulated VEGF‐A secretion. EGF also stimulates the phosphorylation of P70S6 kinase (P70S6K), the downstream target of mTORC1. Rapamycin decreased basal and EGF stimulated HIF‐1α and enhanced MAPK (ERK1/2) activation, while MAPK (ERK/12) inhibition downregulated HIF‐1α expression and the phosphorylation of p70S6K. EGF stimulation of p70S6K was also independent of p‐AKT. Inhibition of the mTORC1 pathway with rapamycin abolished phosphorylation of p70S6K but had no effect on VEGF‐A secretion, indicating that EGF‐stimulated VEGF‐A secretion did not require mTORC1 pathway activation. We demonstrate evidence of a complex crosstalk between the MAPK/ERK and mTORC1 pathways, wherein MAPK (ERK1/2) activation stimulates p‐P70S6K, while p‐P70S6K activation seems to inhibit MAPK (ERK1/2) in EGF‐treated HK‐2 cells. Our results suggest that EGF stimulates MAPK (ERK1/2) in HK‐2 cells, which in turn increases HIF‐1α expression and VEGF‐A secretion, indicating that VEGF‐A mediates EGF‐stimulated cell proliferation as an autocrine proximal tubular epithelial cell growth factor.
Collapse
Affiliation(s)
- Diana Zepeda-Orozco
- Division of Pediatric Nephrology, Stead Family Department of Pediatrics, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Hsiang M Wen
- Division of Pediatric Nephrology, Stead Family Department of Pediatrics, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Bradley A Hamilton
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Nandita S Raikwar
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Christie P Thomas
- Division of Pediatric Nephrology, Stead Family Department of Pediatrics, Dialysis and Transplantation, University of Iowa Carver College of Medicine, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa.,VA Medical Center, Iowa City, Iowa
| |
Collapse
|
7
|
Paulino N, Paulino AS, Diniz SN, de Mendonça S, Gonçalves ID, Faião Flores F, Santos RP, Rodrigues C, Pardi PC, Quincoces Suarez JA. Evaluation of the anti-inflammatory action of curcumin analog (DM1): Effect on iNOS and COX-2 gene expression and autophagy pathways. Bioorg Med Chem 2016; 24:1927-35. [PMID: 27010501 DOI: 10.1016/j.bmc.2016.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 02/07/2023]
Abstract
This work describes the anti-inflammatory effect of the curcumin-analog compound, sodium 4-[5-(4-hydroxy-3-methoxyphenyl)-3-oxo-penta-1,4-dienyl]-2-methoxy-phenolate (DM1), and shows that DM1 modulates iNOS and COX-2 gene expression in cultured RAW 264.7 cells and induces autophagy on human melanoma cell line A375.
Collapse
Affiliation(s)
- Niraldo Paulino
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil.
| | - Amarilis Scremin Paulino
- Universidade Federal de Santa Catarina, Departamento de Ciências Farmacêuticas, Campus Universitário Trindade, Florianópolis, SC CEP 88040-400, Brazil
| | - Susana N Diniz
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Sergio de Mendonça
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Ivair D Gonçalves
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Fernanda Faião Flores
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Cidade Universitária, Butantã, São Paulo, SP CEP 05508-900, Brazil
| | - Reginaldo Pereira Santos
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Carina Rodrigues
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - Paulo Celso Pardi
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| | - José Agustin Quincoces Suarez
- Programa de Pós-graduação em Farmácia, Universidade Anhanguera de São Paulo-UNIAN-SP, Programa de Mestrado Profissional em Farmácia e Programa de Mestrado e Doutorado em Biotecnologia e Inovação em Saúde, Rua Maria Cândida, 1813-Vila Guilherme, São Paulo, SP CEP 02071-013, Brazil
| |
Collapse
|
8
|
Intracellular prostaglandin E2 mediates cisplatin-induced proximal tubular cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:293-302. [DOI: 10.1016/j.bbamcr.2015.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 01/15/2023]
|
9
|
Fernández-Martínez AB, Lucio-Cazaña J. Intracellular EP2 prostanoid receptor promotes cancer-related phenotypes in PC3 cells. Cell Mol Life Sci 2015; 72:3355-73. [PMID: 25828575 PMCID: PMC11113933 DOI: 10.1007/s00018-015-1891-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/10/2015] [Accepted: 03/19/2015] [Indexed: 12/23/2022]
Abstract
Prostaglandin E2 (PGE2) and hypoxia-inducible factor-1α (HIF-1α) affect many mechanisms that have been involved in the pathogenesis of prostate cancer (PC). HIF-1α, which is up-regulated by PGE2 in LNCaP cells and PC3 cells, has been shown to contribute to metastasis and chemo-resistance of castrate-resistant PC (a lethal form of PC) and to promote in PC cells migration, invasion, angiogenesis and chemoresistance. The selective blockade of PGE2-EP2 signaling pathway in PC3 cells results in inhibition of cancer cell proliferation and invasion. PGE2 affects many mechanisms that have been shown to play a role in carcinogenesis such as proliferation, apoptosis, migration, invasion and angiogenesis. Recently, we have found in PC3 cells that most of these PGE2-induced cancer-related features are due to intracellular PGE2 (iPGE2). Here, we aimed to study in PC3 cells the role of iPGE2-intracellular EP2 (iEP2)-HIF-1α signaling in several events linked to PC progression using an experimental approach involving pharmacological inhibition of the prostaglandin uptake transporter and EGFR and pharmacological and genetic modulation of EP2 receptor and HIF-1α. We found that iPGE2 increases HIF-1α expression through iEP2-dependent EGFR transactivation and that inhibition of any of the axis iEP2-EGFR-HIF-1α in cells treated with PGE2 or EP2 agonist results in prevention of the increase in PC3 cell proliferation, adhesion, migration, invasion and angiogenesis in vitro. Of note, PGE2 induced EP2 antagonist-sensitive DNA synthesis in nuclei isolated from PC3 cells, which indicates that they have functional EP2 receptors. These results suggest that PGE2-EP2 dependent intracrine mechanisms involving EGFR and HIF-1α play a role in PC.
Collapse
Affiliation(s)
- Ana Belén Fernández-Martínez
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, 28871, Madrid, Spain,
| | | |
Collapse
|