1
|
Zhang Z, Song W, Chen W, Cui W, Chen W, Zhang Q, Ji W, Wang Y, Wang J, Yu W, Yu M, Hao T, Jiang H. Unveiling hotspots of emerging research in the miRNA-related mechanism underlying cancer through comprehensive bibliometric analysis with implications for precision medicine and non-invasive diagnostics. Front Oncol 2025; 14:1521251. [PMID: 39882450 PMCID: PMC11774920 DOI: 10.3389/fonc.2024.1521251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/06/2024] [Indexed: 01/31/2025] Open
Abstract
Background and objective MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential. Methods A bibliometric analysis of articles, spanning from 2014 to 2024, was carried out with the major focus laid on four types of cancers. The Co-citation network analysis, keyword bursts, and the collaborative pattern were done in VOSviewer and CiteSpace, respectively. Results Colorectal cancer had the highest publication volume, with research primarily focusing on gene expression, extracellular vesicles, and non-coding RNAs. Prostate cancer showed a shift toward clinical applications, while leukemia and brain tumor research, though less extensive, highlighted miRNA's potential in early diagnosis and treatment. Co-citation analysis identified emerging research collaborations and key contributors. Conclusion miRNA plays a pivotal role in cancer diagnosis, biomarker development, and therapeutic interventions. With advancements in non-invasive diagnostics and personalized medicine, miRNA offers significant potential for clinical applications. Future research should focus on miRNA's role in drug resistance and combination therapies to accelerate its clinical translation.
Collapse
Affiliation(s)
- Zhirui Zhang
- Binzhou Medical University Hospital, Binzhou Medical University, Binzhou, Shandong, China
| | - Wenhuan Song
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenyu Chen
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenze Cui
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenyi Chen
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Qinheng Zhang
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenwen Ji
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Yinglin Wang
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jiayi Wang
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wenhao Yu
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Mingkun Yu
- Binzhou Medical College Affiliated Traditional Chinese Medicine Hospital, Binzhou, Shandong, China
- Shandong University of Traditional Chinese Medicine, University Science Park, Jinan, Shandong, China
| | - Tao Hao
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hong Jiang
- Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| |
Collapse
|
2
|
Amiri R, Nabi PN, Fazilat A, Roshani F, Nouhi Kararoudi A, Hemmati-Dinarvand M, Valilo M. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Horm Mol Biol Clin Investig 2024:hmbci-2024-0066. [PMID: 39665256 DOI: 10.1515/hmbci-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
One of the biggest challenges of today's society is cancer, which imposes a significant financial, emotional and spiritual burden on human life. Breast cancer (BC) is one of the most common cancers that affects people in society, especially women, and due to advanced treatment strategies and primary prevention, it is still the second cause of cancer-related deaths in society. Various genetic and environmental factors are involved in the development of BC. MicroRNAs (miRNA)s are non-coding RNAs, that the degradation or inhibition of them plays an important role in the prevention or development of cancer by modulating many cellular pathways including apoptosis, drug resistance, and tumorigenesis. Drug resistance is one of the important defense mechanisms of cancer cells against anticancer drugs and is considered one of the main causes of cancer treatment failure. Different miRNAs, including mir-7, mir-21, mir-31, and mir-124 control different cell activities, including drug resistance, through different pathways, including PI3K/AKT/mTOR, TGF-β, STAT3, and NF-kB. Therefore, cell signaling pathways are one of the important factors that miRNAs control cellular activities. Hence, in this study, we decided to highlight an overview of the relationship between miRNAs and signaling pathways in the development of drug resistance in BC.
Collapse
Affiliation(s)
- Reza Amiri
- Nargund College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Roshani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Valilo
- Department of Biochemistry, 37555 Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
3
|
Shen J, He Y, Li S, Chen H. Crosstalk of methylation and tamoxifen in breast cancer (Review). Mol Med Rep 2024; 30:180. [PMID: 39129315 PMCID: PMC11338244 DOI: 10.3892/mmr.2024.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
Tamoxifen is a widely used anti‑estrogen drug in the endocrine therapy of breast cancer (BC). It blocks estrogen signaling by competitively binding to estrogen receptor α (ERα), thereby inhibiting the growth of BC cells. However, with the long‑term application of tamoxifen, a subset of patients with BC have shown resistance to tamoxifen, which leads to low overall survival and progression‑free survival. The molecular mechanism of resistance is mainly due to downregulation of ERα expression and abnormal activation of the PI3K/AKT/mTOR signaling pathway. Moreover, the downregulation of targeted gene expression mediated by DNA methylation is an important regulatory mode to control protein expression. In the present review, methylation and tamoxifen are briefly introduced, followed by a focus on the effect of methylation on tamoxifen resistance and sensitivity. Finally, the clinical application of methylation for tamoxifen is described, including its use as a prognostic indicator. Finally, it is hypothesized that when methylation is used in combination with tamoxifen, it could recover the resistance of tamoxifen.
Collapse
Affiliation(s)
- Jin Shen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Yan He
- Department of Neurology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Shengpeng Li
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| | - Huimin Chen
- Department of Rehabilitation, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
4
|
Nagy Z, Jeselsohn R. ESR1 fusions and therapeutic resistance in metastatic breast cancer. Front Oncol 2022; 12:1037531. [PMID: 36686845 PMCID: PMC9848494 DOI: 10.3389/fonc.2022.1037531] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/22/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the most frequent female malignant tumor, and the leading cause of cancer death in women worldwide. The most common subtype of breast cancer is hormone receptor positive that expresses the estrogen receptor (ER). Targeting ER with endocrine therapy (ET) is the current standard of care for ER positive (ER+) breast cancer, reducing mortality by up to 40% in early- stage disease. However, resistance to ET represents a major clinical challenge for ER+ breast cancer patients leading to disease recurrence or progression of metastatic disease. Salient drivers of ET resistance are missense mutations in the ER gene (ESR1) leading to constitutive transcriptional activity and reduced ET sensitivity. These mutations are particularly prominent and deleterious in metastatic breast cancer (MBC). In addition to activating ESR1 point mutations, emerging evidence imposes that chromosomal translocation involving the ESR1 gene can also drive ET resistance through the formation of chimeric transcription factors with constitutive transcriptional activity. Although these ESR1 gene fusions are relatively rare, they are enriched in ET resistant metastatic disease. This review discusses the characteristics of ER fusion proteins and their association with clinical outcomes in more aggressive and metastatic breast cancer. The structure and classification of ER fusion proteins based on function and clinical significance are also addressed. Finally, this review summarizes the metastatic phenotypes exhibited by the ER fusion proteins and their role in intrinsic ET resistance.
Collapse
Affiliation(s)
- Zsuzsanna Nagy
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rinath Jeselsohn, ; Zsuzsanna Nagy,
| | - Rinath Jeselsohn
- Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Susan F. Smith Center for Women’s Cancers, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
- *Correspondence: Rinath Jeselsohn, ; Zsuzsanna Nagy,
| |
Collapse
|
5
|
Wang X, Yao S, Luo G, Zhou Y, Fang Q. Downregulation of RPS14 inhibits the proliferation and metastasis of estrogen receptor-positive breast cancer cells. Anticancer Drugs 2021; 32:1019-1028. [PMID: 34261921 DOI: 10.1097/cad.0000000000001112] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ribosomal protein S14 (RPS14) is a component of the 40S ribosomal subunit and is considered to be indispensable for ribosomal biogenesis. Previously, we found that RPS14 was significantly downregulated in estrogen receptor-positive (ER+) breast cancer cells following treatment with 4-hydroxytamoxifen (4-OH-TAM). However, its role in breast cancer remains poorly understood. In the present study, we sought to demonstrate, for the first time, that RPS14 is highly expressed in ER+ breast cancer tissues and its downregulation can significantly inhibit the proliferation, cycle, and metastasis of ER+ breast cancer cells, as well as induce cell apoptosis. Quantitative RT-PCR and western blotting were used to determine the expression of target genes. Herein, lentivirus-mediated small hairpin RNA (shRNA) targeting RPS14 was designed to determine the impact of RPS14 knockdown on ER+ breast cancer cells. Further, bioinformatics analysis was used to reveal the significance of differentially expressed genes in RPS14 knockdown breast cancer cells. RPS14 was highly expressed in ER+ breast cancer tissues compared to ER- tissues. The downregulation of RPS14 in two ER+ breast cancer cell lines suppressed cell proliferation, cell cycle and metastasis, and induced apoptosis. Based on bioinformatics analysis, the expression level of several significant genes, such as ASNS, Ret, and S100A4, was altered in breast cancer cells after RPS14 downregulation. Furthermore, the BAG2 and interferon signaling pathways were identified to be significantly activated. The downregulation of RPS14 in ER+ breast cancer cells can inhibit their proliferation and metastasis.
Collapse
Affiliation(s)
| | - Shuang Yao
- The Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Guanghua Luo
- The Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ying Zhou
- The Comprehensive Laboratory, Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Qi Fang
- Department of Breast Surgery
| |
Collapse
|
6
|
Praveenkumar E, Gurrapu N, Kolluri PK, Subhashini NJP, Dokala A. Selective CDK4/6 inhibition of novel 1,2,3-triazole tethered acridinedione derivatives induces G1/S cell cycle transition arrest via Rb phosphorylation blockade in breast cancer models. Bioorg Chem 2021; 116:105377. [PMID: 34670329 DOI: 10.1016/j.bioorg.2021.105377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 11/19/2022]
Abstract
CDK4 & CDK6 are essential regulators of initial cell cycle phases and are always considered an exciting choice for anti-cancer therapy. In the present study, we presented the structure-based rational design & synthesis of a new class of 1,2,3-triazole tethered acridinedione derivatives (6a-l) as selective CDK4/6 inhibitors. Title molecules were prepared as a result of the rate-determining reaction between substituted derivatives of 1-Phenyl-1H-1,2,3-triazole-4-carbaldehydes and substituted dimedones, and the molecules were structurally characterized by IR, 1H,13C NMR, and MS spectral data. All molecules were screened for in-vitro cytotoxic potential against a group of human breast tumor cell lines of distinct origin with differential Rb expression status. Out of entire series of conjugated hexahydro acridinediones, 6g showed potent cytotoxic effect against MCF-7, BT-474, and SK-BR3 cell lines with IC50values 0.173 ± 0.037, 0.117 ± 0.025, and 0.136 ± 0.027 μM, respectively. Further, CDK inhibition assays revealed that the compounds 6g and 6h selectively inhibit CDK4/6 over other CDK-parter complexes of the family against the selected cell line group except for MDA-MB468 cells. Furthermore, apoptotic evaluation and cell cycle analysis determined that compound 6g successfully triggered apoptosis in all examined cell lines except MDA-MB468 through blocking G1/S cell cycle transformation. In addition, compound 6g showed the highest in-vitro selectivity towards CDK4/6 inhibition, even compared with Abemaciclib, and it was also proved for favourable in-vivo pharmacokinetic properties in male albino mice. Furthermore, molecule 6g showed promising tumor growth suppression with lower adverse effects in MCF-7 xenograft mice models, which could competently be considered as a novel chemotherapeutic candidate for a further comprehensive preclinical study involving breast cancer therapy.
Collapse
Affiliation(s)
- E Praveenkumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana 500 007, India
| | - Nirmala Gurrapu
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana 500 007, India
| | - Prashanth Kumar Kolluri
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana 500 007, India
| | - N J P Subhashini
- Department of Chemistry, University College of Science, Osmania University, Hyderabad, Telangana 500 007, India.
| | - Appaji Dokala
- Dept. of Medicinal Chemistry, Center for Molecular Cancer Research (CMCR), Vishnu Institute of Pharmaceutical Education & Research (VIPER), Narsapur, Medak, Telangana, India; Molecular Signaling Group, Center for Cellular and Molecular Biology (CCMB), Tarnaka, Hyderabad, India
| |
Collapse
|
7
|
Tian JH, Liu SH, Yu CY, Wu LG, Wang LB. The Role of Non-Coding RNAs in Breast Cancer Drug Resistance. Front Oncol 2021; 11:702082. [PMID: 34589423 PMCID: PMC8473733 DOI: 10.3389/fonc.2021.702082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/17/2021] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is one of the commonly occurring malignancies in females worldwide. Despite significant advances in therapeutics, the mortality and morbidity of BC still lead to low survival and poor prognosis due to the drug resistance. There are certain chemotherapeutic, endocrine, and target medicines often used for BC patients, including anthracyclines, taxanes, docetaxel, cisplatin, and fluorouracil. The drug resistance mechanisms of these medicines are complicated and have not been fully elucidated. It was reported that non-coding RNAs (ncRNAs), such as micro RNAs (miRNA), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) performed key roles in regulating tumor development and mediating therapy resistance. However, the mechanism of these ncRNAs in BC chemotherapeutic, endocrine, and targeted drug resistance was different. This review aims to reveal the mechanism and potential functions of ncRNAs in BC drug resistance and to highlight the ncRNAs as a novel target for achieving improved treatment outcomes for BC patients.
Collapse
Affiliation(s)
- Jin-Hai Tian
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Shi-Hai Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuan-Yang Yu
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| | - Li-Gang Wu
- Department of Oncology, General Hospital of Ningxia Medical University, Yingchuan, China
| | - Li-Bin Wang
- The Biochip Research Center, General Hospital of Ningxia Medical University, Yinchuan, China, Yinchuan, China.,The Clinical Medicine College of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
8
|
Wang Y, Dong L, Wan F, Chen F, Liu D, Chen D, Long J. MiR-9-3p regulates the biological functions and drug resistance of gemcitabine-treated breast cancer cells and affects tumor growth through targeting MTDH. Cell Death Dis 2021; 12:861. [PMID: 34552061 PMCID: PMC8458456 DOI: 10.1038/s41419-021-04145-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
This study explored the role of MTDH in regulating the sensitivity of breast cancer cell lines to gemcitabine (Gem) and the potential miRNAs targeting MTDH. The expression of MTDH in cancer tissues and cells was detected by immunohistochemical staining or qRT-PCR. The target genes for MTDH were predicted by bioinformatics and further confirmed by dual-luciferase reporter assay and qRT-PCR. Cancer cells were transfected with siMTDH, MTDH, miR-9-3p inhibitor, or mimics and treated by Gem, then CCK-8, colony formation assay, tube formation assay, flow cytometry, wound healing assay, and Transwell were performed to explore the effects of MTDH, miR-9-3p, and Gem on cancer cell growth, apoptosis, migration, and invasion. Expressions of VEGF, p53, cleaved caspase-3, MMP-2, MMP-9, E-Cadherin, N-Cadherin, and Vimentin were determined by Western blot. MTDH was high-expressed in cancer tissues and cells, and the cells with high-expressed MTDH were less sensitive to Gem, while silencing MTDH expression significantly promoted the effect of Gem on inducing apoptosis, inhibiting cell migration, invasion, and growth, and on regulating protein expressions of cancer cells. Moreover, miR-9-3p had a targeted binding relationship with MTDH, and overexpressed miR-9-3p greatly promoted the toxic effects of Gem on cancer cells and expressions of apoptosis-related proteins, whereas overexpressed MTDH partially reversed such effects of overexpressed miR-9-3p. The study proved that miR-9-3p regulates biological functions, drug resistance, and the growth of Gem-treated breast cancer cells through targeting MTDH.
Collapse
Affiliation(s)
- Yike Wang
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Lifeng Dong
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Fang Wan
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangfang Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Dianlei Liu
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Deqin Chen
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingpei Long
- Department of Surgery, Women's Hospital School of Medicine Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Andrikopoulou A, Shalit A, Zografos E, Koutsoukos K, Korakiti AM, Liontos M, Dimopoulos MA, Zagouri F. MicroRNAs as Potential Predictors of Response to CDK4/6 Inhibitor Treatment. Cancers (Basel) 2021; 13:cancers13164114. [PMID: 34439268 PMCID: PMC8391635 DOI: 10.3390/cancers13164114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary MicroRNAs are endogenous non-coding 20–22 nucleotide long RNAs that play a fundamental role in the post-transcriptional control of gene expression. Consequently, microRNAs are involved in multiple biological processes of cancer and could be used as biomarkers with prognostic and predictive significance. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have become a mainstay of treatment for patients with advanced hormone receptor-positive (HR) breast cancer. Despite the initial high response rates, approximately 10% of patients demonstrate primary resistance to CDK4/6 inhibitors while acquired resistance is almost inevitable. Considering the fundamental role of miRNAs in tumorigenesis, we aimed to explore the potential involvement of microRNAs in response to CDK4/6 inhibition in solid tumors. A number of microRNAs were shown to confer resistance or sensitivity to CDK4/6 inhibitors in preclinical studies, although this remains to be proved in human studies. Abstract Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as novel treatment options in the management of advanced or metastatic breast cancer. MicroRNAs are endogenous non-coding 19–22-nucleotide-long RNAs that regulate gene expression in development and tumorigenesis. Herein, we systematically review all microRNAs associated with response to CDK4/6 inhibitors in solid tumors and hematological malignancies. Eligible articles were identified by a search of the MEDLINE and ClinicalTrials.gov databases for the period up to1 January 2021; the algorithm consisted of a predefined combination of the words “microRNAs”, “cancer” and “CDK 4/6 inhibitors”. Overall, 15 studies were retrieved. Six microRNAs (miR-126, miR-326, miR3613-3p, miR-29b-3p, miR-497 and miR-17-92) were associated with sensitivity to CDK4/6 inhibitors. Conversely, six microRNAs (miR-193b, miR-432-5p, miR-200a, miR-223, Let-7a and miR-21) conferred resistance to treatment with CDK4/6 inhibitors. An additional number of microRNAs (miR-124a, miR9, miR200b and miR-106b) were shown to mediate cellular response to CDK4/6 inhibitors without affecting sensitivity to treatment. Collectively, our review provides evidence that microRNAs could serve as predictive biomarkers for treatment with CDK4/6 inhibitors. Moreover, microRNA-targeted therapy could potentially maximize sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Almog Shalit
- Medical School, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Anna-Maria Korakiti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
- Correspondence: ; Tel.: +30-21-0338-1554; Fax: +30-21-3216-2511
| |
Collapse
|
10
|
Belachew EB, Sewasew DT. Molecular Mechanisms of Endocrine Resistance in Estrogen-Positive Breast Cancer. Front Endocrinol (Lausanne) 2021; 12:599586. [PMID: 33841325 PMCID: PMC8030661 DOI: 10.3389/fendo.2021.599586] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
The estrogen receptor is a vital receptor for therapeutic targets in estrogen receptor-positive breast cancer. The main strategy for the treatment of estrogen receptor-positive breast cancers is blocking the estrogen action on estrogen receptors by endocrine therapy but this can be restricted via endocrine resistance. Endocrine resistance occurs due to both de novo and acquired resistance. This review focuses on the mechanisms of the ligand-dependent and ligand-independent pathways and other coregulators, which are responsible for endocrine resistance. It concludes that combinatorial drugs that target different signaling pathways and coregulatory proteins together with endocrine therapy could be a novel therapeutic modality to stop endocrine resistance.
Collapse
Affiliation(s)
- Esmael Besufikad Belachew
- Biology, Mizan Tepi University, Addis Ababa, Ethiopia
- Microbial, Cellular and Molecular Biology Department, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
11
|
Kudela E, Samec M, Koklesova L, Liskova A, Kubatka P, Kozubik E, Rokos T, Pribulova T, Gabonova E, Smolar M, Biringer K. miRNA Expression Profiles in Luminal A Breast Cancer-Implications in Biology, Prognosis, and Prediction of Response to Hormonal Treatment. Int J Mol Sci 2020; 21:ijms21207691. [PMID: 33080858 PMCID: PMC7589921 DOI: 10.3390/ijms21207691] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer, which is the most common malignancy in women, does not form a uniform nosological unit but represents a group of malignant diseases with specific clinical, histopathological, and molecular characteristics. The increasing knowledge of the complex pathophysiological web of processes connected with breast cancercarcinogenesis allows the development of predictive and prognostic gene expressionand molecular classification systems with improved risk assessment, which could be used for individualized treatment. In our review article, we present the up-to-date knowledge about the role of miRNAs and their prognostic and predictive value in luminal A breast cancer. Indeed, an altered expression profile of miRNAs can distinguish not only between cancer and healthy samples, but they can classify specific molecular subtypes of breast cancer including HER2, Luminal A, Luminal B, and TNBC. Early identification and classification of breast cancer subtypes using miRNA expression profilescharacterize a promising approach in the field of personalized medicine. A detection of sensitive and specific biomarkers to distinguish between healthy and early breast cancer patients can be achieved by an evaluation of the different expression of several miRNAs. Consequently, miRNAs represent a potential as good diagnostic, prognostic, predictive, and therapeutic biomarkers for patients with luminal A in the early stage of BC.
Collapse
Affiliation(s)
- Erik Kudela
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
- Correspondence: ; Tel.: +421-9-0230-0017
| | - Marek Samec
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Erik Kozubik
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Tomas Rokos
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Terezia Pribulova
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| | - Eva Gabonova
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Marek Smolar
- Clinic of Surgery and Transplant Center, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (E.G.); (M.S.)
| | - Kamil Biringer
- Department of Obstetrics and Gynecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University of Bratislava, 03601 Martin, Slovakia; (M.S.); (L.K.); (A.L.); (E.K.); (T.R.); (T.P.); (K.B.)
| |
Collapse
|
12
|
c-myc regulates the sensitivity of breast cancer cells to palbociclib via c-myc/miR-29b-3p/CDK6 axis. Cell Death Dis 2020; 11:760. [PMID: 32934206 PMCID: PMC7493901 DOI: 10.1038/s41419-020-02980-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022]
Abstract
Palbociclib, a CDK4/6 inhibitor, has been granted accelerated approval by US FDA for hormone receptor-positive HER2-negative metastatic breast cancer. To determine potential biomarkers of palbociclib sensitivity to assist in patient selection and clinical development, we investigated the effects of palbociclib in a panel of molecularly characterized breast cancer cell lines. We quantified palbociclib sensitivity and c-myc expression in 11 breast cancer cell lines, 124 breast cancer samples, and The Cancer Genome Atlas database. We found non-TNBC subtypes were more sensitive to palbociclib than TNBC. Activation of c-myc led to differential palbociclib sensitivities, and further inhibition of c-myc enhanced palbociclib sensitivity. Moreover, we identified for the first time a c-myc/miR-29b-3p/CDK6 axis in breast cancer that could be responsible for c-myc-induced palbociclib insensitivity, in which c-myc activation resulted in downregulation of miR-29b-3p, further activated CDK6 and inhibited cell-cycle arrest at G1 phase. Moreover, downregulated (inactived) c-myc-induced oncogenic addiction could increase palbociclib efficacy, using both Xenograft model and patient-derived tumor xenograft (PDTX) model. Our finding extends the concept of combined blockade of the CDK4/6 and c-myc signaling pathways to increase palbociclib sensitivity, making c-myc a promising biomarker for palbociclib sensitivity in breast cancer.
Collapse
|
13
|
Zhang F, Ni H, Li X, Liu H, Xi T, Zheng L. LncRNA FENDRR attenuates adriamycin resistance via suppressing MDR1 expression through sponging HuR and miR-184 in chronic myelogenous leukaemia cells. FEBS Lett 2019; 593:1993-2007. [PMID: 31180580 DOI: 10.1002/1873-3468.13480] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/12/2019] [Accepted: 05/31/2019] [Indexed: 07/31/2024]
Abstract
Chemotherapy is a major anticancer therapeutic modality, however, multidrug resistance (MDR) is frequently observed and hinders treatment efficacy. Here, we investigated the role and potential mechanism of the long noncoding RNA (lncRNA) FENDRR in adriamycin resistance of chronic myeloid leukaemia (CML) cells. FENDRR overexpression attenuates adriamycin resistance, as shown by increased Rhodamine 123 accumulation, promotion of cell apoptosis in vitro and suppression of tumour growth in vivo. Mechanistically, we identified that FENDRR reduces the interaction of the RNA-binding protein HuR with MDR1 via acting as a sponge, and miR-184 competitively binds to FENDRR with HuR. Thus, the HuR/FENDRR/miR-184 interaction contributes to MDR1 activity. These findings indicate that FENDRR is a potential target for reversing adriamycin resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Apoptosis
- Cell Line, Tumor
- Cell Proliferation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- ELAV-Like Protein 1/genetics
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Humans
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- MicroRNAs/genetics
- Neoplasm Transplantation
- RNA, Long Noncoding/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Feng Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Haiwei Ni
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medical, School of Pharmacy, Nanjing University of Chinese Medicine, China
| | - Hai Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
14
|
Long F, He Y, Fu H, Li Y, Bao X, Wang Q, Wang Y, Xie C, Lou L. Preclinical characterization of SHR6390, a novel CDK 4/6 inhibitor, in vitro and in human tumor xenograft models. Cancer Sci 2019; 110:1420-1430. [PMID: 30724426 PMCID: PMC6447953 DOI: 10.1111/cas.13957] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the cyclin‐dependent kinase (CDK) 4/6‐retinoblastoma (RB) pathway is an effective therapeutic strategy against cancer. Here, we performed a preclinical investigation of the antitumor activity of SHR6390, a novel CDK4/6 inhibitor. SHR6390 exhibited potent antiproliferative activity against a wide range of human RB‐positive tumor cells in vitro, and exclusively induced G1 arrest as well as cellular senescence, with a concomitant reduction in the levels of Ser780‐phosphorylated RB protein. Compared with the well‐known CDK4/6 inhibitor palbociclib, orally administered SHR6390 led to equivalent or improved tumor efficacy against a panel of carcinoma xenografts, and produced marked tumor regression in some models, in association with sustained target inhibition in tumor tissues. Furthermore, SHR6390 overcame resistance to endocrine therapy and HER2‐targeting antibody in ER‐positive and HER2‐positive breast cancer, respectively. Moreover, SHR6390 combined with endocrine therapy exerted remarkable synergistic antitumor activity in ER‐positive breast cancer. Taken together, our findings indicate that SHR6390 is a novel CDK4/6 inhibitor with favorable pharmaceutical properties for use as an anticancer agent.
Collapse
Affiliation(s)
- Fei Long
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Zhejiang, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ye He
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Haoyu Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yun Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xubin Bao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Quanren Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, Zhejiang Sci-Tech University, Zhejiang, China
| | - Chengying Xie
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liguang Lou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Farhan M, Aatif M, Dandawate P, Ahmad A. Non-coding RNAs as Mediators of Tamoxifen Resistance in Breast Cancers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:229-241. [DOI: 10.1007/978-3-030-20301-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
17
|
Wu Z, Cai L, Lu J, Wang CD, Guan J, Chen X, Wu J, Zheng W, Wu Z, Li Q, Su Z. MicroRNA-93 mediates cabergoline-resistance by targeting ATG7 in prolactinoma. J Endocrinol 2018; 240:JOE-18-0203.R1. [PMID: 30389900 DOI: 10.1530/joe-18-0203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
To date, the management of dopamine agonist (DA)-resistant prolactinomas remains a major clinical problem. Previously, we determined that miRNA-93 expression increases in DA-resistant prolactinomas; however, the role of miRNA-93 in the DA resistance remains largely unexplored. Hence, this study aimed to investigate the susceptibility of tumor cells to cabergoline (CAB) and the autophagy changes in MMQ and GH3 cells after miRNA-93 overexpression or inhibition. We used bioinformatics to identify the potential target of miRNA-93. Subsequently, we analyzed the correlation between miRNA-93 and autophagy-related 7 (ATG7) using protein expression analysis and luciferase assays. Furthermore, the change in the effect of miRNA-93 was measured after ATG7 overexpression. miRNA-93 expression was elevated in DA-resistant prolactinomas, whereas the expression of its identified target, ATG7, was downregulated. miRNA-93 overexpression suppressed the cytotoxic effect of CAB in MMQ and GH3 cells. In contrast, miRNA-93 downregulation enhanced CAB efficiency and promoted cell autophagy, eventually resulting in apoptosis. These results were further confirmed in vivo xenograft models in nude mice. ATG7 overexpression could reverse the inhibitory effect of miRNA-93 on CAB treatment. Taken together, our results suggest that miRNA-93 mediates CAB resistance via autophagy downregulation by targeting ATG7 and serves as a promising therapeutic target for prolactinoma.
Collapse
Affiliation(s)
- Zerui Wu
- Z Wu, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lin Cai
- L Cai, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianglong Lu
- J Lu, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cheng De Wang
- C Wang, neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiaqing Guan
- J Guan, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianbin Chen
- X Chen, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinsen Wu
- J Wu, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiming Zheng
- W Zheng, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhebao Wu
- Z Wu, Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qun Li
- Q Li, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhipeng Su
- Z Su, Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Guney Eskiler G, Cecener G, Dikmen G, Egeli U, Tunca B. Solid lipid nanoparticles: Reversal of tamoxifen resistance in breast cancer. Eur J Pharm Sci 2018; 120:73-88. [PMID: 29719240 DOI: 10.1016/j.ejps.2018.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
The objective of the present study was to investigate the effect of tamoxifen (Tam) loaded solid lipid nanoparticles (SLNs) on MCF7 Tam-resistant breast cancer cells (MCF7-TamR). Tam-SLNs were produced by the hot homogenization method. The characterization studies of Tam-SLNs demonstrated good physical stability with small particle size. The in vitro cytotoxicity results showed that Tam-SLNs enhanced the efficacy of Tam and reversed the acquired Tam resistance by inducing apoptosis, altering the expression levels of specific miRNA and the related apoptosis-associated target-genes in both MCF7 and MCF7-TamR cells without damaging the MCF10A control cells (p < 0.05). In conclusion, we demonstrated a molecular mechanism of the induction of apoptosis by Tam-SLNs in MCF7 and MCF7-TamR cells, and thus, we demonstrated that Tam-SLNs were more effective than Tam. The present study suggests that the use SLNs may be a potential therapeutic strategy to overcome Tam-resistance in breast cancer for clinical use.
Collapse
Affiliation(s)
- Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Gulsah Cecener
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey.
| | - Gokhan Dikmen
- Central Research Laboratory, Application and Research Center (ARUM), Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Unal Egeli
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Uludag University, Bursa, Turkey
| |
Collapse
|
19
|
MicroRNA-132 suppresses cell proliferation in human breast cancer by directly targeting FOXA1. Acta Pharmacol Sin 2018; 39:124-131. [PMID: 28816236 DOI: 10.1038/aps.2017.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has been implicated in cancer. Recently, miR-132 has been reported to be downregulated in the tissues of patients with breast cancer. In this study, we investigated the functional role of miR-132 and its direct target FOXA1 in breast cancer cells. In 30 human breast cancer tissues, FOXA1 was significantly overexpressed and negatively correlated with miR-132 expression. A bioinformatics analysis suggested that FOXA1 was a potential target of miR-132. Furthermore, dual luciferase reporter assays revealed that miR-132 dose-dependently inhibited the luciferase activity of the wt 3'UTR of FOXA1 rather than the mut 3'UTR of FOXA1 in human MDA-MB-468 and SK-BR3 breast cancer cells. Moreover, ectopic miR-132 expression significantly inhibited FOXA1 protein expression, whereas miR-132 knockdown promoted FOXA1 expression in the breast cancer cells. Ectopic miR-132 expression also suppressed proliferation of the breast cancer cells, whereas miR-132 knockdown promoted proliferation of the breast cancer cells, which was reversed by knockdown of FOXA1 expression. We conclude that MiR-132 suppresses proliferation of breast cancer cells at least partially though inhibition of FOXA1. These results suggest that miR-132 and FOXA1 may be potential biomarkers or therapeutic targets in breast cancer.
Collapse
|
20
|
Potential biomarkers of CDK4/6 inhibitors in hormone receptor-positive advanced breast cancer. Breast Cancer Res Treat 2017; 168:287-297. [DOI: 10.1007/s10549-017-4612-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022]
|
21
|
Tamoxifen Resistance: Emerging Molecular Targets. Int J Mol Sci 2016; 17:ijms17081357. [PMID: 27548161 PMCID: PMC5000752 DOI: 10.3390/ijms17081357] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
17β-Estradiol (E2) plays a pivotal role in the development and progression of breast cancer. As a result, blockade of the E2 signal through either tamoxifen (TAM) or aromatase inhibitors is an important therapeutic strategy to treat or prevent estrogen receptor (ER) positive breast cancer. However, resistance to TAM is the major obstacle in endocrine therapy. This resistance occurs either de novo or is acquired after an initial beneficial response. The underlying mechanisms for TAM resistance are probably multifactorial and remain largely unknown. Considering that breast cancer is a very heterogeneous disease and patients respond differently to treatment, the molecular analysis of TAM’s biological activity could provide the necessary framework to understand the complex effects of this drug in target cells. Moreover, this could explain, at least in part, the development of resistance and indicate an optimal therapeutic option. This review highlights the implications of TAM in breast cancer as well as the role of receptors/signal pathways recently suggested to be involved in the development of TAM resistance. G protein—coupled estrogen receptor, Androgen Receptor and Hedgehog signaling pathways are emerging as novel therapeutic targets and prognostic indicators for breast cancer, based on their ability to mediate estrogenic signaling in ERα-positive or -negative breast cancer.
Collapse
|