1
|
Martini A, Cozza A, Di Pasquale Fiasca VM. The Inheritance of Hearing Loss and Deafness: A Historical Perspective. Audiol Res 2024; 14:116-128. [PMID: 38391767 PMCID: PMC10886121 DOI: 10.3390/audiolres14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
If the term "genetics" is a relatively recent proposition, introduced in 1905 by English biologist William Bateson, who rediscovered and spread in the scientific community Mendel's principles of inheritance, since the dawn of human civilization the influence of heredity has been recognized, especially in agricultural crops and animal breeding. And, later, in familial dynasties. In this concise review, we outline the evolution of the idea of hereditary hearing loss, up to the current knowledge of molecular genetics and epigenetics.
Collapse
Affiliation(s)
- Alessandro Martini
- Padova University Research Center "International Auditory Processing Project in Venice (I-APPROVE)", Department of Neurosciences, University of Padua, 35128 Padua, Italy
| | - Andrea Cozza
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | | |
Collapse
|
2
|
Xie S, Liu H, Ma T, Shen S, Zheng H, Yang L, Liu L, Wei Z, Xin W, Zou D, Wang J. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Japonica Rice under Low Nitrogen Stress. Int J Mol Sci 2023; 24:ijms24097699. [PMID: 37175411 PMCID: PMC10178291 DOI: 10.3390/ijms24097699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.
Collapse
Affiliation(s)
- Shupeng Xie
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tianze Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Shen Shen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lichao Liu
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Zhonghua Wei
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Xiong M, Li C, Wang W, Yang B. Protein Structure and Modification of Aquaporins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:15-38. [PMID: 36717484 DOI: 10.1007/978-981-19-7415-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aquaporins (AQPs) allow water molecules and other small, neutral solutes to quickly pass through membrane. The protein structures of AQPs solved by crystallographic methods or cryo-electron microscopy technology show that AQP monomer consists of six membrane-spanning alpha-helices that form the central water-transporting pore. AQP monomers assemble to form tetramers, forming the functional units in the membrane, to transport water or other small molecules. The biological functions of AQPs are regulated by posttranslational modifications, e.g., phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation and protein interactions. Modifications of AQP combined with structural properties contribute to a better functional mechanism of AQPs. Insight into the molecular mechanisms responsible for AQP modifications as well as gating and transport properties proved to be fundamental to the development of new therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Mengyao Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chunling Li
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension and Kidney Research, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Pouyo R, Chung K, Delacroix L, Malgrange B. The ubiquitin-proteasome system in normal hearing and deafness. Hear Res 2022; 426:108366. [PMID: 34645583 DOI: 10.1016/j.heares.2021.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/16/2022]
Abstract
Post-translational modifications of proteins are essential for the proper development and function of many tissues and organs, including the inner ear. Ubiquitination is a highly selective post-translational modification that involves the covalent conjugation of ubiquitin to a substrate protein. The most common outcome of protein ubiquitination is degradation by the ubiquitin-proteasome system (UPS), preventing the accumulation of misfolded, damaged, and excess proteins. In addition to proteasomal degradation, ubiquitination regulates other cellular processes, such as transcription, translation, endocytosis, receptor activity, and subcellular localization. All of these processes are essential for cochlear development and maintenance, as several studies link impairment of UPS with altered cochlear development and hearing loss. In this review, we provide insight into the well-oiled machinery of UPS with a focus on its confirmed role in normal hearing and deafness and potential therapeutic strategies to prevent and treat UPS-associated hearing loss.
Collapse
Affiliation(s)
- Ronald Pouyo
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Keshi Chung
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Laurence Delacroix
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Stem Cells, Developmental Neurobiology Unit, University of Liege, Avenue hippocrate 15, B36 1st Floor B, Liege 4000, Belgium.
| |
Collapse
|
5
|
Kang Y, Zhang K, Sun L, Zhang Y. Regulation and roles of FOXK2 in cancer. Front Oncol 2022; 12:967625. [PMID: 36172141 PMCID: PMC9510715 DOI: 10.3389/fonc.2022.967625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Forkhead box K2 (FOXK2) is a member of the forkhead box transcription factor family that contains an evolutionarily conserved winged-helix DNA-binding domain. Recently, an increasing number of studies have demonstrated that FOXK2 plays an important role in the transcriptional regulation of cancer. Here, we provide an overview of the mechanisms underlying the regulation of FOXK2 expression and function and discuss the roles of FOXK2 in tumor pathogenesis. Additionally, we evaluated the prognostic value of FOXK2 expression in patients with various cancers. This review presents an overview of the different roles of FOXK2 in tumorigenesis and will help inform the design of experimental studies involving FOXK2. Ultimately, the information presented here will help enhance the therapeutic potential of FOXK2 as a cancer target.
Collapse
|
6
|
Bazard P, Pineros J, Acosta AA, Thivierge M, Paganella LR, Zucker S, Mannering FL, Modukuri S, Zhu X, Frisina RD, Ding B. Post-Translational Modifications and Age-related Hearing Loss. Hear Res 2022; 426:108625. [DOI: 10.1016/j.heares.2022.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 08/21/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
|
7
|
Wang B, Wan L, Sun P, Zhang L, Han L, Zhang H, Zhang J, Pu Y, Zhu B. Associations of genetic variation in E3 SUMO-protein ligase CBX4 with noise-induced hearing loss. Hum Mol Genet 2022; 31:2109-2120. [PMID: 35038734 DOI: 10.1093/hmg/ddac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 11/14/2022] Open
Abstract
Noise-induced hearing loss (NIHL) is a multifactorial disease caused by environmental, genetic, and epigenetic variables. SUMOylation is a post-translational modification that regulates biological processes. The objective of this study was to determine the link between genetic variation in the CBX4 and the risk of NIHL. This study applied a case-control design with 588 cases and 582 controls, and the sample was predominantly male (93.76%). The T allele of CBX4 rs1285250 was found to be significantly linked with NIHL (p = 0.002) and showed strong associations in both the codominant and recessive models (TT vs CC, p = 0.005; TT/TC vs CC, p = 0.009). By constructing a mouse model of hearing loss due to noise exposure, changes in hearing thresholds were observed in noise-exposed mice, along with a decrease in the number of cochlear hair cells. Furthermore, noise promotes cochlear hair cell apoptosis by inducing SP1/CBX4 pathway activation. Further functional studies demonstrated that SP1 has an influence on the promoter activity of the CBX4 rs1285250 intron, with the promoter activity of the T allele being higher than that of the C allele. Knockdown of transcription factor SP1 reduced the expression of CBX4 expression and simultaneously reduced apoptosis in HEI-OC1 cells. Together, our findings have shown that CBX4 genetic polymorphism rs1285250 T-allele was associated with increased risk of NIHL and might be used as biomarkers for male workers exposed to noise. Furthermore, we speculate that the CBX4 of rs1285250 T-allele leads to a stronger potential enhancer activity from a predicted gain of stronger SP1 binding.
Collapse
Affiliation(s)
- Boshen Wang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Liu Wan
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Peng Sun
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Ludi Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Lei Han
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Jiangsu Preventive Medicine Association, Nanjing 210009, Jiangsu, China
| | - Hengdong Zhang
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Jiangsu Preventive Medicine Association, Nanjing 210009, Jiangsu, China
| | - Juan Zhang
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yuepu Pu
- Department of Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China
| | - Baoli Zhu
- Department of Prevention and Control for Occupational Disease, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing 210009, Jiangsu, China
- Jiangsu Preventive Medicine Association, Nanjing 210009, Jiangsu, China
- Department of Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 210000, Jiangsu, China
| |
Collapse
|
8
|
Yang S, Ma N, Wu X, Ni H, Gao S, Sun L, Zhou P, Tala, Ran J, Zhou J, Liu M, Li D. CYLD deficiency causes auditory neuropathy due to reduced neurite outgrowth. J Clin Lab Anal 2021; 35:e23783. [PMID: 33934395 PMCID: PMC8183908 DOI: 10.1002/jcla.23783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Auditory neuropathy is a cause of hearing loss that has been studied in a number of animal models. Signal transmission from hair cells to spiral ganglion neurons plays an important role in normal hearing. CYLD is a microtubule-binding protein, and deubiquitinase involved in the regulation of various cellular processes. In this study, we used Cyld knockout (KO) mice and nerve cell lines to examine whether CYLD is associated with auditory neuropathy. METHODS Hearing of Cyld KO mice was studied using the TDT RZ6 auditory physiology workstation. The expression and localization of CYLD in mouse cochlea and cell lines were examined by RT-PCR, immunoblotting, and immunofluorescence. CYLD expression was knocked down in SH-SY5Y cells by shRNAs and in PC12 and N2A cells by siRNAs. Nerve growth factor and retinoic acid were used to induce neurite outgrowth, and the occurrence and length of neurites were statistically analyzed between knockdown and control groups. RESULTS Cyld KO mice had mild hearing impairment. Moreover, CYLD was widely expressed in mouse cochlear tissues and different nerve cell lines. Knocking down CYLD significantly reduced the length and proportion of neurites growing from nerve cells. CONCLUSIONS The abnormal hearing of Cyld KO mice might be caused by a decrease in the length and number of neurites growing from auditory nerve cells in the cochlea, suggesting that CYLD is a key protein affecting hearing.
Collapse
Affiliation(s)
- Song Yang
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Nan Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Xuemei Wu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Siqi Gao
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Lei Sun
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Peng Zhou
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Tala
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Ran
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Shandong Provincial Key Laboratory of Animal Resistance BiologyCollaborative Innovation Center of Cell Biology in Universities of ShandongInstitute of Biomedical SciencesCollege of Life SciencesShandong Normal UniversityJinanChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjinChina
| |
Collapse
|
9
|
Jongkamonwiwat N, Ramirez MA, Edassery S, Wong ACY, Yu J, Abbott T, Pak K, Ryan AF, Savas JN. Noise Exposures Causing Hearing Loss Generate Proteotoxic Stress and Activate the Proteostasis Network. Cell Rep 2020; 33:108431. [PMID: 33238128 PMCID: PMC7722268 DOI: 10.1016/j.celrep.2020.108431] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 09/24/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Exposure to excessive sound causes noise-induced hearing loss through complex mechanisms and represents a common and unmet neurological condition. We investigate how noise insults affect the cochlea with proteomics and functional assays. Quantitative proteomics reveals that exposure to loud noise causes proteotoxicity. We identify and confirm hundreds of proteins that accumulate, including cytoskeletal proteins, and several nodes of the proteostasis network. Transcriptomic analysis reveals that a subset of the genes encoding these proteins also increases acutely after noise exposure, including numerous proteasome subunits. Global cochlear protein ubiquitylation levels build up after exposure to excess noise, and we map numerous posttranslationally modified lysines residues. Several collagen proteins decrease in abundance, and Col9a1 specifically localizes to pillar cell heads. After two weeks of recovery, the cochlea selectively elevates the abundance of the protein synthesis machinery. We report that overstimulation of the auditory system drives a robust cochlear proteotoxic stress response.
Collapse
Affiliation(s)
- Nopporn Jongkamonwiwat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Miguel A Ramirez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Seby Edassery
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ann C Y Wong
- Departments of Surgery and Neuroscience, University of California San Diego and Veterans Administration Medical Center, La Jolla, CA 92093, USA; Translational Neuroscience Facility, Department of Physiology, NSW Australia, Sydney, NSW 2052, Australia
| | - Jintao Yu
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tirzah Abbott
- Northwestern University Atomic and Nanoscale Characterization Experimental (NUANCE) Center, Northwestern University, Evanston, IL 60208, USA
| | - Kwang Pak
- Departments of Surgery and Neuroscience, University of California San Diego and Veterans Administration Medical Center, La Jolla, CA 92093, USA
| | - Allen F Ryan
- Departments of Surgery and Neuroscience, University of California San Diego and Veterans Administration Medical Center, La Jolla, CA 92093, USA
| | - Jeffrey N Savas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Zhang J, Li G, Feng L, Lu H, Wang X. Krüppel-like factors in breast cancer: Function, regulation and clinical relevance. Biomed Pharmacother 2019; 123:109778. [PMID: 31855735 DOI: 10.1016/j.biopha.2019.109778] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer has accounted for the leading cause of cancer-related mortality among women worldwide. Although the progress in its diagnosis and treatment has come at a remarkable pace during the past several decades, there are still a wide array of problems regarding its progression, metastasis and treatment resistance that have not yet been fully clarified. Recently, an increasing number of studies have revealed that some members of Krüppel-like factors(KLFs) are significantly associated with cell proliferation, apoptosis, metastasis, cancer stem cell regulation and prognostic and predictive value for patients in breast cancer, indicating their promising prognostic and predictive potential for breast cancer survival and outcome. In this review, we will summarize our current knowledge of the functions, regulations and clinical relevance of KLFs in breast cancer.
Collapse
Affiliation(s)
- Jianping Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Guangliang Li
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Feng
- Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China
| | - Haiqi Lu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| | - Xian Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China; Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Zhang Y, Xia D, Zhao Q, Zhang G, Zhang Y, Qiu Z, Shen D, Lu C. Label-free proteomic analysis of silkworm midgut infected by Bombyx mori nuclear polyhedrosis virus. J Proteomics 2019; 200:40-50. [PMID: 30904731 DOI: 10.1016/j.jprot.2019.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
Bombyx mori nuclear polyhedrosis virus (BmNPV) is the most damaging virus for the production of silkworm cocoons. Antivirus research continues to be an important aspect of the silkworm industry. Two-dimensional electrophoresis and mass spectrometry have been applied for analyzing the midgut proteome of BmNPV-infected silkworms. In recent years, the isobaric tags for relative and absolute quantitation (iTRAQ) method has frequently been used when studying interaction between BmNPV and Bombyx mori, and useful information has been obtained. In this study, midgut proteins of BmNPV-infected silkworms were extracted from silkworm variety NIL·LVR with anti-BmNPV activity at 48 h, and proteome analysis was carried out using the label-free method. 2196 proteins were identified. Among them, there were 85 differentially expressed proteins, 45 upregulated proteins (immune-activated proteins), 28 downregulated proteins, and six proteins were specific for the BmNPV group and another six specific for control group. Many of the immune-activated proteins have been reported to have innate immune functions, and the downregulated proteins are involved in apoptosis or abnormal cell viability. In conclusion, this study provides evidence for host defense against BmNPV infection by both innate immunity and apoptosis, revealing the potential function of the midgut after oral infection of BmNPV in Bombyx mori. SIGNIFICANCE: Bombyx mori nuclear polyhedrosis virus (BmNPV) has a great impact on the sericulture industry. However, the mechanism of resistance to BmNPV has not been fully elucidated. The silkworm midgut is not only the major organ for food digestion and nutrient absorption but also an immune organ serving as the first line of defense against microbial invasion and proliferation. Here we combined label-free quantitative proteomic, bioinformatics, quantitative real-time PCR and SDS-PAGE analyses and found that BmNPV invasion causes complex protein alterations in the larval midgut of NIL·LVR with anti-BmNPV activity. The results showed that many upregulated differentially expressed proteins have been reported to have innate immune functions and the downregulation proteins are involved in apoptosis or abnormal cell viability. These findings provide evidence for host defense against BmNPV infection by both innate immunity and apoptosis, and reveals the potential function of the midgut after infection of BmNPV in Bombyx mori.
Collapse
Affiliation(s)
- Yuan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Dingguo Xia
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| | - Qiaoling Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Guozheng Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Yeshun Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhiyong Qiu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Dongxu Shen
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; Key Laboratory of Genetic Improvement of Silkworm and Mulberry, Ministry of Agriculture, Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Cheng Lu
- Institute of Sericulture and System Biology, Southwest University, Chongqing 400716, China
| |
Collapse
|
12
|
Abstract
Aquaporins (AQPs ) are a family of membrane water channels that basically function as regulators of intracellular and intercellular water flow. To date, thirteen AQPs , which are distributed widely in specific cell types in various organs and tissues, have been characterized in humans. Four AQP monomers, each of which consists of six membrane-spanning alpha-helices that have a central water-transporting pore, assemble to form tetramers, forming the functional units in the membrane. AQP facilitates osmotic water transport across plasma membranes and thus transcellular fluid movement. The cellular functions of aquaporins are regulated by posttranslational modifications , e.g. phosphorylation, ubiquitination, glycosylation, subcellular distribution, degradation, and protein interactions. Insight into the molecular mechanisms responsible for regulated aquaporin trafficking and synthesis is proving to be fundamental for development of novel therapeutic targets or reliable diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan Er Road, Guangzhou, 510080, China
| | - Weidong Wang
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, 74# Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|