1
|
Rees MJ, Muchtar E, Atallah-Yunes SA, Dasari S, Leung N, Gertz M, Dispenzieri A, McPhail E, Kumar S, Anderson E, Dick C, Kourelis T. Proteomic determinants of renal organ response in light-chain amyloidosis. Amyloid 2025; 32:200-202. [PMID: 39972595 DOI: 10.1080/13506129.2025.2467282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/31/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Affiliation(s)
| | - Eli Muchtar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Nelson Leung
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Morie Gertz
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Ellen McPhail
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Shaji Kumar
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
2
|
Djaziri N, Burel C, Abbad L, Bakey Z, Piedagnel R, Lelongt B. Cleavage of periostin by MMP9 protects mice from kidney cystic disease. PLoS One 2023; 18:e0294922. [PMID: 38039285 PMCID: PMC10691688 DOI: 10.1371/journal.pone.0294922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The matrix metalloproteinase MMP9 influences cellular morphology and function, and plays important roles in organogenesis and disease. It exerts both protective and deleterious effects in renal pathology, depending upon its specific substrates. To explore new functions for MMP9 in kidney cysts formation and disease progression, we generated a mouse model by breeding juvenile cystic kidney (jck) mice with MMP9 deficient mice. Specifically, we provide evidence that MMP9 is overexpressed in cystic tissue where its enzymatic activity is increased 7-fold. MMP9 deficiency in cystic kidney worsen cystic kidney diseases by decreasing renal function, favoring cyst expansion and fibrosis. In addition, we find that periostin is a new critical substrate for MMP9 and in its absence periostin accumulates in cystic lining cells. As periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney diseases, we propose that the control of periostin by MMP9 and its associated intracellular signaling pathways including integrins, integrin-linked kinase and focal adhesion kinase confers to MMP9 a protective effect on the severity of the disease.
Collapse
Affiliation(s)
- Nabila Djaziri
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Cindy Burel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Lilia Abbad
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Zeineb Bakey
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Rémi Piedagnel
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| | - Brigitte Lelongt
- Sorbonne Université, Paris, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche (UMR), Paris, France
| |
Collapse
|
3
|
Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 2022; 18:545-557. [PMID: 35788561 DOI: 10.1038/s41581-022-00590-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 02/08/2023]
Abstract
Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Youhua Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Sari A, Dogan S, Nibali L, Koseoglu S. Evaluation of IL-23p19/Ebi3 (IL-39) gingival crevicular fluid levels in periodontal health, gingivitis, and periodontitis. Clin Oral Investig 2022; 26:7209-7218. [PMID: 35986791 DOI: 10.1007/s00784-022-04681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Objectives
IL-23p19/Ebi3 (IL-39) was described as a new IL-12 family member. The aim of this study is to evaluate the gingival crevicular fluid (GCF) IL-39 levels in periodontal diseases and health and to correlate them to GCF levels of IL-1β and periostin.
Materials and methods
Sixty-six adult patients were included in the study. The study design was comprised of three groups, each containing 22 individuals: the periodontally healthy (PH), gingivitis (G), and periodontitis (P) groups. The clinical periodontal parameters were recorded and GCF samples were collected from the participants. GCF interleukin (IL)-39, IL-1β, and periostin levels were examined using the enzyme-linked immunosorbent assay.
Results
GCF IL‑1β, periostin, and IL-39 levels were higher in the P and G groups than in the PH group (p < 0.001). Positive correlations were detected between all GCF biochemical parameters and clinical periodontal parameters (p < 0.05). In the multivariate generalized linear regression analysis, the P (β = 37.6, 95% CI = 22.9–52.4) and G (β = 28.4, 95% CI = 15.8–41) groups were associated with GCF IL-39 levels (p < 0.001).
Conclusion
IL-39 levels were elevated in the presence of periodontal disease paralleling the increase in IL‑1β and periostin levels. IL-39 may have a role in the periodontal inflammation process.
Statement of clinical relevance
IL-39, a new cytokine from the IL-12 family, can be a possible predictor marker of periodontal diseases.
Collapse
|
5
|
Mizerska-Wasiak M, Płatos E, Cichoń-Kawa K, Demkow U, Pańczyk-Tomaszewska M. The Usefulness of Vanin-1 and Periostin as Markers of an Active Autoimmune Process or Renal Fibrosis in Children with IgA Nephropathy and IgA Vasculitis with Nephritis-A Pilot Study. J Clin Med 2022; 11:jcm11051265. [PMID: 35268356 PMCID: PMC8911128 DOI: 10.3390/jcm11051265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023] Open
Abstract
This study aimed to evaluate the usefulness of vanin-1 and periostin in urine as markers of the autoimmune process in kidneys and renal fibrosis in IgA nephropathy (IgAN) and IgA vasculitis with nephritis (IgAVN). From a group of 194 patients from the Department of Pediatrics and Nephrology, who were included in the Polish Pediatric Registry of IgAN and IgAVN, we qualified 51 patients (20 with IgAN and 31 with IgAVN) between the ages of 3 and 17, diagnosed based on kidney biopsy, for inclusion in the study. All of the patients received glucocorticosteroids, immunosuppressive drugs, or renoprotective therapy. The control group consisted of 18 healthy individuals. The concentration of vanin was significantly higher in the IgAN and IgAVN groups than in the control group. The concentration of vanin/creatinine correlates positively with the level of IgA and negatively with the serum level of C3 at the end of the observation. Urinary vanin-1 concentration may be useful as a marker of the active autoimmune process in IgAN and IgAVN in children, but the study needs confirmation on a larger group of children, along with evaluation of the dynamics of this marker. Urinary periostin is not a good marker for children with IgAN and IgAVN, especially in stage 1 and 2 CKD.
Collapse
Affiliation(s)
- Małgorzata Mizerska-Wasiak
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.C.-K.); (M.P.-T.)
- Correspondence:
| | - Emilia Płatos
- Science Students’ Association at the Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Karolina Cichoń-Kawa
- Department of Pediatrics and Nephrology, Medical University of Warsaw, 02-091 Warsaw, Poland; (K.C.-K.); (M.P.-T.)
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | | |
Collapse
|
6
|
Jang SY, Kim J, Park JT, Liu CY, Korn BS, Kikkawa DO, Lee EJ, Yoon JS. Therapeutic Potential of Targeting Periostin in the Treatment of Graves' Orbitopathy. Front Endocrinol (Lausanne) 2022; 13:900791. [PMID: 35707463 PMCID: PMC9189304 DOI: 10.3389/fendo.2022.900791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Periostin is a matricellular protein that is ubiquitously expressed in normal human tissues and is involved in pathologic mechanism of chronic inflammatory and fibrotic disease. In this study we investigate periostin in the pathogenesis of Graves' orbitopathy (GO) using human orbital adipose tissue obtained from surgery and primary cultured orbital fibroblasts in vitro. POSTN (gene encoding periostin) expression in Graves' orbital tissues and healthy control tissues was studied, and the role of periostin in GO pathologic mechanism was examined through small-interfering RNA (siRNA)-mediated silencing. POSTN gene expression was significantly higher in Graves' orbital tissues than healthy control tissues in real-time PCR results, and immunohistochemical staining revealed higher expression of periostin in Graves' orbital tissues than normal tissues. Silencing periostin using siRNA transfection significantly attenuated TGF-β-induced profibrotic protein production and phosphorylated p38 and SMAD protein production. Knockdown of periostin inhibited interleukin-1 β -induced proinflammatory cytokines production as well as phosphorylation of NF-κB and Ak signaling protein. Adipocyte differentiation was also suppressed in periostin-targeting siRNA transfected GO cells. We hypothesize that periostin contributes to the pathogenic process of inflammation, fibrosis and adipogenesis of GO. Our study provides in vitro evidence that periostin may be a novel potential therapeutic target for the treatment of GO.
Collapse
Affiliation(s)
- Sun Young Jang
- Department of Ophthalmology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, South Korea
| | - Jinjoo Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jung Tak Park
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul, South Korea
| | - Catherine Y. Liu
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Bobby S. Korn
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Don O. Kikkawa
- Division of Oculofacial Plastic and Reconstructive Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Eun Jig Lee
- Division of Endocrinology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Jin Sook Yoon,
| |
Collapse
|
7
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
8
|
Ono J, Takai M, Kamei A, Azuma Y, Izuhara K. Pathological Roles and Clinical Usefulness of Periostin in Type 2 Inflammation and Pulmonary Fibrosis. Biomolecules 2021; 11:1084. [PMID: 34439751 PMCID: PMC8391913 DOI: 10.3390/biom11081084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Periostin is known to be a useful biomarker for various diseases. In this article, we focus on allergic diseases and pulmonary fibrosis, for which we and others are now developing detection systems for periostin as a biomarker. Biomarker-based precision medicine in the management of type 2 inflammation and fibrotic diseases since heterogeneity is of utmost importance. Periostin expression is induced by type 2 cytokines (interleukin-4/-13) or transforming growth factor-β, and plays a vital role in the pathogenesis of allergic inflammation or interstitial lung disease, respectively, andits serum levels are correlated disease severity, prognosis and responsiveness to the treatment. We first summarise the importance of type 2 biomarker and then describe the pathological role of periostin in the development and progression of type 2 allergic inflammation and pulmonary fibrosis. In addition, then, we summarise the recent development of assay methods for periostin detection, and analyse the diseases in which periostin concentration is elevated in serum and local biological fluids and its usefulness as a biomarker. Furthermore, we describe recent findings of periostin as a biomarker in the use of biologics or anti-fibrotic therapy. Finally, we describe the factors that influence the change in periostin concentration under the healthy conditions.
Collapse
Affiliation(s)
- Junya Ono
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Masayuki Takai
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| | - Ayami Kamei
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Yoshinori Azuma
- Shino-Test Corporation, 2-29-14 Oonodai Minami-ku, Sagamihara, Kanagawa 252-0331, Japan; (M.T.); (A.K.); (Y.A.)
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Science, Saga Medical School, 5-1-1 Nabeshima, Saga 849-8501, Japan;
| |
Collapse
|
9
|
Du X, Tao Q, Du H, Zhao Z, Dong Y, He S, Shao R, Wang Y, Han W, Wang X, Zhu Y. Tengdan Capsule Prevents Hypertensive Kidney Damage in SHR by Inhibiting Periostin-Mediated Renal Fibrosis. Front Pharmacol 2021; 12:638298. [PMID: 34084130 PMCID: PMC8167194 DOI: 10.3389/fphar.2021.638298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND: Hypertension-induced renal damage is a serious and complex condition that has not been effectively treated by conventional blood pressure-lowering drugs. Tengdan capsule (TDC) is a China FDA-approved compound herbal medicine for treating hypertension; however, its chemical basis and pharmacological efficacy have not been fully investigated in a preclinical setting. METHODS: High-performance liquid chromatography (HPLC) was used to identify and quantify the major chemical components of TDC extracted from ultrapure water. Adult spontaneously hypertensive rats (SHR) and age/sex-matched Wistar Kyoto normotensive rats (WKY) were both treated with TDC, losartan, or saline for one month, and their blood pressure (BP) was monitored at the same time by tail-cuff BP system. Biochemical indexes such as urine creatinine (CRE) and blood urea nitrogen (BUN) were determined. Kidney tissue sections were examined with (H&E), and Masson staining to evaluate the pathological effect of TDC on SHR’s kidneys. After TDC treatment, the differentially expressed proteins in the kidneys of SHR were identified by the TMT-based quantitative proteomics analysis, which may provide the targets and possible mechanisms of TDC action. In addition, Western blot analysis, RT-qPCR, and ELISA assays were carried out to further verify the proteomics findings. Finally, two different models involving in vitro renal injuries were established using human kidney HEK293 cells; and the molecular mechanism of TDC kidney protection was demonstrated. RESULTS: Seven chemical compounds, namely Notoginsenoside R1, Ginsenoside RG1, Ginsenoside Re, Ginsenoside Rb1, Sodium Danshensu, Protocatechualdehyde, and Salvianolic acid B, were identified and quantified from the water-soluble extracts of TDC by HPLC. In vivo study using rats showed that TDC effectively reduced BP, BUN, and CRE levels and attenuated renal fibrosis in SHR, and ameliorated damage to the kidneys. Proteomics and subsequent bioinformatics analyses indicated that periostin-mediated inflammatory response and TGFβ/Smad signaling pathway proteins were closely related to the therapeutic effect of TDC in rat kidneys. Western blot analysis and RT-qPCR showed that TDC markedly downregulated the mRNA and protein expression of periostin in renal tissues compared to the untreated SHR. In addition, TGF-β and COL1A1 mRNA levels also decreased in SHR renal tissues following TDC treatment. In vitro studies showed that low to medium doses of TDC down-regulated the expression of periostin in the injury model of HEK293 cell. In addition, medium to high doses of TDC significantly inhibited collagen deposition in TGFβ1-induced HEK293 cell fibrosis. CONCLUSIONS: Major components from the compound herbal medicine Tengdan Capsule are identified and quantified. TDC effectively lowers blood pressure and protects against renal damage caused by hypertension in SHR. Mechanistically, TDC blocks periostin by regulating the TGF-β/Smad signaling pathway in the kidney, both in vivo and in vitro. Preventing periostin-mediated renal fibrosis and inflammation might be a promising strategy for treating a hypertensive renal injury.
Collapse
Affiliation(s)
- Xiaoli Du
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of pharmacy, Inner Mongolia Medical College, Hohhot, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Qianqian Tao
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Hongxia Du
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Zhenbang Zhao
- Department of pharmacy, Inner Mongolia Medical College, Hohhot, China
| | - Yu Dong
- Department of pharmacy, Inner Mongolia Medical College, Hohhot, China.,Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuang He
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Rui Shao
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yule Wang
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Wenrun Han
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Xintong Wang
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Yan Zhu
- Institute of Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin International Joint Academy of Biomedicine, Tianjin, China
| |
Collapse
|
10
|
Li N, Chen J, Wang P, Fan H, Hou S, Gong Y. Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Mol Med Rep 2021; 23:455. [PMID: 33880578 PMCID: PMC8072315 DOI: 10.3892/mmr.2021.12094] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Acute kidney injury (AKI) has become a global public health problem with high morbidity and mortality rates, as well as high healthcare costs. Immune cells, particularly macrophages, which regulate tissue development, destroy pathogens, control homeostasis and repair wounds, play crucial and complex roles in AKI. In various types of AKI, numerous rapidly recruited monocytes and tissue-resident macrophages act in a coordinated manner. Thus, elucidating the phenotypic and functional characteristics of macrophages in AKI is essential for identifying potential therapeutic targets. Macrophage-sensing mediators and macrophage-derived mediators participate in the major macrophage-related signaling pathways in AKI, which regulate macrophage polarization and determine disease progression. In conclusion, macrophages change their roles and regulatory mechanisms during the occurrence and development of AKI. The aim of the present review was to contribute to an improved understanding of AKI and to the identification of novel therapeutic targets for this condition.
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Jiale Chen
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Pengtao Wang
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, P.R. China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| | - Yanhua Gong
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, P.R. China
| |
Collapse
|
11
|
Wu J, Lin Q, Li S, Shao X, Zhu X, Zhang M, Zhou W, Ni Z. Periostin Contributes to Immunoglobulin a Nephropathy by Promoting the Proliferation of Mesangial Cells: A Weighted Gene Correlation Network Analysis. Front Genet 2021; 11:595757. [PMID: 33488671 PMCID: PMC7817997 DOI: 10.3389/fgene.2020.595757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a known cause of end-stage kidney disease, but the pathogenesis and factors affecting prognosis are not fully understood. In the present study, we carried out weighted gene correlation network analysis (WGCNA) to identify hub genes related to the occurrence of IgAN and validated candidate genes in experiments using mouse mesangial cells (MMCs) and clinical specimens (kidney tissue from IgAN patients and healthy controls). We screened the GSE37460 and GSE104948 differentially expressed genes common to both datasets and identified periostin (POSTN) as one of the five key genes using the cytoHubba plugin of Cytoscape software and by receiver-operating characteristic curve analysis. The top 25% of genes in the GSE93798 dataset showing variable expression between IgAN and healthy tissue were assessed by WGCNA. The royalblue module in WGCNA was closely related to creatinine and estimated glomerular filtration rate (eGFR) in IgAN patients. POSTN had very high module membership and gene significance values for creatinine (0.82 and 0.66, respectively) and eGFR (0.82 and -0.67, respectively), indicating that it is a co-hub gene. In MMCs, POSTN was upregulated by transforming growth factor β1, and stimulation of MMCs with recombinant POSTN protein resulted in an increase in the level of proliferating cell nuclear antigen (PCNA) and a decrease in that of B cell lymphoma-associated X protein, which were accompanied by enhanced MMC proliferation. POSTN gene knockdown had the opposite effects. Immunohistochemical analysis of kidney tissue specimens showed that POSTN and PCNA levels were elevated, whereas the rate of apoptosis was reduced in IgAN patients relative to healthy controls. POSTN level in the kidney tissue of IgAN patients was positively correlated with creatinine level and negatively correlated with eGFR. Thus, POSTN promotes the proliferation of MCs to promote renal dysfunction in IgAN.
Collapse
Affiliation(s)
- Jingkui Wu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qisheng Lin
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Li
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xinghua Shao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuying Zhu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minfang Zhang
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyan Zhou
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaohui Ni
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Senger RS, Sullivan M, Gouldin A, Lundgren S, Merrifield K, Steen C, Baker E, Vu T, Agnor B, Martinez G, Coogan H, Carswell W, Kavuru V, Karageorge L, Dev D, Du P, Sklar A, Pirkle J, Guelich S, Orlando G, Robertson JL. Spectral characteristics of urine from patients with end-stage kidney disease analyzed using Raman Chemometric Urinalysis (Rametrix). PLoS One 2020; 15:e0227281. [PMID: 31923235 PMCID: PMC6954047 DOI: 10.1371/journal.pone.0227281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Raman Chemometric Urinalysis (RametrixTM) was used to discern differences in Raman spectra from (i) 362 urine specimens from patients receiving peritoneal dialysis (PD) therapy for end-stage kidney disease (ESKD), (ii) 395 spent dialysate specimens from those PD therapies, and (iii) 235 urine specimens from healthy human volunteers. RametrixTM analysis includes spectral processing (e.g., truncation, baselining, and vector normalization); principal component analysis (PCA); statistical analyses (ANOVA and pairwise comparisons); discriminant analysis of principal components (DAPC); and testing DAPC models using a leave-one-out build/test validation procedure. Results showed distinct and statistically significant differences between the three types of specimens mentioned above. Further, when introducing “unknown” specimens, RametrixTM was able to identify the type of specimen (as PD patient urine or spent dialysate) with better than 98% accuracy, sensitivity, and specificity. RametrixTM was able to identify “unknown” urine specimens as from PD patients or healthy human volunteers with better than 96% accuracy (with better than 97% sensitivity and 94% specificity). This demonstrates that an entire Raman spectrum of a urine or spent dialysate specimen can be used to determine its identity or the presence of ESKD by the donor.
Collapse
Affiliation(s)
- Ryan S. Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- DialySenors, Inc., Blacksburg, Virginia, United States of America
- * E-mail:
| | - Meaghan Sullivan
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Austin Gouldin
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephanie Lundgren
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kristen Merrifield
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Caitlin Steen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emily Baker
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tommy Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ben Agnor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Gabrielle Martinez
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Hana Coogan
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William Carswell
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Varun Kavuru
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
| | - Lampros Karageorge
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
| | - Devasmita Dev
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Allan Sklar
- Lewis-Gale Medical Center, Salem, Virginia, United States of America
| | - James Pirkle
- Department of Internal Medicine–Nephrology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, United States of America
| | - Susan Guelich
- Valley Nephrology Associates, Roanoke, Virginia, United States of America
| | - Giuseppe Orlando
- Department of Surgical Sciences–Transplant, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, United States of America
| | - John L. Robertson
- DialySenors, Inc., Blacksburg, Virginia, United States of America
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, United States of America
- Virginia Tech-Carilion School of Medicine and Research Institute, Blacksburg, Virginia, United States of America
| |
Collapse
|
13
|
Paunas FTI, Finne K, Leh S, Osman TAH, Marti HP, Berven F, Vikse BE. Characterization of glomerular extracellular matrix in IgA nephropathy by proteomic analysis of laser-captured microdissected glomeruli. BMC Nephrol 2019; 20:410. [PMID: 31726998 PMCID: PMC6854890 DOI: 10.1186/s12882-019-1598-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Background IgA nephropathy (IgAN) involves mesangial matrix expansion, but the proteomic composition of this matrix is unknown. The present study aimed to characterize changes in extracellular matrix in IgAN. Methods In the present study we used mass spectrometry-based proteomics in order to quantitatively compare protein abundance between glomeruli of patients with IgAN (n = 25) and controls with normal biopsy findings (n = 15). Results Using a previously published paper by Lennon et al. and cross-referencing with the Matrisome database we identified 179 extracellular matrix proteins. In the comparison between IgAN and controls, IgAN glomeruli showed significantly higher abundance of extracellular matrix structural proteins (e.g periostin, vitronectin, and extracellular matrix protein 1) and extracellular matrix associated proteins (e.g. azurocidin, myeloperoxidase, neutrophil elastase, matrix metalloproteinase-9 and matrix metalloproteinase 2). Periostin (fold change 3.3) and azurocidin (3.0) had the strongest fold change between IgAN and controls; periostin was also higher in IgAN patients who progressed to ESRD as compared to patients who did not. Conclusion IgAN is associated with widespread changes of the glomerular extracellular matrix proteome. Proteins important in glomerular sclerosis or inflammation seem to be most strongly increased and periostin might be an important marker of glomerular damage in IgAN.
Collapse
Affiliation(s)
- Flavia Teodora Ioana Paunas
- Department of Medicine, Haugesund Hospital, Haugesund, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Kenneth Finne
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | | | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Frode Berven
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bjørn Egil Vikse
- Department of Medicine, Haugesund Hospital, Haugesund, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
14
|
Kormann R, Kavvadas P, Placier S, Vandermeersch S, Dorison A, Dussaule JC, Chadjichristos CE, Prakoura N, Chatziantoniou C. Periostin Promotes Cell Proliferation and Macrophage Polarization to Drive Repair after AKI. J Am Soc Nephrol 2019; 31:85-100. [PMID: 31690575 DOI: 10.1681/asn.2019020113] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The matricellular protein periostin has been associated with CKD progression in animal models and human biopsy specimens. Periostin functions by interacting with extracellular matrix components to drive collagen fibrillogenesis and remodeling or by signaling through cell-surface integrin receptors to promote cell adhesion, migration, and proliferation. However, its role in AKI is unknown. METHODS We used mice with conditional tubule-specific overexpression of periostin or knockout mice lacking periostin expression in the renal ischemia-reperfusion injury model, and primary cultures of isolated tubular cells in a hypoxia-reoxygenation model. RESULTS Tubular epithelial cells showed strong production of periostin during the repair phase of ischemia reperfusion. Periostin overexpression protected mice from renal injury compared with controls, whereas knockout mice showed increased tubular injury and deteriorated renal function. Periostin interacted with its receptor, integrin-β1, to inhibit tubular cell cycle arrest and apoptosis in in vivo and in vitro models. After ischemia-reperfusion injury, periostin-overexpressing mice exhibited diminished expression of proinflammatory molecules and had more F4/80+ macrophages compared with knockout mice. Macrophages from periostin-overexpressing mice showed increased proliferation and expression of proregenerative factors after ischemia-reperfusion injury, whereas knockout mice exhibited the opposite. Coculturing a macrophage cell line with hypoxia-treated primary tubules overexpressing periostin, or treating such macrophages with recombinant periostin, directly induced macrophage proliferation and expression of proregenerative molecules. CONCLUSIONS In contrast to the detrimental role of periostin in CKD, we discovered a protective role of periostin in AKI. Our findings suggest periostin may be a novel and important mediator of mechanisms controlling renal repair after AKI.
Collapse
Affiliation(s)
- Raphaёl Kormann
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Panagiotis Kavvadas
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Sandrine Placier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Sophie Vandermeersch
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Aude Dorison
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Jean-Claude Dussaule
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos E Chadjichristos
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Niki Prakoura
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Christos Chatziantoniou
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and .,Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
15
|
Senger RS, Kavuru V, Sullivan M, Gouldin A, Lundgren S, Merrifield K, Steen C, Baker E, Vu T, Agnor B, Martinez G, Coogan H, Carswell W, Karageorge L, Dev D, Du P, Sklar A, Orlando G, Pirkle J, Robertson JL. Spectral characteristics of urine specimens from healthy human volunteers analyzed using Raman chemometric urinalysis (Rametrix). PLoS One 2019; 14:e0222115. [PMID: 31560690 PMCID: PMC6764656 DOI: 10.1371/journal.pone.0222115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/21/2019] [Indexed: 01/09/2023] Open
Abstract
Raman chemometric urinalysis (Rametrix™) was used to analyze 235 urine specimens from healthy individuals. The purpose of this study was to establish the “range of normal” for Raman spectra of urine specimens from healthy individuals. Ultimately, spectra falling outside of this range will be correlated with kidney and urinary tract disease. Rametrix™ analysis includes direct comparisons of Raman spectra but also principal component analysis (PCA), discriminant analysis of principal components (DAPC) models, multivariate statistics, and it is available through GitHub as the Rametrix™ LITE Toolbox for MATLAB®. Results showed consistently overlapping Raman spectra of urine specimens with significantly larger variances in Raman shifts, found by PCA, corresponding to urea, creatinine, and glucose concentrations. A 2-way ANOVA test found that age of the urine specimen donor was statistically significant (p < 0.001) and donor sex (female or male identification) was less so (p = 0.0526). With DAPC models and blind leave-one-out build/test routines using the Rametrix™ PRO Toolbox (also available through GitHub), an accuracy of 71% (sensitivity = 72%; specificity = 70%) was obtained when predicting whether a urine specimen from a healthy unknown individual was from a female or male donor. Finally, from female and male donors (n = 4) who contributed first morning void urine specimens each day for 30 days, the co-occurrence of menstruation was found statistically insignificant to Rametrix™ results (p = 0.695). In addition, Rametrix™ PRO was able to link urine specimens with the individual donor with an average of 78% accuracy. Taken together, this study established the range of Raman spectra that could be expected when obtaining urine specimens from healthy individuals and analyzed by Rametrix™ and provides the methodology for linking results with donor characteristics.
Collapse
Affiliation(s)
- Ryan S. Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
- DialySenors, Inc., Blacksburg, Virginia, United States of America
- * E-mail:
| | - Varun Kavuru
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
| | - Meaghan Sullivan
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Austin Gouldin
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Stephanie Lundgren
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kristen Merrifield
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Caitlin Steen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Emily Baker
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tommy Vu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Ben Agnor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Gabrielle Martinez
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Hana Coogan
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William Carswell
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Lampros Karageorge
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
| | - Devasmita Dev
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
| | - Pang Du
- Department of Statistics, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Allan Sklar
- Lewis-Gale Medical Center, Salem, Virginia, United States of America
| | - Giuseppe Orlando
- Department of Surgical Sciences – Transplant, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, United States of America
| | - James Pirkle
- Department of Internal Medicine – Nephrology, Wake Forest University Baptist Medical Center, Winston-Salem, North Carolina, United States of America
| | - John L. Robertson
- DialySenors, Inc., Blacksburg, Virginia, United States of America
- Veteran Affairs Medical Center, Salem, Virginia, United States of America
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, United States of America
- Virginia Tech-Carilion School of Medicine and Research Institute, Blacksburg, Virginia, United States of America
| |
Collapse
|
16
|
Li D, Zhou W, Cao M. Periostin-modified bone marrow mesenchymal stem cells from osteoporotic rats promote alveolar bone regeneration. J Mol Histol 2019; 50:493-502. [DOI: 10.1007/s10735-019-09843-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023]
|
17
|
Bian X, Su X, Wang Y, Zhao G, Zhang B, Li D. Periostin contributes to renal and cardiac dysfunction in rats with chronic kidney disease: Reduction of PPARα. Biochimie 2019; 160:172-182. [DOI: 10.1016/j.biochi.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
|
18
|
Zhou LT, Lv LL, Liu BC. Urinary Biomarkers of Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:607-623. [PMID: 31399987 DOI: 10.1007/978-981-13-8871-2_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the common pathological pathway of progressive CKD. The commonly used biomarkers in clinical practice are not optimal to detect injury or predict prognosis. Therefore, it is crucial to develop novel biomarkers to allow prompt intervention. Urine serves as a valuable resource of biomarker discovery for kidney diseases. Owing to the rapid development of omics platforms and bioinformatics, research on novel urinary biomarkers for renal fibrosis has proliferated in recent years. In this chapter, we discuss the current status and provide basic knowledge in this field. We present novel promising biomarkers including tubular injury markers, proteins related to activated inflammation/fibrosis pathways, CKD273, transcriptomic biomarkers, as well as metabolomic biomarkers. Furthermore, considering the complex nature of the pathogenesis of renal fibrosis, we also highlight the combination of biomarkers to further improve the diagnostic and prognostic performance.
Collapse
Affiliation(s)
- Le-Ting Zhou
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, DingJiaQiao Road, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, DingJiaQiao Road, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, DingJiaQiao Road, Nanjing, China.
| |
Collapse
|
19
|
Menon R, Otto EA, Kokoruda A, Zhou J, Zhang Z, Yoon E, Chen YC, Troyanskaya O, Spence JR, Kretzler M, Cebrián C. Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 2018; 145:145/16/dev164038. [PMID: 30166318 PMCID: PMC6124540 DOI: 10.1242/dev.164038] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The mammalian kidney develops through reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons. Most of our knowledge of the developmental regulators driving this process arises from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell populations, and to study individual cell dynamics and lineage trajectories during development. Single-cell transcriptome analyses of 6414 cells from five individual specimens identified 11 initial clusters of specific renal cell types as defined by their gene expression profile. Further subclustering identifies progenitors, and mature and intermediate stages of differentiation for several renal lineages. Other lineages identified include mesangium, stroma, endothelial and immune cells. Novel markers for these cell types were revealed in the analysis, as were components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression profile of the developing human kidney at the single-cell level. Summary: New markers for specific cell types in the developing human kidney are identified and computational approaches infer developmental trajectories and interrogate the complex network of signaling pathways and cellular transitions.
Collapse
Affiliation(s)
- Rajasree Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edgar A Otto
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Kokoruda
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Zhou
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ 08544, USA
| | - Euisik Yoon
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yu-Chih Chen
- Department of Electrical Engineering and Computer Science, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Olga Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.,Flatiron Institute, Simons Foundation, New York, NY 10010, USA.,Department of Computer Science, Princeton University, Princeton, NJ
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA .,Department of Cell and Developmental Biology, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthias Kretzler
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Cristina Cebrián
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
NRF2 Activation Inhibits Both TGF- β1- and IL-13-Mediated Periostin Expression in Fibroblasts: Benefit of Cinnamaldehyde for Antifibrotic Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2475047. [PMID: 30186543 PMCID: PMC6112270 DOI: 10.1155/2018/2475047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/05/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Systemic fibrosing or sclerotic disorders are life-threatening, but only very limited treatment modalities are available for them. In recent years, periostin (POSTN), a major extracellular matrix component, was established by several studies as a novel key player in the progression of systemic fibrotic disease. In this research, we revealed the involvement of oxidative stress in the expression of POSTN induced by TGF-β1 and IL-13 in dermal fibroblasts. We found that the antioxidant cinnamaldehyde activated the NRF2/HMOX1 pathway. Cinnamaldehyde also alleviated TGF-β1- and IL-13-mediated production of reactive oxygen species and subsequent POSTN upregulation in dermal fibroblasts. In contrast, NRF2 silencing abolished the cinnamaldehyde-mediated downregulation of POSTN. These results suggest that cinnamaldehyde is a broad inhibitor of POSTN expression covering both TGF-β1 and IL-13 signaling. Cinnamaldehyde may thus be beneficial for the treatment of systemic fibrotic diseases.
Collapse
|
21
|
Prakoura N, Chatziantoniou C. Periostin: The Missing Link to Attenuate Kidney Fibrosis. Am J Nephrol 2017. [DOI: 10.1159/000485324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|