1
|
Harirah HAA, Mohammed MH, Basha SAZ, Uthirapathy S, Ganesan S, Shankhyan A, Sharma GC, Devi A, Kadhim AJ, S NH. Targeting EZH2 in autoimmune diseases: unraveling epigenetic regulation and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04127-6. [PMID: 40198399 DOI: 10.1007/s00210-025-04127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/29/2025] [Indexed: 04/10/2025]
Abstract
Approximately 8-10% of the global population is affected by autoimmune diseases (ADs), which encompass a wide array of idiopathic conditions resulting from dysregulated immune responses. The enzymatic component of the polycomb-repressive complex 2 (PRC2), enhancer of zeste homolog 2 (EZH2, also referred to as KMT6), functions as a methyltransferase possessing a SET domain that plays crucial roles in epigenetic regulation, explicitly facilitating the methylation of histone H3 at lysine 27. Notably, EZH2 is catalytically inactive and requires association with EED and SUZ12 to form an active PRC2 complex. Hyperactivation of EZH2 has been implicated in various malignancies, prompting the development of EZH2 inhibitors as therapeutic agents for several cancers, including lymphoma, prostate, breast, and colon cancer. The application of EZH2-targeting therapies has also been explored in the context of autoimmune diseases. While there have been advancements in certain ADs, responses can vary significantly, as evidenced by mixed outcomes in cases such as inflammatory bowel disease. Consequently, the dual role of EZH2 and the therapeutic potential of its inhibitors in the treatment of ADs remain nascent fields of study. This review will elucidate the interplay between EZH2 and autoimmune diseases, highlighting emerging insights and therapeutic avenues.
Collapse
Affiliation(s)
- Hashem Ahmed Abu Harirah
- Medical Laboratory Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan.
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques Department, College of Health and Medical Technology, Al-Maarif University, Anbar, Iraq.
| | - Sami Ahmed Zaher Basha
- Physical Therapy Department, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, Jordan
- Department of Cardiovascular Pulmonary and Geriatrics, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Kurdistan Region, Erbil, Iraq
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aman Shankhyan
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges Jhanjeri, Mohali, 140307, Punjab, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Naher H S
- Laboratories Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| |
Collapse
|
2
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
3
|
Guo R, Li J, Hu J, Fu Q, Yan Y, Xu S, Wang X, Jiao F. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy. Int Immunopharmacol 2023; 120:110417. [PMID: 37276826 DOI: 10.1016/j.intimp.2023.110417] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) has revolutionized treatment strategies in multiple types of cancer. However, the resistance and relapse as associated with the extreme complexity of cancer-immunity interactions remain a major challenge to be resolved. Owing to the epigenome plasticity of cancer and immune cells, a growing body of evidence has been presented indicating that epigenetic treatments have the potential to overcome current limitations of immunotherapy, thus providing a rationalefor the combination of ICIs with epigenetic agents (epidrugs). In this review, we first make an overview about the epigenetic regulations in tumor biology and immunodevelopment. Subsequently, a diverse array of inhibitory agents under investigations targeted epigenetic modulators (Azacitidine, Decitabine, Vorinostat, Romidepsin, Belinostat, Panobinostat, Tazemetostat, Enasidenib and Ivosidenib, etc.) and immune checkpoints (Atezolizmab, Avelumab, Cemiplimab, Durvalumb, Ipilimumab, Nivolumab and Pembrolizmab, etc.) to increase anticancer responses were described and the potential mechanisms were further discussed. Finally, we summarize the findings of clinical trials and provide a perspective for future clinical studies directed at investigating the combination of epidrugs with ICIs as a treatment for cancer.
Collapse
Affiliation(s)
- Ruoyu Guo
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Jixia Li
- Department of Clinical Laboratory Medicine, Yantaishan Hospital, Yantai 264003, PR China
| | - Jinxia Hu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Yunfei Yan
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Sen Xu
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China
| | - Xin Wang
- Department of Clinical Laboratory & Health Service Training, 970 Hospital of the PLA Joint Logistic Support Force, Yantai 264002, PR China.
| | - Fei Jiao
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
4
|
Fay CJ, Awh KC, LeBoeuf NR, Larocca CA. Harnessing the immune system in the treatment of cutaneous T cell lymphomas. Front Oncol 2023; 12:1071171. [PMID: 36713518 PMCID: PMC9878398 DOI: 10.3389/fonc.2022.1071171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cutaneous T cell lymphomas are a rare subset of non-Hodgkin's lymphomas with predilection for the skin with immunosuppressive effects that drive morbidity and mortality. We are now appreciating that suppression of the immune system is an important step in the progression of disease. It should come as no surprise that therapies historically and currently being used to treat these cancers have immune modulating functions that impact disease outcomes. By understanding the immune effects of our therapies, we may better develop new agents that target the immune system and improve combinatorial treatment strategies to limit morbidity and mortality of these cancers. The immune modulating effect of therapeutic drugs in use and under development for cutaneous T cell lymphomas will be reviewed.
Collapse
|
5
|
Alencar AM, Sonpavde G. Emerging Therapies in Penile Cancer. Front Oncol 2022; 12:910335. [PMID: 35800050 PMCID: PMC9253417 DOI: 10.3389/fonc.2022.910335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Advances in the treatment of rare tumors like penile cancer were always hampered by the lack of deep comprehension of the molecular biology and genomic and epigenomic alterations involved in carcinogenesis and tumor progression, as well as by the difficulty in recruitment of patients for prospective clinical trials. Despite the high rates of cure in early localized penile cancers with surgery or other local procedures, locally advanced and metastatic tumors require systemic treatment, with chemotherapy being the current standard, but with high toxicity and no proven real impact on survival. Recent important findings of frequent genomic alterations and mutation signatures in penile cancer have motivated several trials in new modalities of systemic treatments, especially immunotherapy. This review aims to present the most recent advances and the prospect of new modalities of systemic therapies with ongoing studies in penile cancer.
Collapse
Affiliation(s)
- Antonio Machado Alencar
- Grupo de Estudos em Patologia Molecular, Hospital Universitário da Universidade Federal do Maranhão, São Luís, Brazil
- Department of Clinical Oncology, Hospital São Domingos/Dasa, São Luís, Brazil
| | - Guru Sonpavde
- Department of Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
6
|
Abstract
The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Chen X, Zhang W, Yang W, Zhou M, Liu F. Acquired resistance for immune checkpoint inhibitors in cancer immunotherapy: challenges and prospects. Aging (Albany NY) 2022; 14:1048-1064. [PMID: 35037899 PMCID: PMC8833108 DOI: 10.18632/aging.203833] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/29/2021] [Indexed: 04/21/2023]
Abstract
Drug resistance has become an obstacle to the further development of immunotherapy in clinical applications and experimental studies. In the current review, the acquired resistance to immunotherapy was examined. The mechanisms of acquired resistance were based on three aspects as follows: The change of the tumor functions, the upregulated expression of inhibitory immune checkpoint proteins, and the effects of the tumor microenvironment. The combined use of immunotherapy and other therapies is performed to delay acquired resistance. A comprehensive understanding of acquired drug resistance may provide ideas for solving this dilemma.
Collapse
Affiliation(s)
- Xunrui Chen
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| | - Wenhui Zhang
- Shanghai Institute of Precision Medicine, Shanghai 200125, China
| | - Wenyan Yang
- Medical Center, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Min Zhou
- Department of Respirtory Medicine, Jinshan Branch of the Sixth People’s Hospital of Shanghai, Shanghai 201599, P.R. China
| | - Feng Liu
- Department of Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201900, China
| |
Collapse
|
8
|
Li M, Kaili D, Shi L. Biomarkers for response to immune checkpoint inhibitors in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:19-37. [PMID: 35116101 PMCID: PMC8790411 DOI: 10.4251/wjgo.v14.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers account for a large proportion of cancer deaths worldwide and pose a major public health challenge. Immunotherapy is considered to be one of the prominent and successful approaches in cancer treatment in recent years. Among them, immune checkpoint inhibitor (ICI) therapy, has received widespread attention, and many clinical findings support the feasibility of ICIs, with sustained responses and significantly prolonged lifespan observed in a wide range of tumors. However, patients treated with ICIs have not fully benefited, and therefore, the identification and development of biomarkers for predicting ICI treatment response have received further attention and exploration. From tumor genome to molecular interactions in the tumor microenvironment, and further expanding to circulating biomarkers and patient characteristics, the exploration of biomarkers is evolving with high-throughput sequencing as well as bioinformatics. More large-scale prospective and specific studies are needed to explore biomarkers in GI cancers. In this review, we summarize the known biomarkers used in ICI therapy for GI tumors. In addition, some ICI biomarkers applied to other tumors are included to provide insights and further validation for GI tumors. Moreover, we present single-cell analysis and machine learning approaches that have emerged in recent years. Although there are no clear applications yet, it can be expected that these techniques will play an important role in the application of biomarker prediction.
Collapse
Affiliation(s)
- Meng Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Denis Kaili
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
9
|
HDAC Inhibition to Prime Immune Checkpoint Inhibitors. Cancers (Basel) 2021; 14:cancers14010066. [PMID: 35008230 PMCID: PMC8750966 DOI: 10.3390/cancers14010066] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has made a breakthrough in medical oncology with the approval of several immune checkpoint inhibitors in clinical routine, improving overall survival of advanced cancer patients with refractory disease. However only a minority of patients experience a durable response with these agents, which has led to the development of combination strategies and novel immunotherapy drugs to further counteract tumor immune escape. Epigenetic regulations can be altered in oncogenesis, favoring tumor progression. The development of epidrugs has allowed targeting successfully these altered epigenetic patterns in lymphoma and leukemia patients. It has been recently shown that epigenetic alterations can also play a key role in tumor immune escape. Epidrugs, like HDAC inhibitors, can prime the anti-tumor immune response, therefore constituting interesting partners to develop combination strategies with immunotherapy agents. In this review, we will discuss epigenetic regulations involved in oncogenesis and immune escape and describe the clinical development of combining HDAC inhibitors with immunotherapies.
Collapse
|
10
|
Wellinger LC, Hogg SJ, Newman DM, Friess T, Geiss D, Michie J, Ramsbottom KM, Bacac M, Fauti T, Marbach D, Jarassier L, Thienger P, Paehler A, Cluse LA, Kearney CJ, Vervoort SJ, Trapani JA, Oliaro J, Shortt J, Ruefli-Brasse A, Rohle D, Johnstone RW. BET Inhibition Enhances TNF-Mediated Anti-Tumor Immunity. Cancer Immunol Res 2021; 10:87-107. [PMID: 34782346 DOI: 10.1158/2326-6066.cir-21-0224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/06/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022]
Abstract
Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance anti-tumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (Bromo- and Extra-Terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the anti-tumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the pro-inflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of pro-survival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune oncology agents.
Collapse
Affiliation(s)
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center
| | - Dane M Newman
- Gene Regulation Laboratory, Peter MacCallum Cancer Centre
| | - Thomas Friess
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg
| | - Daniela Geiss
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Penzberg
| | | | | | - Marina Bacac
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich
| | - Tanja Fauti
- Oncology DTA, Roche Innovation Center Zurich, Roche Pharmaceutical Research & Early Development, pRED
| | | | | | | | - Axel Paehler
- Roche Pharma Research and Early Development, PS, RICB
| | - Leonie A Cluse
- Gene Regulation Laboratory, Cancer Therapeutics Program, Peter MacCallum Cancer Centre
| | | | | | | | - Jane Oliaro
- Centre for Cancer Immunotherapy, Peter MacCallum Cancer Centre
| | - Jake Shortt
- School of Clinical Sciences at Monash Health, Monash University
| | | | | | | |
Collapse
|
11
|
Maintenance of WT1 expression in tumor cells is associated with a good prognosis in malignant glioma patients treated with WT1 peptide vaccine immunotherapy. Cancer Immunol Immunother 2021; 71:189-201. [PMID: 34089373 DOI: 10.1007/s00262-021-02954-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
We have previously revealed the overexpression of Wilms' tumor gene 1 (WT1) in malignant glioma and developed WT1 peptide vaccine cancer immunotherapy. A phase II clinical trial indicated the clinical efficacy of the WT1 peptide vaccine for recurrent malignant glioma. Here, we aimed to investigate the immunological microenvironment in glioma tissues before and after WT1 peptide vaccine treatment. Paired tissue samples were obtained from 20 malignant glioma patients who had received the WT1 peptide vaccine for > 3 months and experienced tumor progression, confirmed radiographically and/or clinically, during vaccination. We discovered that the expression of WT1 and HLA class I antigens in the tumor cells significantly decreased after vaccination. Maintenance of WT1 expression, which is the target molecule of immunotherapy, in tumor cells during the vaccination period was significantly associated with a longer progression-free and overall survival. A high expression of HLA class I antigens and low CD4+/CD8+ tumor-infiltrating lymphocytes (TIL) ratio in pre-vaccination specimens, were also associated with a good prognosis. No statistically significant difference existed in the number of infiltrating CD3+ or CD8+ T cells between the pre- and post-vaccination specimens, whereas the number of infiltrating CD4+ T cells significantly decreased in the post-vaccination specimens. This study provides insight into the mechanisms of intra-tumoral immune reaction/escape during WT1 peptide vaccine treatment and suggests potential clinical strategies for cancer immunotherapy.
Collapse
|
12
|
de Guillebon E, Jimenez M, Mazzarella L, Betsou F, Stadler P, Peták I, Jeannot E, Chanas L, Servant N, Marret G, Duso BA, Legrand F, Kornerup KN, Bernhart SH, Balogh G, Dóczi R, Filotás P, Curigliano G, Bièche I, Guérin J, Dirner A, Neuzillet C, Girard N, Borcoman E, Larbi Chérif L, Tresca P, Roufai DB, Dupain C, Scholl S, André F, Fernandez X, Filleron T, Kamal M, Le Tourneau C. Combining immunotherapy with an epidrug in squamous cell carcinomas of different locations: rationale and design of the PEVO basket trial. ESMO Open 2021; 6:100106. [PMID: 33865192 PMCID: PMC8066350 DOI: 10.1016/j.esmoop.2021.100106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/12/2021] [Accepted: 03/06/2021] [Indexed: 12/25/2022] Open
Abstract
Squamous cell carcinomas (SCCs) are among the most frequent solid tumors in humans. SCCs, related or not to the human papillomavirus, share common molecular features. Immunotherapies, and specifically immune checkpoint inhibitors, have been shown to improve overall survival in multiple cancer types, including SCCs. However, only a minority of patients experience a durable response with immunotherapy. Epigenetic modulation plays a major role in escaping tumor immunosurveillance and confers resistance to immune checkpoint inhibitors. Preclinical evidence suggests that modulating the epigenome might improve the efficacy of immunotherapy. We herein review the preclinical and the clinical rationale for combining immunotherapy with an epidrug, and detail the design of PEVOsq, a basket clinical trial combining pembrolizumab with vorinostat, a histone deacetylase inhibitor, in patients with SCCs of different locations. Sequential blood and tumor sampling will be collected in order to identify predictive and pharmacodynamics biomarkers of efficacy of the combination. We also present how clinical and biological data will be managed with the aim to enable the development of a prospective integrative platform to allow secure and controlled access to the project data as well as further exploitations.
Collapse
Affiliation(s)
- E de Guillebon
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France; Inserm U932 Research Unit - Immunite et cancer, Paris, France
| | | | - L Mazzarella
- Department of Experimental Oncology, European Institute of Oncology - IRCCS, Milan, Italy; Division of Innovative Therapies, European Institute of Oncology - IRCCS, Milan, Italy
| | - F Betsou
- Integrated Biobank of Luxembourg, Dudelange, Luxembourg
| | - P Stadler
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
| | - I Peták
- Oncompass Medicine Ltd, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, USA
| | - E Jeannot
- Department of Genetics, Institut Curie, Paris, France; Department of Pathology, Institut Curie, Paris, France
| | - L Chanas
- Data Direction, Institut Curie, Paris, France
| | - N Servant
- Inserm U900 Research Unit, Saint Cloud, France
| | - G Marret
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - B A Duso
- Department of Experimental Oncology, European Institute of Oncology - IRCCS, Milan, Italy
| | | | - K N Kornerup
- Integrated Biobank of Luxembourg, Dudelange, Luxembourg
| | - S H Bernhart
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
| | - G Balogh
- Bioinformatics Group, Department of Computer, University of Leipzig, Leipzig, Germany
| | - R Dóczi
- Oncompass Medicine Ltd, Budapest, Hungary
| | - P Filotás
- Oncompass Medicine Ltd, Budapest, Hungary
| | - G Curigliano
- Division of Innovative Therapies, European Institute of Oncology - IRCCS, Milan, Italy; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; University of Milano, Milan, Italy
| | - I Bièche
- Department of Genetics, Institut Curie, Paris, France
| | - J Guérin
- Data Direction, Institut Curie, Paris, France
| | - A Dirner
- Oncompass Medicine Ltd, Budapest, Hungary
| | - C Neuzillet
- Department of Medical Oncology, Institut Curie, Paris, France; Paris-Saclay University, Paris, France
| | - N Girard
- Department of Medical Oncology, Institut Curie, Paris, France; Paris-Saclay University, Paris, France
| | - E Borcoman
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - L Larbi Chérif
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - P Tresca
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - D B Roufai
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - C Dupain
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - S Scholl
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France
| | - F André
- Department of Medical Oncology, Gustave Roussy, Villejuif; INSERM, Gustave Roussy Cancer Campus, UMR981, Villejuif; University of Paris-Sud, Orsay, France
| | - X Fernandez
- Data Direction, Institut Curie, Paris, France
| | - T Filleron
- Biostatistics Unit, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - M Kamal
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France.
| | - C Le Tourneau
- Department of Drug Development and Innovation (D3i), Institut Curie, Paris, France; Inserm U900 Research Unit, Saint Cloud, France; Paris-Saclay University, Paris, France.
| |
Collapse
|
13
|
Lee YJ, Lee JB, Ha SJ, Kim HR. Clinical Perspectives to Overcome Acquired Resistance to Anti-Programmed Death-1 and Anti-Programmed Death Ligand-1 Therapy in Non-Small Cell Lung Cancer. Mol Cells 2021; 44:363-373. [PMID: 34001680 PMCID: PMC8175154 DOI: 10.14348/molcells.2021.0044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors have changed the paradigm of treatment options for non-small cell lung cancer (NSCLC). Monoclonal antibodies targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) have gained wide attention for their application, which has been shown to result in prolonged survival. Nevertheless, only a limited subset of patients show partial or complete response to PD-1 therapy, and patients who show a response eventually develop resistance to immunotherapy. This article aims to provide an overview of the mechanisms of acquired resistance to anti-PD-1/PD-L1 therapy from the perspective of tumor cells and the surrounding microenvironment. In addition, we address the potential therapeutic targets and ongoing clinical trials, focusing mainly on NSCLC.
Collapse
Affiliation(s)
- Yong Jun Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea
- Division of Hemato-Oncology, Wonju Severance Christian Hospital, Yonsei University College of Medicine, Wonju 26426, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
14
|
Pyziak K, Sroka-Porada A, Rzymski T, Dulak J, Łoboda A. Potential of enhancer of zeste homolog 2 inhibitors for the treatment of SWI/SNF mutant cancers and tumor microenvironment modulation. Drug Dev Res 2021; 82:730-753. [PMID: 33565092 DOI: 10.1002/ddr.21796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022]
Abstract
Enhancer of zeste homolog 2 (EZH2), a catalytic component of polycomb repressive complex 2 (PRC2), is commonly overexpressed or mutated in many cancer types, both of hematological and solid nature. Till now, plenty of EZH2 small molecule inhibitors have been developed and some of them have already been tested in clinical trials. Most of these inhibitors, however, are effective only in limited cases in the context of EZH2 gain-of-function mutated tumors such as lymphomas. Other cancer types with aberrant EZH2 expression and function require alternative approaches for successful treatment. One possibility is to exploit synthetic lethal strategy, which is based on the phenomenon that concurrent loss of two genes is detrimental but the deletion of either of them leaves cell viable. In the context of EZH2/PRC2, the most promising synthetic lethal target seems to be SWItch/Sucrose Non-Fermentable chromatin remodeling complex (SWI/SNF), which is known to counteract PRC2 functions. SWI/SNF is heavily involved in carcinogenesis and its subunits have been found mutated in approximately 20% of tumors of different kinds. In the current review, we summarize the existing knowledge of synthetic lethal relationships between EZH2/PRC2 and components of the SWI/SNF complex and discuss in detail the potential application of existing EZH2 inhibitors in cancer patients harboring mutations in SWI/SNF proteins. We also highlight recent discoveries of EZH2 involvement in tumor microenvironment regulation and consequences for future therapies. Although clinical studies are limited, the fundamental research might help to understand which patients are most likely to benefit from therapies using EZH2 inhibitors.
Collapse
Affiliation(s)
- Karolina Pyziak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.,Biology R&D, Ryvu Therapeutics S.A., Kraków, Poland
| | | | | | - Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Łoboda
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
15
|
Guo W, Wang Y, Yang M, Wang Z, Wang Y, Chaurasia S, Wu Z, Zhang M, Yadav GS, Rathod S, Concha-Benavente F, Fernandez C, Li S, Xie W, Ferris RL, Kammula US, Lu B, Yang D. LincRNA-immunity landscape analysis identifies EPIC1 as a regulator of tumor immune evasion and immunotherapy resistance. SCIENCE ADVANCES 2021; 7:eabb3555. [PMID: 33568470 PMCID: PMC7875530 DOI: 10.1126/sciadv.abb3555] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/23/2020] [Indexed: 05/11/2023]
Abstract
Through an integrative analysis of the lincRNA expression and tumor immune response in 9,626 tumor samples across 32 cancer types, we developed a lincRNA-based immune response (LIMER) score that can predict the immune cells infiltration and patient prognosis in multiple cancer types. Our analysis also identified tumor-specific lincRNAs, including EPIC1, that potentially regulate tumor immune response in multiple cancer types. Immunocompetent mouse models and in vitro co-culture assays demonstrated that EPIC1 induces tumor immune evasion and resistance to immunotherapy by suppressing tumor cell antigen presentation. Mechanistically, lincRNA EPIC1 interacts with the histone methyltransferase EZH2, leading to the epigenetic silencing of IFNGR1, TAP1/2, ERAP1/2, and MHC-I genes. Genetic and pharmacological inhibition of EZH2 abolish EPIC1's immune-related oncogenic effect and its suppression of interferon-γ signaling. The EPIC1-EZH2 axis emerges as a potential mechanism for tumor immune evasion that can serve as therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Weiwei Guo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Yang
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zehua Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yifei Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Smriti Chaurasia
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Zhiyuan Wu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ghanshyam Singh Yadav
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Sanjay Rathod
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Fernando Concha-Benavente
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Christian Fernandez
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Udai S Kammula
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
16
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
17
|
Bernichon E, Tissot C, Bayle-Bleuez S, Rivoirard R, Bouleftour W, Forest F, Tinquaut F, Mery B, Fournel P. Predictive resistance factors in lung cancer patients treated with Nivolumab. Retrospective study. Bull Cancer 2020; 108:250-265. [PMID: 33358747 DOI: 10.1016/j.bulcan.2020.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Immunotherapy is the current treatment in non-small cell lung cancer (NSCLC). 20% of patients treated with immunotherapy have a prolonged response. What about the remaining 80%? How can we explain that some patients get no benefit from immunotherapy? MATERIEL AND METHODS We retrospectively analyzed predictive factors of primary or secondary resistance to immunotherapy in NSCLC patients from 2 French hospitals between 2015 and 2018. Moreover, we evaluated whether PD1 inhibitor had an impact on the antitumor effects of salvage chemotherapy administered after immunotherapy. We chose to focus on taxanes. RESULTS Ninety-six patients were included in this cohort, 65(68%) patients were considered as having primary resistance and 31(32%) secondary resistance. Resistant populations did not differ. At immunotherapy initiation, median survival was 4.6 months for primary resistant patients (95%CI-4.6-6.8) and 15.6 months (95%CI-9.8-NA) for secondary resistant patients. The disease control rates with taxane were 15% in pre immunotherapy conditions vs 50% in post immunotherapy. Response rates improved regardless of the status of resistance. CONCLUSION This study enriches data about immunotherapy in real-life in NSCLC. Prognostic resistance factors still seem complicated to identify. The high rate of taxane responders in post immunotherapy in this retrospective cohort support the use of taxane in therapeutic escape.
Collapse
Affiliation(s)
- Emilie Bernichon
- Institut de cancérologie Lucien-Newirth, Department of Medical Oncology, 108, bis avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France
| | - Claire Tissot
- CHU de Saint-Étienne, Pneumology department, Saint-Étienne, France
| | | | - Romain Rivoirard
- Institut de cancérologie Lucien-Newirth, Department of Medical Oncology, 108, bis avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France
| | - Wafa Bouleftour
- Institut de cancérologie Lucien-Newirth, Department of Medical Oncology, 108, bis avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France.
| | - Fabien Forest
- CHU de Saint-Étienne, Anatomo-pathology department, Saint-Étienne, France
| | - Fabien Tinquaut
- Institut de cancérologie Lucien-Newirth, Department of Medical Oncology, 108, bis avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France
| | - Benoite Mery
- Institut de cancérologie Lucien-Newirth, Department of Medical Oncology, 108, bis avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France
| | - Pierre Fournel
- Institut de cancérologie Lucien-Newirth, Department of Medical Oncology, 108, bis avenue Albert-Raimond, 42270 Saint-Priest-en-Jarez, France
| |
Collapse
|
18
|
Sahin D, Arenas-Ramirez N, Rath M, Karakus U, Hümbelin M, van Gogh M, Borsig L, Boyman O. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat Commun 2020; 11:6440. [PMID: 33353953 PMCID: PMC7755894 DOI: 10.1038/s41467-020-20220-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/13/2020] [Indexed: 11/27/2022] Open
Abstract
Modified interleukin-2 (IL-2) formulations are being tested in cancer patients. However, IL-2 immunotherapy damages IL-2 receptor (IL-2R)-positive endothelial cells and stimulates IL-2Rα (CD25)-expressing lymphocytes that curtail anti-tumor responses. A first generation of IL-2Rβ (CD122)-biased IL-2s addressed some of these drawbacks. Here, we present a second-generation CD122-biased IL-2, developed by splitting and permanently grafting unmutated human IL-2 (hIL-2) to its antigen-binding groove on the anti-hIL-2 monoclonal antibody NARA1, thereby generating NARA1leukin. In comparison to hIL-2/NARA1 complexes, NARA1leukin shows a longer in vivo half-life, completely avoids association with CD25, and more potently stimulates CD8+ T and natural killer cells. These effects result in strong anti-tumor responses in various pre-clinical cancer models, whereby NARA1leukin consistently surpasses the efficacy of hIL-2/NARA1 complexes in controlling metastatic disease. Collectively, NARA1leukin is a CD122-biased single-molecule construct based on unmutated hIL-2 with potent efficacy against advanced malignancies. IL-2/anti-IL-2 complexes have been proposed to curtail the severe adverse effects associated with IL-2 immunotherapy. Here, the authors, by integrating unmutated human IL-2 in the antigen binding groove of an anti-IL-2 monoclonal antibody, generate a CD122-biased fusion protein that prevents binding of IL-2 to CD25 and promotes anti-tumor immune response in several preclinical metastatic cancer models.
Collapse
Affiliation(s)
- Dilara Sahin
- Department of Immunology, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | | | - Matthias Rath
- Department of Immunology, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Ufuk Karakus
- Department of Immunology, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Monika Hümbelin
- Department of Immunology, University Hospital Zurich, CH-8091, Zurich, Switzerland
| | - Merel van Gogh
- Institute of Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Lubor Borsig
- Institute of Physiology, University of Zurich, CH-8057, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, CH-8091, Zurich, Switzerland. .,Faculty of Medicine, University of Zurich, CH-8006, Zurich, Switzerland.
| |
Collapse
|
19
|
Shao FF, Chen BJ, Wu GQ. The functions of EZH2 in immune cells: Principles for novel immunotherapies. J Leukoc Biol 2020; 110:77-87. [PMID: 33040370 DOI: 10.1002/jlb.1ru0520-311r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is aberrantly expressed or mutated in multiple types of cancer cells and plays an oncogenic role in tumorigenesis and development in most cancers. Results from pilot clinical studies have implied that EZH2 inhibitors have therapeutic potential against some cancers. However, the exact mechanisms by which EZH2 plays oncogenic roles and EZH2 inhibition exerts anticancer effects are incompletely understood. To date, the findings of studies focusing on EZH2 and cancer cells have failed to fully explain the observations in preclinical and clinical studies. Therefore, recent studies about the roles of EZH2 in cancers have shifted from cancer cells to immune cells. The human immune system is a complex network comprising multiple subpopulations of immune cells. Immune cells communicate and interact with cancer cells during cancer development and treatment, dictating the fate of cancer cells. Elucidating the roles of EZH2 in immune cells, especially in cancer patients, promises the identification of novel immunotherapeutic strategies or priming of existing immunotherapies against cancer. Hence, we reviewed the studies focusing on the involvement of EZH2 in various immune cells, aiming to provide ideas for immunotherapies targeting EZH2 in immune cells.
Collapse
Affiliation(s)
- Fang-Fei Shao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bo-Jin Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guo-Qing Wu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Department of Oncology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
20
|
Strub T, Ballotti R, Bertolotto C. The "ART" of Epigenetics in Melanoma: From histone "Alterations, to Resistance and Therapies". Theranostics 2020; 10:1777-1797. [PMID: 32042336 PMCID: PMC6993228 DOI: 10.7150/thno.36218] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients. However, long-term survival rate for metastatic melanoma patients remains at only 5%. Indeed, malignant melanoma is known for its notorious resistance to most current therapies and is characterized by both genetic and epigenetic alterations. In cutaneous melanoma (CM), genetic alterations have been implicated in drug resistance, yet the main cause of this resistance seems to be non-genetic in nature with a change in transcription programs within cell subpopulations. This change can adapt and escape targeted therapy and immunotherapy cytotoxic effects favoring relapse. Because they are reversible in nature, epigenetic changes are a growing focus in cancer research aiming to prevent or revert the drug resistance with current therapies. As such, the field of epigenetic therapeutics is among the most active area of preclinical and clinical research with effects of many classes of epigenetic drugs being investigated. Here, we review the multiplicity of epigenetic alterations, mainly histone alterations and chromatin remodeling in both cutaneous and uveal melanomas, opening opportunities for further research in the field and providing clues to specifically control these modifications. We also discuss how epigenetic dysregulations may be exploited to achieve clinical benefits for the patients, the limitations of these therapies, and recent data exploring this potential through combinatorial epigenetic and traditional therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Strub
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| |
Collapse
|
21
|
HLA Class I Antigen Processing Machinery Defects in Cancer Cells-Frequency, Functional Significance, and Clinical Relevance with Special Emphasis on Their Role in T Cell-Based Immunotherapy of Malignant Disease. Methods Mol Biol 2020; 2055:325-350. [PMID: 31502159 DOI: 10.1007/978-1-4939-9773-2_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MHC class I antigen abnormalities have been shown to be one of the major immune escape mechanisms murine and human cancer cells utilize to avoid recognition and destruction by host immune system. This mechanism has clinical relevance, since it is associated with poor prognosis and/or reduced patients' survival in many types of malignant diseases. The recent impressive clinical responses to T cell-based immunotherapies triggered by checkpoint inhibitors have rekindled tumor immunologists and clinical oncologists' interest in the analysis of the human leukocyte antigen (HLA) class I antigen processing machinery (APM) expression and function in malignant cells. Abnormalities in the expression, regulation and/or function of components of this machinery have been associated with the development of resistances to T cell-based immunotherapies. In this review, following the description of the human leukocyte antigen (HLA) class I APM organization and function, the information related to the frequency of defects in HLA class I APM component expression in various types of cancer and the underlying molecular mechanisms is summarized. Then the impact of these defects on clinical response to T cell-based immunotherapies and strategies to revert this immune escape process are discussed.
Collapse
|
22
|
Yang YX, Shen HH, Cao F, Xie LY, Zhu GL, Sam NB, Wang DG, Pan HF. Therapeutic potential of enhancer of zeste homolog 2 in autoimmune diseases. Expert Opin Ther Targets 2019; 23:1015-1030. [PMID: 31747802 DOI: 10.1080/14728222.2019.1696309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Autoimmune diseases (ADs) are idiopathic and heterogeneous disorders with contentious pathophysiology. Great strides have been made in epigenetics and its involvement in ADs. Zeste homolog 2 (EZH2) has sparked extensive interest because of its pleiotropic roles in distinct pathologic contexts.Areas covered: This review summarizes the epigenetic functions and the biological significance of EZH2 in the etiology of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), type 1 diabetes (T1D), inflammatory bowel disease (IBD), multiple sclerosis (MS), and systemic sclerosis (SSc). A brief recapitulation of the therapeutic potential of EZH2 targeting is provided.Expert opinion: There are questions marks and controversies surrounding the feasibility and safety of EZH2 targeting; it is recommended in RA and SLE, but queried in T1D, IBD, MS, and SSc. Future work should focus on contrast studies, systematic analyses and preclinical studies with optimizing methodologies. Selective research studies conducted in a stage-dependent manner are necessary because of the relapsing-remitting clinical paradigms.
Collapse
Affiliation(s)
- Yue-Xin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui-Hui Shen
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Fan Cao
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Liang-Yu Xie
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Guang-Lin Zhu
- Department of Clinical Medicine, The second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Napoleon Bellua Sam
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, China
| |
Collapse
|
23
|
Michalak EM, Burr ML, Bannister AJ, Dawson MA. The roles of DNA, RNA and histone methylation in ageing and cancer. Nat Rev Mol Cell Biol 2019; 20:573-589. [PMID: 31270442 DOI: 10.1038/s41580-019-0143-1] [Citation(s) in RCA: 359] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2019] [Indexed: 12/17/2022]
Abstract
Chromatin is a macromolecular complex predominantly comprising DNA, histone proteins and RNA. The methylation of chromatin components is highly conserved as it helps coordinate the regulation of gene expression, DNA repair and DNA replication. Dynamic changes in chromatin methylation are essential for cell-fate determination and development. Consequently, inherited or acquired mutations in the major factors that regulate the methylation of DNA, RNA and/or histones are commonly observed in developmental disorders, ageing and cancer. This has provided the impetus for the clinical development of epigenetic therapies aimed at resetting the methylation imbalance observed in these disorders. In this Review, we discuss the cellular functions of chromatin methylation and focus on how this fundamental biological process is corrupted in cancer. We discuss methylation-based cancer therapies and provide a perspective on the emerging data from early-phase clinical trial therapies that target regulators of DNA and histone methylation. We also highlight promising therapeutic strategies, including monitoring chromatin methylation for diagnostic purposes and combination epigenetic therapy strategies that may improve immune surveillance in cancer and increase the efficacy of conventional and targeted anticancer drugs.
Collapse
Affiliation(s)
- Ewa M Michalak
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Marian L Burr
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Mark A Dawson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia.
- Centre for Cancer Research, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
Fenton SE, Sosman JA, Chandra S. Resistance mechanisms in melanoma to immuneoncologic therapy with checkpoint inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:744-761. [PMID: 35582566 PMCID: PMC8992532 DOI: 10.20517/cdr.2019.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/16/2019] [Accepted: 05/22/2019] [Indexed: 11/14/2022]
Abstract
Checkpoint inhibitors act by blocking physiologic mechanisms coopted by tumor cells to evade immune surveillance, restoring the immune system's ability to identify and kill malignant cells. These therapies have dramatically improved outcomes in multiple tumor types with durable responses in many patients, leading to FDA approval first in advanced melanoma, then in many other malignancies. However, as experience with checkpoint inhibitors has grown, populations of patients who are primary nonresponders or develop secondary resistance have been the majority of cases, even in melanoma. Mechanisms of resistance include those inherent to the tumor microenvironment, the tumor cells themselves, and the function of the patient's native immune cells. This review will discuss resistance to checkpoint inhibitors in melanoma as well as possible methods to restore sensitivity.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Jeffrey A. Sosman
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| | - Sunandana Chandra
- Division of Hematology Oncology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Dong H, Liu S, Zhang X, Chen S, Kang L, Chen Y, Ma S, Fu X, Liu Y, Zhang H, Zou B. An Allosteric PRC2 Inhibitor Targeting EED Suppresses Tumor Progression by Modulating the Immune Response. Cancer Res 2019; 79:5587-5596. [PMID: 31395608 DOI: 10.1158/0008-5472.can-19-0428] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/11/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
Aberrant activity of polycomb repressive complex 2 (PRC2) is involved in a wide range of human cancer progression. The WD40 repeat-containing protein EED is a core component of PRC2 and enhances PRC2 activity through interaction with H3K27me3. In this study, we report the discovery of a class of pyrimidone compounds, represented by BR-001, as potent allosteric inhibitors of PRC2. X-ray co-crystallography showed that BR-001 directly binds EED in the H3K27me3-binding pocket. BR-001 displayed antitumor potency in vitro and in vivo. In Karpas422 and Pfeiffer xenograft mouse models, twice daily oral dosing with BR-001 resulted in robust antitumor activity. BR-001 was also efficacious in syngeneic CT26 colon tumor-bearing mice; oral dosing of 30 mg/kg of BR-001 led to 59.3% tumor growth suppression and increased frequency of effector CD8+ T-cell infiltrates in tumors. Pharmacodynamic analysis revealed that CXCL10 was highly upregulated, suggesting that CXCL10 triggers the trafficking of CD8+ T cells toward tumor sites. Our results demonstrate for the first time that inhibition of EED modulates the tumor immune microenvironment to induce regression of colon tumors and therefore has the potential to be used in combination with immune-oncology therapy. SIGNIFICANCE: BR-001, a potent inhibitor of the EED subunit of the PRC2 complex, suppresses tumor progression by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hongping Dong
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China.
| | - Shaojun Liu
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Xuejie Zhang
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Sheng Chen
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Lijing Kang
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Yanni Chen
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Shichao Ma
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Xianlei Fu
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Yanchao Liu
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Hailong Zhang
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China
| | - Bin Zou
- Shanghai Blueray Biopharma Co. Ltd., Shanghai, China.
| |
Collapse
|
26
|
Plasticity of Drug-Naïve and Vemurafenib- or Trametinib-Resistant Melanoma Cells in Execution of Differentiation/Pigmentation Program. JOURNAL OF ONCOLOGY 2019; 2019:1697913. [PMID: 31354817 PMCID: PMC6636509 DOI: 10.1155/2019/1697913] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Melanoma plasticity creates a plethora of opportunities for cancer cells to escape treatment. Thus, therapies must target all cancer cell subpopulations bearing the potential to contribute to disease. The role of the differentiation/pigmentation program in intrinsic and acquired drug resistance is largely uncharacterized. MITF level and expression of MITF-dependent pigmentation-related genes, MLANA, PMEL, TYR, and DCT, in drug-naïve and vemurafenib- or trametinib-treated patient-derived melanoma cell lines and their drug-resistant counterparts were analysed and referred to genomic alterations. Variability in execution of pigmentation/differentiation program was detected in patient-derived melanoma cell lines. Acute treatment with vemurafenib or trametinib enhanced expression of pigmentation-related genes in MITF-Mhigh melanoma cells, partially as the consequence of transcriptional reprograming. During development of resistance, changes in pigmentation program were not unidirectional, but also not universal as expression of different pigmentation-related genes was diversely affected. In selected resistant cell lines, differentiation/pigmentation was promoted and might be considered as one of drug-tolerant phenotypes. In other resistant lines, dedifferentiation was induced. Upon drug withdrawal ("drug holiday"), the dedifferentiation process in resistant cells either was enhanced but reversed by drug reexposure suggesting involvement of epigenetic mechanisms or was irreversible. The irreversible dedifferentiation might be connected with homozygous loss-of-function mutation in MC1R, as MC1RR151C +/+ variant was found exclusively in drug-naïve MITF-Mlow dedifferentiated cells and drug-resistant cells derived from MITFhigh/MC1RWT cells undergoing irreversible dedifferentiation. MC1RR151C +/+ variant might be further investigated as a parameter potentially impacting melanoma patient stratification and aiding in treatment decision.
Collapse
|
27
|
Sun W, Lv S, Li H, Cui W, Wang L. Enhancing the Anticancer Efficacy of Immunotherapy through Combination with Histone Modification Inhibitors. Genes (Basel) 2018; 9:genes9120633. [PMID: 30558227 PMCID: PMC6315613 DOI: 10.3390/genes9120633] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/13/2022] Open
Abstract
In the nucleus of each cell, the DNA is wrapped around histone octamers, forming the so-called “nucleosomal core particles”. The histones undergo various modifications that influence chromatin structure and function, including methylation, acetylation, ubiquitination, phosphorylation, and SUMOylation. These modifications, known as epigenetic modifications (defined as heritable molecular determinants of phenotype that are independent of the DNA sequence), result in alterations of gene expression and changes in cell behavior. Recent work has shown that epigenetic drugs targeting histone deacetylation or methylation modulate the immune response and overcome acquired resistance to immunotherapy. A number of combination therapies involving immunotherapy and epigenetic drugs, which target histone deacetylation or methylation, are currently under various clinical/pre-clinical investigations and have shown promising anticancer efficacy. These combination therapies may provide a new strategy for achieving sustained anticancer efficacy and overcoming resistance.
Collapse
Affiliation(s)
- Wanyu Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shuting Lv
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Hong Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|