1
|
Michaut A, Mongera A, Gupta A, Tarazona OA, Serra M, Kefala GM, Rigoni P, Lee JG, Rivas F, Hall AR, Mahadevan L, Guevorkian K, Pourquié O. Extracellular volume expansion drives vertebrate axis elongation. Curr Biol 2025; 35:843-853.e6. [PMID: 39879975 DOI: 10.1016/j.cub.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/15/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
The vertebrate bauplan is primarily established via the formation of embryonic tissues in a head-to-tail progression. The mechanics of this elongation, which requires the presomitic mesoderm (PSM), remain poorly understood. Here, we find that avian PSM explants can elongate autonomously when physically confined in vitro, producing a pushing force promoting posterior elongation of the embryo. This tissue elongation is caused by volumetric expansion, which results from an increase in the extracellular fraction accompanied by graded cellular motility. We show that fibroblast growth factor (FGF) signaling promotes glycolysis-dependent production of hyaluronic acid (HA), which is required for expansion of the posterior PSM. Our findings link body axis elongation to tissue expansion through the metabolic control of extracellular matrix production downstream of FGF signaling.
Collapse
Affiliation(s)
- Arthur Michaut
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Alessandro Mongera
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Anupam Gupta
- Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Oscar A Tarazona
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mattia Serra
- Department of Physics, University of California at San Diego, San Diego, CA 92093, USA
| | - Georgia-Maria Kefala
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, 75005 Paris, France
| | - Pietro Rigoni
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Felipe Rivas
- Virginia Tech, Wake Forest School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Adam R Hall
- Virginia Tech, Wake Forest School of Biomedical Engineering and Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Karine Guevorkian
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, 75005 Paris, France.
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Saunders D, Camacho-Macorra C, Steventon B. Spinal cord elongation enables proportional regulation of the zebrafish posterior body. Development 2025; 152:dev204438. [PMID: 39745249 PMCID: PMC11829759 DOI: 10.1242/dev.204438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 01/11/2025]
Abstract
Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation. This led to a proportional reduction in the length of the spinal cord and paraxial mesoderm in the tail, revealing a capacity for the regulation of tissue morphogenesis during tail formation. Following analysis of cell proliferation, gene expression, signalling and cell movements, we found no evidence of cell fate switching from mesoderm to neural fate to compensate for neural progenitor loss. Furthermore, tail paraxial mesoderm length is not reduced upon direct removal of an equivalent number of mesoderm progenitors, ruling out the hypothesis that neuromesodermal competent cells enable proportional regulation. Instead, reduction in cell number across the spinal cord reduces both spinal cord and paraxial mesoderm length. We conclude that spinal cord elongation is a driver of paraxial mesoderm elongation in the zebrafish tail and that this can explain proportional regulation upon neural progenitor reduction.
Collapse
Affiliation(s)
- Dillan Saunders
- Department of Genetics, University of Cambridge, Cambridge, UK, CB2 3EH
| | | | | |
Collapse
|
3
|
Courte J, Chung C, Jain N, Salazar C, Phuchane N, Grosser S, Lam C, Morsut L. Programming the elongation of mammalian cell aggregates with synthetic gene circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627621. [PMID: 39713354 PMCID: PMC11661162 DOI: 10.1101/2024.12.11.627621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A key goal of synthetic morphogenesis is the identification and implementation of methods to control morphogenesis. One line of research is the use of synthetic genetic circuits guiding the self-organization of cell ensembles. This approach has led to several recent successes, including control of cellular rearrangements in 3D via control of cell-cell adhesion by user-designed artificial genetic circuits. However, the methods employed to reach such achievements can still be optimized along three lines: identification of circuits happens by hand, 3D structures are spherical, and effectors are limited to cell-cell adhesion. Here we show the identification, in a computational framework, of genetic circuits for volumetric axial elongation via control of proliferation, tissue fluidity, and cell-cell signaling. We then seek to implement this design in mammalian cell aggregates in vitro. We start by identifying effectors to control tissue growth and fluidity in vitro. We then combine these new modules to construct complete circuits that control cell behaviors of interest in space and time, resulting in measurable tissue deformation along an axis that depends on the engineered signaling modules. Finally, we contextualize in vitro and in silico implementations within a unified morphospace to suggest further elaboration of this initial family of circuits towards more robust programmed axial elongation. These results and integrated in vitro/in silico pipeline demonstrate a promising method for designing, screening, and implementing synthetic genetic circuits of morphogenesis, opening the way to the programming of various user-defined tissue shapes.
Collapse
Affiliation(s)
- Josquin Courte
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christian Chung
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naisargee Jain
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Catcher Salazar
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Neo Phuchane
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steffen Grosser
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Calvin Lam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Leonardo Morsut
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Romanos M, Salisbury T, Stephan S, Lansford R, Degond P, Trescases A, Bénazéraf B. Differential proliferation regulates multi-tissue morphogenesis during embryonic axial extension: integrating viscous modeling and experimental approaches. Development 2024; 151:dev202836. [PMID: 38856082 DOI: 10.1242/dev.202836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
A major challenge in biology is to understand how mechanical interactions and cellular behavior affect the shapes of tissues and embryo morphology. The extension of the neural tube and paraxial mesoderm, which form the spinal cord and musculoskeletal system, respectively, results in the elongated shape of the vertebrate embryonic body. Despite our understanding of how each of these tissues elongates independently of the others, the morphogenetic consequences of their simultaneous growth and mechanical interactions are still unclear. Our study investigates how differential growth, tissue biophysical properties and mechanical interactions affect embryonic morphogenesis during axial extension using a 2D multi-tissue continuum-based mathematical model. Our model captures the dynamics observed in vivo by time-lapse imaging of bird embryos, and reveals the underestimated influence of differential tissue proliferation rates. We confirmed this prediction in quail embryos by showing that decreasing the rate of cell proliferation in the paraxial mesoderm affects long-term tissue dynamics, and shaping of both the paraxial mesoderm and the neighboring neural tube. Overall, our work provides a new theoretical platform upon which to consider the long-term consequences of tissue differential growth and mechanical interactions on morphogenesis.
Collapse
Affiliation(s)
- Michèle Romanos
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR 5077), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
- Institut de Mathématiques de Toulouse UMR 5219, Université de Toulouse, CNRS, 31062 Toulouse Cedex 9, France
- Université Claude Bernard Lyon 1, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, ICJ UMR5208, 69622 Villeurbanne, France
| | - Tasha Salisbury
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90089, USA
| | - Samuel Stephan
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR 5077), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Rusty Lansford
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
- University of Southern California, Los Angeles, CA 90089, USA
| | - Pierre Degond
- Institut de Mathématiques de Toulouse UMR 5219, Université de Toulouse, CNRS, 31062 Toulouse Cedex 9, France
| | - Ariane Trescases
- Institut de Mathématiques de Toulouse UMR 5219, Université de Toulouse, CNRS, 31062 Toulouse Cedex 9, France
| | - Bertrand Bénazéraf
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR 5077), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| |
Collapse
|
5
|
Samal P, Maurer P, van Blitterswijk C, Truckenmüller R, Giselbrecht S. A New Microengineered Platform for 4D Tracking of Single Cells in a Stem-Cell-Based In Vitro Morphogenesis Model. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907966. [PMID: 32346909 DOI: 10.1002/adma.201907966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Recently developed stem-cell-based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high-content imaging. In contrast, using advanced microengineered tools can help in microscale control, long-term culture, and real-time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film-based microdevices. A pipeline consisting of open-source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non-adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.
Collapse
Affiliation(s)
- Pinak Samal
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Philipp Maurer
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
6
|
Mongera A, Michaut A, Guillot C, Xiong F, Pourquié O. Mechanics of Anteroposterior Axis Formation in Vertebrates. Annu Rev Cell Dev Biol 2019; 35:259-283. [PMID: 31412208 PMCID: PMC7394480 DOI: 10.1146/annurev-cellbio-100818-125436] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vertebrate anteroposterior axis forms through elongation of multiple tissues during embryogenesis. This process is based on tissue-autonomous mechanisms of force generation and intertissue mechanical coupling whose failure leads to severe developmental anomalies such as body truncation and spina bifida. Similar to other morphogenetic modules, anteroposterior body extension requires both the rearrangement of existing materials-such as cells and extracellular matrix-and the local addition of new materials, i.e., anisotropic growth, through cell proliferation, cell growth, and matrix deposition. Numerous signaling pathways coordinate body axis formation via regulation of cell behavior during tissue rearrangements and/or volumetric growth. From a physical perspective, morphogenesis depends on both cell-generated forces and tissue material properties. As the spatiotemporal variation of these mechanical parameters has recently been explored in the context of vertebrate body elongation, the study of this process is likely to shed light on the cross talk between signaling and mechanics during morphogenesis.
Collapse
Affiliation(s)
- Alessandro Mongera
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Arthur Michaut
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Charlène Guillot
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Fengzhu Xiong
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA;
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
7
|
Naidich TP, Schefflein J, Cedillo MA, Deutsch JP, Murthy S, Fowkes M. The Distal Spine. Neuroimaging Clin N Am 2019; 29:385-409. [DOI: 10.1016/j.nic.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|