1
|
Men J, Wang X, Zhou Y, Huang Y, Zheng Y, Wang Y, Yang S, Chen N, Yan N, Duan X. Neurodegenerative diseases: Epigenetic regulatory mechanisms and therapeutic potential. Cell Signal 2025; 131:111715. [PMID: 40089090 DOI: 10.1016/j.cellsig.2025.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/17/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Neurodegenerative diseases (NDDs) are a class of diseases in which the progressive loss of subtype-specific neurons leads to dysfunction. NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), among others. Previous studies have demonstrated that the pathogenesis of NDDs involves various mechanisms, including genetic factors, oxidative stress, apoptosis, and the immune response. Recent studies have shown that epigenetic regulation mediates the interactions between DNA methylation, chromatin remodeling, histone modification, and non-coding RNAs, thus affecting gene transcription. A growing body of research links epigenetic modifications to crucial pathways involved in the occurrence and development of NDDs. Epigenetics has also been found to regulate and maintain nervous system function, and its imbalance is closely related to the occurrence and development of NDDs. The present review summarizes focuses on the role of epigenetic modifications in the pathogenesis of NDDs and provides an overview of the key genes regulated by DNA methylation, histone modification, and non-coding RNAs in NDDs. Further, the current research status of epigenetics in NDDs is summarized and the potential application of epigenetics in the clinical diagnosis and treatment of NDDs is discussed.
Collapse
Affiliation(s)
- Jianbing Men
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Xinyue Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yunnuo Zhou
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yumeng Huang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yue Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Yingze Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Shuang Yang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China
| | - Nan Chen
- Liaoning Provincial Health Service Center,Shenyang 110034, PR China
| | - Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Shenyang 110034, PR China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, PR China.
| |
Collapse
|
2
|
De Domenico S, La Banca V, D'Amico S, Nicolai S, Peschiaroli A. Defining the transcriptional routes controlling lncRNA NEAT1 expression: implications in cellular stress response, inflammation, and differentiation. Discov Oncol 2025; 16:768. [PMID: 40369379 PMCID: PMC12078918 DOI: 10.1007/s12672-025-02510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
NEAT1 (Nuclear Enriched Abundant Transcript 1) is a long non-coding RNA playing a critical role in both physiological and pathological settings by directly modulating a variety of biological events, including transcriptional regulation, RNA processing, and chromatin remodeling. Multiple evidence demonstrated that different transcription factors and signaling pathways modulate biological processes by tightly regulating NEAT1 expression. These regulatory mechanisms act at different levels, allowing cells to rapidly modulate NEAT1 expression and dynamically respond to sudden changes in cellular conditions. In this review, we summarize and discuss the transcriptional routes controlling NEAT1 expression, emphasizing recent evidence showing the pivotal role of NEAT1 in regulating important biological processes, such as cellular stress response, inflammation, and cell differentiation.
Collapse
Affiliation(s)
- Sara De Domenico
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy
| | - Veronica La Banca
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Silvia D'Amico
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Sara Nicolai
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| | - Angelo Peschiaroli
- Institute of Translational Pharmacology (IFT), CNR, Via Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
3
|
Chongtham A, Ramakrishnan A, Farinas M, Broekaart DWM, Seo JH, Zhu CW, Sano M, Shen L, Pereira AC. Neocortical tau propagation is a mediator of clinical heterogeneity in Alzheimer's disease. Mol Psychiatry 2025:10.1038/s41380-025-02998-y. [PMID: 40234685 DOI: 10.1038/s41380-025-02998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
Heterogeneity in progression of clinical dementia obstructs the general therapeutic potential of current treatments for Alzheimer's disease (AD). Though the mechanisms of this heterogeneity remain unclear, the characterization of bioactive tau species and factors that regulate their seeding behavior might give valuable insight as pathological tau is well correlated with cognitive impairment. Here, we conducted an innovative investigation into the molecular basis of widespread, connectivity-based tau propagation that begins in the inferior temporal gyrus (ITG) and spreads to neocortical areas such as the prefrontal cortex (PFC). Biochemical analysis of human postmortem ITG and PFC tissues revealed individual variability in tau seeding, which correlated with cognitive decline, particularly in the ITG, a region known for promoting accelerated tau propagation. Notably, this study presents the first evidence that site-specific phosphorylation and isoform composition of both aggregation-prone high-molecular-weight (HMW) tau and the relatively unexplored, yet potentially crucial in AD progression low-molecular-weight (LMW) tau significantly contribute to tau propagation and cognitive decline. Our findings underscore the importance of comprehensively considering diverse tau forms including both HMW and LMW tau species in understanding AD progression. Additionally, these results are the first to identify distinct morphological strains within the AD brain associated with differing seeding propensity, potentially enabling patient stratification based on their tau profile. Furthermore, RNA-seq analyses of gene expression patterns in the ITG revealed molecular heterogeneity associated with tau seeding potential. Patients with higher levels of seed-competent tau displayed greater impairments in synaptic and neural plasticity, and increased neuroinflammation. This multidisciplinary study offers novel insights into various molecular mechanisms driving AD progression, suggesting potential molecular targets for early intervention and improved patient subtyping, which is critical for developing precision medicine approaches.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marissa Farinas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diede W M Broekaart
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joon Ho Seo
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn W Zhu
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Sanford Grossman Interdisciplinary Program I Neural Circuitry and Immune Function, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Potemkin N, Cawood SMF, Guévremont D, Mockett B, Treece J, Stanton JAL, Williams JM. Whole Transcriptome RNA-Seq Reveals Drivers of Pathological Dysfunction in a Transgenic Model of Alzheimer's Disease. Mol Neurobiol 2025:10.1007/s12035-025-04878-6. [PMID: 40186694 DOI: 10.1007/s12035-025-04878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2025] [Indexed: 04/07/2025]
Abstract
Alzheimer's disease (AD) affects more than 55 million people worldwide, yet current theories cannot fully explain its aetiology. Accordingly, gene expression profiling has been used to provide a holistic view of the biology underpinning AD. Focusing primarily on protein-coding genes, such approaches have highlighted a critical involvement of microglia-related inflammatory processes. Simultaneous investigation of transcriptional regulators and noncoding RNA (ncRNA) can offer further insight into AD biology and inform the development of disease-modifying therapies. We previously described a method for whole transcriptome sampling to simultaneously investigate protein-coding genes and ncRNA. Here, we use this technique to explore transcriptional changes in a murine model of AD (15-month-old APP/PS1 mice). We confirmed the extensive involvement of microglia-associated genes and gene networks, consistent with literature. We also report a wealth of differentially-expressed non-coding RNA - including microRNA, long non-coding RNA, small nuclear and small nucleolar RNA, and pseudogenes - many of which have been overlooked previously. Transcription factor analysis determined that six transcription factors likely regulate gene expression changes in this model (Irf8, Junb, c-Fos, Lmo2, Runx1, and Nfe2l2). We then utilised validated miRNA-target interactions, finding 60 interactions between 15 miRNA and 42 mRNA (messenger RNA) with largely consistent directionality. Furthermore, we found that eight transcription factors (Clock, Lmo2, Runx1, Nfe2l2, Egr2, c-Fos, Junb, and Nr4a1) are likely responsible for the regulation of miRNA expression. Taken together, these data indicate a complex interplay of coding and non-coding RNA, driven by a small number of specific transcription factors, contributing to transcriptional changes in 15-month-old APP/PS1 mice.
Collapse
Affiliation(s)
- Nikita Potemkin
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Sophie M F Cawood
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Diane Guévremont
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Bruce Mockett
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
- Department of Psychology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jackson Treece
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.
- Brain Health Research Centre, Brain Research New Zealand-Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Rabbani SA, El-Tanani M, Sharma S, El-Tanani Y, Kumar R, Saini M, Yadav M, Khan MA, Parvez S. RNA-Based Therapies for Neurodegenerative Diseases Targeting Pathogenic Proteins. Eur J Neurosci 2025; 61:e70110. [PMID: 40237615 DOI: 10.1111/ejn.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025]
Abstract
Neurodegeneration is featured by the gradual stagnation of neuronal function and structure, leading to significant motor and cognitive impairments. The primary histopathological features underlying these conditions include the cumulation of pathological protein aggregates, chronic inflammation, and neuronal cell death. Alzheimer's disease (AD) and Parkinson's disease (PD) are prominent examples of neurodegenerative diseases (NDDs). As of 2023, over 65 million people worldwide are affected by AD and PD, with the prevalence of these conditions steadily increasing over time. Interestingly, there are no effective therapies available to halt or slow NDD progression. Most approved treatments are focused on symptom management and are often associated with substantial side effects. Given these limitations, the development of novel therapeutic approaches targeting the molecular mechanisms underlying these disorders is essential. Notably, RNA-based therapeutics have recently emerged as a potential therapeutic approach for managing various neurological diseases, offering the potential for innovative molecular interventions in NDD. In this review, we have discussed the pathogenic role of various protein aggregates in NDD and highlighted emerging RNA-based strategies aimed at targeting these pathological proteins.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | | | - Rakesh Kumar
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Department of Pharmacy, Jagannath University, Bahadurgarh, Haryana, India
| | - Manita Saini
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
- Geeta Institute of Pharmacy, Geeta University, Panipat, Haryana, India
| | - Monu Yadav
- Amity Institute of Pharmacy, Amity University, Gurgaon, Haryana, India
| | - Mohammad Ahmed Khan
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Suhel Parvez
- School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
6
|
Gu J, Wang Q, Mo J, Qin T, Qian W, Duan W, Han L, Wang Z, Ma Q, Ma J. NEAT1 promotes the perineural invasion of pancreatic cancer via the E2F1/GDNF axis. Cancer Lett 2025; 613:217497. [PMID: 39855379 DOI: 10.1016/j.canlet.2025.217497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Pancreatic cancer is characterized by an insidious onset and high degree of malignancy, with a 5-year survival rate of less than 11 %. Perineural invasion (PNI) is one of the pathological features of pancreatic cancer and provides a pathway for distant tumor metastasis, which leads to a poor prognosis. Although NEAT1 promotes the progression of pancreatic cancer, its impact on PNI has not been studied. In this study, we found that NEAT1 facilitates pancreatic cancer metastasis and PNI by regulating E2F1. In vivo experiments showed that NEAT1 promotes PNI in a mouse model. Furthermore, E2F1 is enriched at the promoter region of GDNF and directly participates in its transcriptional regulation. NEAT1 can also recruit P300 to the GDNF promoter region, thereby inducing the H3K27ac modification to further increase chromatin accessibility. This process ultimately facilitates GDNF transcription and tumor innervation, providing a pathway for tumor metastasis.
Collapse
Affiliation(s)
- Jingtao Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Qiqi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Jiantao Mo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Tao Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Wangxing Duan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Liang Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, China.
| | - Jiguang Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
7
|
Ji Y, Liu S, Zhang Y, Min Y, Wei L, Guan C, Yu H, Zhang Z. Lysine crotonylation in disease: mechanisms, biological functions and therapeutic targets. Epigenetics Chromatin 2025; 18:13. [PMID: 40119392 PMCID: PMC11929287 DOI: 10.1186/s13072-025-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Lysine crotonylation (Kcr), a previously unknown post-translational modification (PTM), plays crucial roles in regulating cellular processes, including gene expression, chromatin remodeling, and cellular metabolism. Kcr is associated with various diseases, including neurodegenerative disorders, cancer, cardiovascular conditions, and metabolic syndromes. Despite advances in identifying crotonylation sites and their regulatory enzymes, the molecular mechanisms by which Kcr influences disease progression remain poorly understood. Understanding the interplay between Kcr and other acylation modifications may reveal opportunities for developing targeted therapies. This review synthesizes current research on Kcr, focusing on its regulatory mechanisms and disease associations, and highlights insights into future exploration in epigenetics and therapeutic interventions.
Collapse
Affiliation(s)
- Yu Ji
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Shanshan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yiqiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Yiyang Min
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Luyang Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Chengjian Guan
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Huajing Yu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & State Key Lab of Digestive Health & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
8
|
Roy B, Verma AK, Funahashi Y, Dwivedi Y. Deciphering the epigenetic role of long non-coding RNAs in mood disorders: Focus on human brain studies. Clin Transl Med 2025; 15:e70135. [PMID: 40038891 PMCID: PMC11879898 DOI: 10.1002/ctm2.70135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 03/06/2025] Open
Abstract
Epigenetics plays a central role in neuropsychiatric disorders, contributing significantly to their complexity and manifestation. Major depressive disorder (MDD) and bipolar disorder (BD) have profound impact on mood, affect and cognition. Emerging evidence suggests that epigenetic modification of genes plays a pivotal role in the pathogenesis of both MDD and BD. Long non-coding RNAs (lncRNA) constitute a heterogeneous class of transcripts and have emerged as crucial regulators of epigenetic processes, offering promising insights into the pathophysiology of various diseases. Despite their limited coding potential, lncRNAs are known to play a critical role in achieving global transcriptomic regulation in a spatiotemporal fashion, especially in complex tissue like the brain. This review aims to discuss the specific dysregulation of lncRNAs so far observed in the brains of MDD and BD patients and understand their mechanistic contributions to the disease pathogenesis. KEY POINTS: Brain-centric lncRNAs regulate gene networks, and their disruption is linked to MDD. In MDD, altered lncRNAs disrupt gene regulation by changing chromatin looping or modifying chromatin accessibility. These changes lead to neuronal dysfunction, affecting neural circuitry and synaptic plasticity. The result is impaired brain function, contributing to the symptoms of MDD.
Collapse
Affiliation(s)
- Bhaskar Roy
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Anuj K. Verma
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yu Funahashi
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
- Department of Neuropsychiatry, Molecules and FunctionEhime University Graduate School of MedicineToonEhimeJapan
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral NeurobiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
9
|
Li F, Ye H, Li L, Chen Q, Lan X, Wu L, Li B, Li L, Guo C, Ashrafizadeh M, Sethi G, Guo J, Wu L. Histone lysine crotonylation accelerates ACSL4-mediated ferroptosis of keratinocytes via modulating autophagy in diabetic wound healing. Pharmacol Res 2025; 213:107632. [PMID: 39892437 DOI: 10.1016/j.phrs.2025.107632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
Dysfunction of keratinocytes affects diabetic wound healing, but underlying mechanisms have not been understood. This study examines crotonylation's role in ferroptosis and autophagy in keratinocytes, particularly regarding ACSL4, using STZ-induced diabetic rats and high glucose-exposed keratinocytes to assess these processes. The ACSL4 knockdown was achieved using adenovirus in wounds to examine the impact of ferroptosis modulation on healing diabetic wounds. MB-3 was utilized to block the H3K27 crotonylation (H3K27cr) in order to clarify the regulatory function of crotonylation in both autophagy and ferroptosis. In STZ-induced diabetic skin and high glucose-exposed keratinocytes, ferroptosis mediated by ACSL4 and suppression of autophagic flux were demonstrated. Moreover, the downregulation of ACSL4 triggered ferroptosis in adjacent wounds of diabetic rats and improved wound healing. The degradation of ACSL4 may be observed via the autophagy-lysosome pathway in keratinocytes. Downregulation of SQSTM1 in diabetic keratinocytes leads to autophagy inhibition and modulates the protein level of ACSL4. Mechanistically, total crotonylation levels and H3K27cr were remarkably elevated in the skin and keratinocytes of diabetic rats; blocking high glucose-induced H3K27cr with MB-3 can enhance SQSTM1 transcription and expression while promoting autophagy and reducing ACSL4-induced ferroptosis in keratinocytes. Therefore, H3K27cr influences autophagy by adjusting SQSTM1 to facilitate ACSL4-triggered ferroptosis in diabetic keratinocytes. This study clarifies the relationships between acylation modifications, autophagy, and ferroptosis, while also offering mechanistic insights and potential therapeutic targets for issues associated with diabetic wound healing.
Collapse
Affiliation(s)
- Fengjuan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Haowen Ye
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lanlan Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Qingling Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xianwu Lan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Liangxiu Wu
- Department of Gastroenterology, The People's Hospital of Hezhou, Hezhou 542899, China
| | - Bin Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Lishan Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chuxian Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Jun Guo
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Liangyan Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
10
|
Zhu M, Lu X, Wang D, Ma J, Wang Y, Wang R, Wang H, Cheng W, Zhu Y. A narrative review of epigenetic marker in H3K27ac and its emerging potential as a therapeutic target in cancer. Epigenomics 2025; 17:263-279. [PMID: 39981972 PMCID: PMC11853624 DOI: 10.1080/17501911.2025.2460900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/28/2025] [Indexed: 02/22/2025] Open
Abstract
Histone acetylation, particularly H3 K27 acetylation (H3K27ac), is a critical post-translational modification that regulates chromatin structure and gene expression, which plays a significant role in various cancers, including breast, colon, lung, hepatocellular, and prostate cancer. However, the mechanisms of H3K27ac in tumorigenesis are not yet comprehensive, especially its epigenetic mechanisms. This review endeavors to discuss findings on the involvement of H3K27ac in carcinogenesis within the past 5 years through a literature search using academic databases such as Web of Science. Firstly, we provide an overview of the diverse landscape of histone modifications, emphasizing the distinctive characteristics and critical significance of H3K27ac. Secondly, we summarize and compare advanced high-throughput sequencing technologies that have been utilized in the construction of the H3K27ac epigenetic map. Thirdly, we elucidate the role of H3K27ac in mediating gene transcription. Fourthly, we venture into the potential molecular mechanism of H3K27ac in cancer development. Finally, we engage in discussing future therapeutic approaches in oncology, with a spotlight on strategies that harness the potential of H3K27 modifications. In conclusion, this review comprehensively summarizes the characteristics of H3K27ac and underscores its pivotal role in cancer, providing valuable insights into its potential as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Meizi Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Xuejin Lu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Danhong Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Jinhu Ma
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yi Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Rui Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Hongye Wang
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Wenhui Cheng
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Yaling Zhu
- Department of Pathophysiology, College of Basic Medical Science, Anhui Medical University, Hefei, China
- Laboratory Animal Research Center, College of Basic Medical Science, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Mukherjee U, Basu B, Beyer SE, Ghodsi S, Robillard N, Vanrobaeys Y, Taylor EB, Abel T, Chatterjee S. Histone Lysine Crotonylation Regulates Long-Term Memory Storage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639114. [PMID: 40027819 PMCID: PMC11870504 DOI: 10.1101/2025.02.19.639114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone post-translational modifications (PTMs), particularly lysine acetylation (Kac), are critical epigenetic regulators of gene transcription underlying long-term memory consolidation. Beyond Kac, several other non-acetyl acylations have been identified, but their role in memory consolidation remains unknown. Here, we demonstrate histone lysine crotonylation (Kcr) as a key molecular switch of hippocampal memory storage. Spatial memory training induces distinct spatiotemporal patterns of Kcr induction in the dorsal hippocampus of mice. Through genetic and pharmacological manipulations, we show that reducing hippocampal Kcr levels impairs long-term memory, while increasing Kcr enhances memory. Utilizing single-nuclei multiomics, we delineate that Kcr enhancement during memory consolidation activates transcription of genes involved in neurotransmission and synaptic function within hippocampal excitatory neurons. Cell-cell communication analysis further inferred that Kcr enhancement strengthens glutamatergic signaling within principal hippocampal neurons. Our findings establish Kcr as a novel epigenetic mechanism governing memory consolidation and provide a foundation for therapeutic strategies targeting memory-related disorders.
Collapse
Affiliation(s)
- Utsav Mukherjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States
| | - Budhaditya Basu
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Stacy E. Beyer
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Saaman Ghodsi
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Nathan Robillard
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Yann Vanrobaeys
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, United States
| | - Eric B. Taylor
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
12
|
Siqueira E, Velasco C, Tarrasón A, Soler M, Srinivas T, Setién F, Oliveira-Mateos C, Casado-Pelaez M, Martinez-Verbo L, Armstrong J, Esteller M, Alves L, Llobet A, Guil S. NEAT1-mediated regulation of proteostasis and mRNA localization impacts autophagy dysregulation in Rett syndrome. Nucleic Acids Res 2025; 53:gkaf074. [PMID: 39921568 PMCID: PMC11806351 DOI: 10.1093/nar/gkaf074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder primarily caused by loss-of-function mutations in the MECP2 gene, resulting in diverse cellular dysfunctions. Here, we investigated the role of the long noncoding RNA (lncRNA) NEAT1 in the context of MeCP2 deficiency using human neural cells and RTT patient samples. Through single-cell RNA sequencing and molecular analyses, we found that NEAT1 is markedly downregulated in MECP2 knockout (KO) cells at various stages of neural differentiation. NEAT1 downregulation correlated with aberrant activation of the mTOR pathway, abnormal protein metabolism, and dysregulated autophagy, contributing to the accumulation of protein aggregates and impaired mitochondrial function. Reactivation of NEAT1 in MECP2-KO cells rescued these phenotypes, indicating its critical role downstream of MECP2. Furthermore, direct RNA-RNA interaction was revealed as the key process for NEAT1 influence on autophagy genes, leading to altered subcellular localization of specific autophagy-related messenger RNAs and impaired biogenesis of autophagic complexes. Importantly, NEAT1 restoration rescued the morphological defects observed in MECP2-KO neurons, highlighting its crucial role in neuronal maturation. Overall, our findings elucidate lncRNA NEAT1 as a key mediator of MeCP2 function, regulating essential pathways involved in protein metabolism, autophagy, and neuronal morphology.
Collapse
Affiliation(s)
- Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
- Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), 70.070-010 Brasilia, Brazil
| | - Cecilia D Velasco
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, 08907L’Hospitalet de Llobregat, Catalonia, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Catalonia, Spain
| | - Ariadna Tarrasón
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Marta Soler
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Fernando Setién
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Cristina Oliveira-Mateos
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Marta Casado-Pelaez
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Laura Martinez-Verbo
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Judith Armstrong
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, 08950 Barcelona, Catalonia, Spain
- Servei de Medicina Genètica i Molecular, Hospital Sant Joan de Déu, 08950 Barcelona, Catalonia, Spain
- CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Catalonia, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), 08907 Barcelona, Catalonia, Spain
| | - Letícia F Alves
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
| | - Artur Llobet
- Laboratory of Neurobiology, Department of Pathology and Experimental Therapy, Institute of Neurosciences, University of Barcelona, 08907L’Hospitalet de Llobregat, Catalonia, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), 08907 L’Hospitalet de Llobregat, Catalonia, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), Genesis of cancer Program, 08916 Badalona,Catalonia, Spain
- Germans Trias i Pujol Health Science Research Institute, 08916 Badalona, Catalonia, Spain
| |
Collapse
|
13
|
Westerveld M, Besermenji K, Aidukas D, Ostrovitsa N, Petracca R. Cracking Lysine Crotonylation (Kcr): Enlightening a Promising Post-Translational Modification. Chembiochem 2025; 26:e202400639. [PMID: 39462860 PMCID: PMC11776371 DOI: 10.1002/cbic.202400639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Lysine crotonylation (Kcr) is a recently discovered post-translational modification (PTM). Both histone and non-histone Kcr-proteins have been associated with numerous diseases including cancer, acute kidney injury, HIV latency, and cardiovascular disease. Histone Kcr enhances gene expression to a larger extend than the extensively studied lysine acetylation (Kac), suggesting Kcr as a novel potential therapeutic target. Although numerous scientific reports on crotonylation were published in the last years, relevant knowledge gaps concerning this PTM and its regulation still remain. To date, only few selective Kcr-interacting proteins have been identified and selective methods for the enrichment of Kcr-proteins in chemical proteomics analysis are still lacking. The development of new techniques to study this underexplored PTM could then clarify its function in health and disease and hopefully accelerate the development of new therapeutics for Kcr-related disease. Herein we briefly review what is known about the regulation mechanisms of Kcr and the current methods used to identify Kcr-proteins and their interacting partners. This report aims to highlight the significant potential of Kcr as a therapeutic target and to identify the existing scientific gaps that new research must address.
Collapse
Affiliation(s)
- Marinda Westerveld
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Kosta Besermenji
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - David Aidukas
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| | - Nikita Ostrovitsa
- Trinity Biomedical Sciences Institute (TBSI)Trinity College Dublin (TCD)152-160 Pearse St.DublinD02 R590Ireland
| | - Rita Petracca
- Department of Pharmaceutical SciencesFaculty of ScienceUtrecht UniversityDavid De Wied Building, Universiteitsweg 993584 CGUtrechtNL
| |
Collapse
|
14
|
Du W, Tan S, Peng Y, Lin S, Wu Y, Ding K, Chen C, Liu R, Cao Y, Li Z, Gu S, Feng H, Wan B, Tao SC, Wang N, Fan Y, Zhao X. Histone lactylation-driven YTHDC1 promotes hepatocellular carcinoma progression via lipid metabolism remodeling. Cancer Lett 2024; 611:217426. [PMID: 39725144 DOI: 10.1016/j.canlet.2024.217426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Lipid metabolism reprogramming is critical for the initiation and progression of hepatocellular carcinoma (HCC). However, how the dysregulation of lipid metabolism contributes to HCC development remains largely unknown. Here, we report that the m6A reader YTHDC1-mediated epigenetic regulation of the long noncoding RNA NEAT1 activates stearoyl-CoA desaturase (SCD)-associated lipid metabolic processes during HCC progression. Mechanistically, histone lactylation in HCC induces increased expression of YTHDC1, increasing the stability of m6A-modified NEAT1. The histone acetyltransferase p300 is then recruited by NEAT1 and activates SCD by increasing the level of histone acetylation at the SCD promoter, thus facilitating HCC progression via hepatocellular lipid metabolism remodeling. Taken together, these discoveries suggest a close link between the epigenetic machinery and lipid metabolic abnormalities, which promotes cancer progression.
Collapse
Affiliation(s)
- Wenfei Du
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng Tan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yonglin Peng
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sang Lin
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunqiang Wu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Changyu Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ruiqi Liu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Cao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheyi Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sijie Gu
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Haoran Feng
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingbing Wan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Niansong Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Ying Fan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
15
|
Wang XL, He JH, Xie P, Wu Y, Dong LY, An W. Augmenter of Liver Regeneration Crotonylation Assists in Mitochondria-ER Contact to Alleviate Hepatic Steatosis. Cell Mol Gastroenterol Hepatol 2024; 19:101436. [PMID: 39647663 PMCID: PMC11786861 DOI: 10.1016/j.jcmgh.2024.101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND & AIMS Crotonylation (Kcr), a newly identified post-translation modification (PTM), has been confirmed to be involved in diverse biological processes and human diseases as well. Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a serious threat to people's health. Augmenter of liver regeneration (ALR) is an important liver regulatory protein, and the insufficiency of ALR expression is reported to accelerate liver steatosis progression to liver fibrosis or even hepatic carcinoma (HCC). However, the connection between dysregulated ALR crotonylation and MASLD pathogenesis remains largely unknown. METHODS Steatotic liver samples from human and Western diet (WD)-fed mice were employed for detecting Kcr levels. Mitochondrial function and mitochondria-ER interaction (MAM) relevant to ALR-Kcr modification was evaluated for hepatocyte lipid metabolism both in in vivo and in vitro experiments. RESULTS Global protein crotonylation (Kcr) as well as ALR-Kcr was significantly decreased in liver samples of patients with MASLD and WD mice. Histone deacetylase1/2 (HDAC1/2) and lysine acetyltransferase 8 (KAT8) were identified responsible for regulation of ALR-Kcr, which takes place at lysine 78 (K78). The decrease of ALR crotonylation might be related to the imbalance between HDAC1/2 and KAT8 expression, inhibited its interaction with MFN2, expanding MAM distance and impairing mitochondrial lipid metabolism, and consequently deteriorating hepatic steatosis. CONCLUSIONS The insufficient ALR crotonylation might be a crucial mechanism contributing to the pathogenesis of MASLD. Keeping ALR crotonylation level would be beneficial for the prevention and treatment of MASLD.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Hao He
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Ping Xie
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Yuan Wu
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Ling-Yue Dong
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China
| | - Wei An
- Department of Cell Biology and the Municipal Key Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
16
|
Yeewa R, Pohsa S, Yamsri T, Wongkummool W, Jantaree P, Potikanond S, Nimlamool W, Shotelersuk V, Lo Piccolo L, Jantrapirom S. The histone acylation reader ENL/AF9 regulates aging in Drosophila melanogaster. Neurobiol Aging 2024; 144:153-162. [PMID: 39405796 DOI: 10.1016/j.neurobiolaging.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
Histone acylation plays a pivotal role in modulating gene expression, ensuring proper neurogenesis and responsiveness to various signals. Recently, the evolutionary conserved YAF9, ENL, AF9, TAF41, SAS5 (YEATS) domain found in four human paralogs, has emerged as a new class of histone acylation reader with a preference for the bulkier crotonyl group lysine over acetylation. Despite advancements, the role of either histone crotonylation or its readers in neurons remains unclear. In this study, we employed Drosophila melanogaster to investigate the role of ENL/AF9 (dENL/AF9) in the nervous system. Pan-neuronal dENL/AF9 knockdown not only extended the lifespan of flies but also enhanced their overall fitness during aging, including improved sleep quality and locomotion. Moreover, a decreased activity of dENL/AF9 in neurons led to an up-regulation of catalase gene expression which combined with reduced levels of malondialdehyde (MDA) and an enhanced tolerance to oxidative stress in aging flies. This study unveiled a novel function of histone crotonylation readers in aging with potential implications for understanding age-related conditions in humans.
Collapse
Affiliation(s)
- Ranchana Yeewa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sureena Pohsa
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Titaree Yamsri
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wasinee Wongkummool
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Phatcharida Jantaree
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vorasuk Shotelersuk
- Centre of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Paediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Excellence Centre for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Luca Lo Piccolo
- Centre of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Drosophila Centre for Human Diseases and Drug Discovery (DHD), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
17
|
Yang T, He Y, Wang Y. Introducing TEC-LncMir for prediction of lncRNA-miRNA interactions through deep learning of RNA sequences. Brief Bioinform 2024; 26:bbaf046. [PMID: 39927859 PMCID: PMC11808807 DOI: 10.1093/bib/bbaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/30/2024] [Accepted: 01/22/2025] [Indexed: 02/11/2025] Open
Abstract
The interactions between long noncoding RNA (lncRNA) and microRNA (miRNA) play critical roles in life processes, highlighting the necessity to enhance the performance of state-of-the-art models. Here, we introduced TEC-LncMir, a novel approach for predicting lncRNA-miRNA interaction using Transformer Encoder and convolutional neural networks (CNNs). TEC-LncMir treats lncRNA and miRNA sequences as natural languages, encodes them using the Transformer Encoder, and combines representations of a pair of microRNA and lncRNA into a contact tensor (a three-dimensional array). Afterward, TEC-LncMir treats the contact tensor as a multi-channel image, utilizes a four-layer CNN to extract the contact tensor's features, and then uses these features to predict the interaction between the pair of lncRNA and miRNA. We applied a series of comparative experiments to demonstrate that TEC-LncMir significantly improves lncRNA-miRNA interaction prediction, compared with existing state-of-the-art models. We also trained TEC-LncMir utilizing a large training dataset, and as expected, TEC-LncMir achieves unprecedented performance. Moreover, we integrated miRanda into TEC-LncMir to show the secondary structures of high-confidence interactions. Finally, we utilized TEC-LncMir to identify microRNAs interacting with lncRNA NEAT1, where NEAT1 performs as a competitive endogenous RNA of the microRNAs' targets (mRNAs) in brain cells. We also demonstrated the regulatory mechanism of NEAT1 in Alzheimer's disease via transcriptome analysis and sequence alignment analysis. Overall, our results demonstrate the effectivity of TEC-LncMir, suggest a potential regulation of miRNAs by NEAT1 in Alzheimer's disease, and take a significant step forward in lncRNA-miRNA interaction prediction.
Collapse
Affiliation(s)
- Tingpeng Yang
- Pengcheng Laboratory, No. 2, Xingke 1st Street, Nanshan District, Shenzhen, Guangdong Province 518055, China
- Tsinghua Shenzhen International Graduate School, University Town, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Yonghong He
- Pengcheng Laboratory, No. 2, Xingke 1st Street, Nanshan District, Shenzhen, Guangdong Province 518055, China
- Tsinghua Shenzhen International Graduate School, University Town, Nanshan District, Shenzhen, Guangdong Province 518055, China
| | - Yu Wang
- Pengcheng Laboratory, No. 2, Xingke 1st Street, Nanshan District, Shenzhen, Guangdong Province 518055, China
| |
Collapse
|
18
|
Yang S, Fan X, Yu W. Regulatory Mechanism of Protein Crotonylation and Its Relationship with Cancer. Cells 2024; 13:1812. [PMID: 39513918 PMCID: PMC11545499 DOI: 10.3390/cells13211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Crotonylation is a recently discovered protein acyl modification that shares many enzymes with acetylation. However, it possesses a distinct regulatory mechanism and biological function due to its unique crotonyl structure. Since the discovery of crotonylation in 2011, numerous crotonylation sites have been identified in both histones and other proteins. In recent studies, crotonylation was found to play a role in various diseases and biological processes. This paper reviews the initial discovery and regulatory mechanisms of crotonylation, including various writer, reader, and eraser proteins. Finally, we emphasize the relationship of dysregulated protein crotonylation with eight common malignancies, including cervical, prostate, liver, and lung cancer, providing new potential therapeutic targets.
Collapse
Affiliation(s)
- Siyi Yang
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| | - Xinyi Fan
- Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Wei Yu
- Institute of Biochemistry, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou 310018, China
| |
Collapse
|
19
|
Yan W, Zhang Y, Dai Y, Ge J. Application of crotonylation modification in pan-vascular diseases. J Drug Target 2024; 32:996-1004. [PMID: 38922829 DOI: 10.1080/1061186x.2024.2372316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Pan-vascular diseases, based on systems biology theory, explore the commonalities and individualities of important target organs such as cardiovascular, cerebrovascular and peripheral blood vessels, starting from the systemic and holistic aspects of vascular diseases. The purpose is to understand the interrelationships and results between them, achieve vascular health or sub-health, and comprehensively improve the physical and mental health of the entire population. Post-translational modification (PTM) is an important part of epigenetics, including phosphorylation, acetylation, ubiquitination, methylation, etc., playing a crucial role in the pan-vascular system. Crotonylation is a novel type of PTM that has made significant progress in the research of pan-vascular related diseases in recent years. Based on the review of previous studies, this article summarises the various regulatory factors of crotonylation, physiological functions and the mechanisms of histone and non-histone crotonylation in regulating pan-vascular related diseases to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment and the value of clinical translation.
Collapse
Affiliation(s)
- Wendi Yan
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
| | - Yang Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Yuxiang Dai
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Junbo Ge
- Oriental Pan-vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
20
|
Guo Y, Li J, Zhang K. Crotonylation modification and its role in diseases. Front Mol Biosci 2024; 11:1492212. [PMID: 39606030 PMCID: PMC11599741 DOI: 10.3389/fmolb.2024.1492212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Protein lysine crotonylation is a novel acylation modification discovered in 2011, which plays a key role in the regulation of various biological processes. Thousands of crotonylation sites have been identified in histone and non-histone proteins over the past decades. Crotonylation is conserved and is regulated by a series of enzymes including "writer", "eraser", and "reader". In recent years, crotonylation has received extensive attention due to its breakthrough progress in reproduction, development and pathogenesis of diseases. Here we brief the crotonylation-related enzyme systems, biological functions, and diseases caused by abnormal crotonylation, which provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
| | | | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Institute of Dermatology, Taiyuan City Central Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Hou L, Chen YJ, Zhong Q, Pei J, Liu L, Pi H, Xie M, Zhao G. Function and mechanism of lysine crotonylation in health and disease. QJM 2024; 117:695-708. [PMID: 38390964 DOI: 10.1093/qjmed/hcae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Lysine crotonylation is a newly identified posttranslational modification that is different from the widely studied lysine acetylation in structure and function. In the last dozen years, great progress has been made in lysine crotonylation-related studies, and lysine crotonylation is involved in reproduction, development and disease. In this review, we highlight the similarities and differences between lysine crotonylation and lysine acetylation. We also summarize the methods and tools for the detection and prediction of lysine crotonylation. At the same time, we outline the recent advances in understanding the mechanisms of enzymatic and metabolic regulation of lysine crotonylation, as well as the regulating factors that selectively recognize this modification. Particularly, we discussed how dynamic changes in crotonylation status maintain physiological health and result in the development of disease. This review not only points out the new functions of lysine crotonylation but also provides new insights and exciting opportunities for managing various diseases.
Collapse
Affiliation(s)
- L Hou
- Guangzhou Huali Science and Technology Vocational College, Guangzhou, China
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - Y-J Chen
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Q Zhong
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - J Pei
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - L Liu
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| | - H Pi
- School of basic medicine, Dali University, Dali, China
| | - M Xie
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
| | - G Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, China
| |
Collapse
|
22
|
Liao M, Zheng W, Wang Y, Li M, Sun X, Liu N, Yao J, Dong F, Wang Q, Ma Y, Mou J. LINC00887 promotes GCN5-dependent H3K27cr level and CRC metastasis via recruitment of YEATS2 and enhancing ETS1 expression. Cell Death Dis 2024; 15:711. [PMID: 39349460 PMCID: PMC11443008 DOI: 10.1038/s41419-024-07091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Recent observations have revealed upregulation of H3K27cr in colorectal cancer (CRC) tissues; however, the underlying cause remains elusive. This study aimed to investigate the mechanism of H3K27cr upregulation and its roles in CRC metastasis. Clinically, our findings showed that H3K27cr served as a highly accurate diagnostic marker to distinguish CRC tissues from healthy controls. Elevated levels of LINC00887 and H3K27cr were associated with a poorer prognosis in CRC patients. Functionally, LINC00887 and H3K27cr facilitated the migration and invasion of CRC cells. Mechanistically, LINC00887 interacted with SIRT3 protein. Overexpressed of LINC00887 obstructed the enrichment of SIRT3 within GCN5 promoter, thereby elevating H3K27ac but not H3K27cr level within this region, subsequently activating GCN5 expression. This activation increased the global level of H3K27cr, promoting the enrichment of GCN5, H3K27cr, and YEATS2 within ETS1 promoter, activating ETS1 transcription and ultimately promoting the metastasis of CRC. The in vivo study demonstrated that inhibition of LINC00887 suppressed CRC metastasis, but this inhibitory effect was nullified when mice were treated with NaCr. In conclusion, our results confirmed the diagnostic biomarker potential of H3K27cr in individuals with CRC, and proposed a functional model to elucidate the involvement of LINC00887 in promoting CRC metastasis by elevating H3K27cr level.
Collapse
Affiliation(s)
- Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Wendan Zheng
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yifan Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Mengting Li
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Xiaolin Sun
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Nan Liu
- Department of Infectious Diseases and Center of Infectious Diseases and Pathogen Biology, the First Hospital of Jilin University, Changchun, 130061, PR China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, the First Hospital of Jilin University, Changchun, 130061, PR China
| | - Jia Yao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Fuxing Dong
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Qingling Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, PR China.
| | - Jie Mou
- School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
23
|
Zhao H, Han Y, Zhou P, Guan H, Gao S. Protein lysine crotonylation in cellular processions and disease associations. Genes Dis 2024; 11:101060. [PMID: 38957707 PMCID: PMC11217610 DOI: 10.1016/j.gendis.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 05/05/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2024] Open
Abstract
Protein lysine crotonylation (Kcr) is one conserved form of posttranslational modifications of proteins, which plays an important role in a series of cellular physiological and pathological processes. Lysine ε-amino groups are the primary sites of such modification, resulting in four-carbon planar lysine crotonylation that is structurally and functionally distinct from the acetylation of these residues. High levels of Kcr modifications have been identified on both histone and non-histone proteins. The present review offers an update on the research progression regarding protein Kcr modifications in biomedical contexts and provides a discussion of the mechanisms whereby Kcr modification governs a range of biological processes. In addition, given the importance of protein Kcr modification in disease onset and progression, the potential viability of Kcr regulators as therapeutic targets is elucidated.
Collapse
Affiliation(s)
- Hongling Zhao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yang Han
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hua Guan
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
24
|
Li D, Lin L, Xu F, Feng T, Tao Y, Miao H, Yang F. Protein crotonylation: Basic research and clinical diseases. Biochem Biophys Rep 2024; 38:101694. [PMID: 38586826 PMCID: PMC10997999 DOI: 10.1016/j.bbrep.2024.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Crotonylation is an importantly conserved post-translational modification, which is completely different from acetylation. In recent years, it has been confirmed that crotonylation occurs on histone and non-histone. Crotonylated Histone primarily affects gene expression through transcriptional regulation, while non-histone Crotonylation mainly regulates protein functions including protein activity, localization, and stability, as well as protein-protein interactions. The change in protein expression and function will affect the physiological process of cells and even cause disease. Reviewing previous studies, this article summarizes the mechanisms of histone and non-histone crotonylation in regulating diseases and cellular physiological processes to explore the possibility of precise regulation of crotonylation sites as potential targets for disease treatment.
Collapse
Affiliation(s)
- Dongling Li
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Ling Lin
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Fan Xu
- School of Medicine, Chongqing University, Chongqing, 400044, China
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Tianlin Feng
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Tao
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Critical Care Medicine, Chongqing University Central Hospital, Chongqing, 400000, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fan Yang
- Central Laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
25
|
Zhao X, Du M, Wu S, Du Z, Liu S, Yang L, Ma H, Zhang L, Song L, Bai C, Su G, Li G. High histone crotonylation modification in bovine fibroblasts promotes cell proliferation and the developmental efficiency of preimplantation nuclear transfer embryos. Sci Rep 2024; 14:10295. [PMID: 38704415 PMCID: PMC11069573 DOI: 10.1038/s41598-024-61148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Lysine crotonylation (Kcr) is a recently discovered histone acylation modification that is closely associated with gene expression, cell proliferation, and the maintenance of stem cell pluripotency and indicates the transcriptional activity of genes and the regulation of various biological processes. During cell culture, the introduction of exogenous croconic acid disodium salt (Nacr) has been shown to modulate intracellular Kcr levels. Although research on Kcr has increased, its role in cell growth and proliferation and its potential regulatory mechanisms remain unclear compared to those of histone methylation and acetylation. Our investigation demonstrated that the addition of 5 mM Nacr to cultured bovine fibroblasts increased the expression of genes associated with Kcr modification, ultimately promoting cell growth and stimulating cell proliferation. Somatic cell nuclear transfer of donor cells cultured in 5 mM Nacr resulted in 38.1% blastocyst development, which was significantly greater than that in the control group (25.2%). This research is important for elucidating the crotonylation modification mechanism in fibroblast proliferation to promote the efficacy of somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Mengxin Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Shanshan Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Zhiwen Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Shuqin Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Haoran Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liguo Zhang
- Ulanqab Agriculture and Animal Husbandry Bureau, Ulanqab Animal Husbandry Workstation, Ulanqab, 012000, Inner Mongolia, China
| | - Lishuang Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
- College of Life Sciences, Inner Mongolia University, 24 Zhaojun Rd., Hohhot, 010070, China.
| |
Collapse
|
26
|
Wang Z, Wang R, Niu L, Zhou X, Han J, Li K. EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance. NPJ AGING 2024; 10:24. [PMID: 38704365 PMCID: PMC11069514 DOI: 10.1038/s41514-024-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) plaques. Aβ is generated from the cleavage of the amyloid precursor protein by β and γ-secretases and cleared by neuroglial cells mediated autophagy. The imbalance of the intracellular Aβ generation and clearance is the causative factor for AD pathogenesis. However, the exact underlying molecular mechanisms remain unclear. Our previous study reported that EPB41L4A-AS1 is an aging-related long non-coding RNA (lncRNA) that is repressed in patients with AD. In this study, we found that downregulated EPB41L4A-AS1 in AD inhibited neuroglial cells mediated-Aβ clearance by decreasing the expression levels of multiple autophagy-related genes. We found that EPB41L4A-AS1 regulates the expression of general control of amino acid synthesis 5-like 2, an important histone acetyltransferase, thus affecting histone acetylation, crotonylation, and lactylation near the transcription start site of autophagy-related genes, ultimately influencing their transcription. Collectively, this study reveals EPB41L4A-AS1 as an AD-related lncRNA via mediating Aβ clearance and provides insights into the epigenetic regulatory mechanism of EPB41L4A-AS1 in gene expression and AD pathogenesis.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Ruomei Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Lixin Niu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaoyan Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinxiang Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
27
|
Wang Z, Zhang Y, Li K. Nuclear miRNAs as transcriptional regulators in processes related to various cancers (Review). Int J Oncol 2024; 64:56. [PMID: 38606502 PMCID: PMC11015916 DOI: 10.3892/ijo.2024.5644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
MicroRNAs (miRNAs) are noncoding small nucleic acids that contain ~22 nucleotides and are considered to promote the degradation or inhibit the translation of mRNA by targeting its 3'‑untranslated region. However, growing evidence has revealed that nuclear miRNAs, combined with gene promoters or enhancers, are able to directly mediate gene transcription. These miRNAs exert a critical influence on cancer progression by affecting cell growth, migration and invasion. In this review, the direct regulation of gene expression by nuclear miRNAs at the transcriptional level was discussed and summarized, and their mechanisms of action in cancers were highlighted with reference to the various body systems.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
28
|
Konuma T, Zhou MM. Distinct Histone H3 Lysine 27 Modifications Dictate Different Outcomes of Gene Transcription. J Mol Biol 2024; 436:168376. [PMID: 38056822 DOI: 10.1016/j.jmb.2023.168376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Site-specific histone modifications have long been recognized to play an important role in directing gene transcription in chromatin in biology of health and disease. However, concrete illustration of how different histone modifications in a site-specific manner dictate gene transcription outcomes, as postulated in the influential "Histone code hypothesis", introduced by Allis and colleagues in 2000, has been lacking. In this review, we summarize our latest understanding of the dynamic regulation of gene transcriptional activation, silence, and repression in chromatin that is directed distinctively by histone H3 lysine 27 acetylation, methylation, and crotonylation, respectively. This represents a special example of a long-anticipated verification of the "Histone code hypothesis."
Collapse
Affiliation(s)
- Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama 230-0045, Japan; School of Science, Yokohama City University, Yokohama 230-0045, Japan
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
29
|
Lossi L, Castagna C, Merighi A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int J Mol Sci 2024; 25:3881. [PMID: 38612690 PMCID: PMC11011998 DOI: 10.3390/ijms25073881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; (L.L.); (C.C.)
| |
Collapse
|
30
|
Qin Y, Yang P, He W, Li D, Zeng L, Li J, Zhou T, Peng J, Cao L, Huang W. Novel histone post-translational modifications in Alzheimer's disease: current advances and implications. Clin Epigenetics 2024; 16:39. [PMID: 38461320 PMCID: PMC10924326 DOI: 10.1186/s13148-024-01650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 02/21/2024] [Indexed: 03/11/2024] Open
Abstract
Alzheimer's disease (AD) has a complex pathogenesis, and multiple studies have indicated that histone post-translational modifications, especially acetylation, play a significant role in it. With the development of mass spectrometry and proteomics, an increasing number of novel HPTMs, including lactoylation, crotonylation, β-hydroxybutyrylation, 2-hydroxyisobutyrylation, succinylation, and malonylation, have been identified. These novel HPTMs closely link substance metabolism to gene regulation, and an increasing number of relevant studies on the relationship between novel HPTMs and AD have become available. This review summarizes the current advances and implications of novel HPTMs in AD, providing insight into the deeper pathogenesis of AD and the development of novel drugs.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Wanhong He
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Junle Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, 25 Taiping Rd, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
31
|
Fang Y, Li X. Protein lysine four-carbon acylations in health and disease. J Cell Physiol 2024; 239:e30981. [PMID: 36815448 PMCID: PMC10704440 DOI: 10.1002/jcp.30981] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Lysine acylation, a type of posttranslational protein modification sensitive to cellular metabolic states, influences the functions of target proteins involved in diverse cellular processes. Particularly, lysine butyrylation, crotonylation, β-hydroxybutyrylation, and 2-hydroxyisobutyrylation, four types of four-carbon acylations, are modulated by intracellular concentrations of their respective acyl-CoAs and sensitive to alterations of nutrient metabolism induced by cellular and/or environmental signals. In this review, we discussed the metabolic pathways producing these four-carbon acyl-CoAs, the regulation of lysine acylation and deacylation, and the functions of individual lysine acylation.
Collapse
Affiliation(s)
- Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
32
|
Xie JY, Ju J, Zhou P, Chen H, Wang SC, Wang K, Wang T, Chen XZ, Chen YC, Wang K. The mechanisms, regulations, and functions of histone lysine crotonylation. Cell Death Discov 2024; 10:66. [PMID: 38331935 PMCID: PMC10853258 DOI: 10.1038/s41420-024-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Histone lysine crotonylation (Kcr) is a new acylation modification first discovered in 2011, which has important biological significance for gene expression, cell development, and disease treatment. In the past over ten years, numerous signs of progress have been made in the research on the biochemistry of Kcr modification, especially a series of Kcr modification-related "reader", "eraser", and "writer" enzyme systems are identified. The physiological function of crotonylation and its correlation with development, heredity, and spermatogenesis have been paid more and more attention. However, the development of disease is usually associated with abnormal Kcr modification. In this review, we summarized the identification of crotonylation modification, Kcr-related enzyme system, biological functions, and diseases caused by abnormal Kcr. This knowledge supplies a theoretical basis for further exploring the function of crotonylation in the future.
Collapse
Affiliation(s)
- Jing-Yi Xie
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Jie Ju
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
- Department of Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China.
| | - Ping Zhou
- State Key Laboratory of Cardiovascular Disease, Heart Failure center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Hao Chen
- Department of Physiology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Shao-Cong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Tao Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xin-Zhe Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yan-Chun Chen
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang, 261053, China.
| | - Kun Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
33
|
Li F, Du WW, Li X, Xu J, Wu N, Awan FM, Yang Y, Alashti FA, Wang S, Yang BB. A Novel Circular RNA circITGa9 Predominantly Generated in Human Heart Disease Induces Cardiac Remodeling and Fibrosis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0303. [PMID: 38323094 PMCID: PMC10845611 DOI: 10.34133/research.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Recent studies have highlighted the pivotal roles of circular RNAs (circRNAs) in cardiovascular diseases. Through high-throughput circRNA sequencing of both normal myocardial tissues and hypertrophic patients, we unveiled 32,034 previously undiscovered circRNAs with distinct cardiac expression patterns. Notably, circITGa9, a circRNA derived from integrin-α9, exhibited substantial up-regulation in cardiac hypertrophy patients. This elevation was validated across extensive sample pools from cardiac patients and donors. In vivo experiments revealed heightened cardiac fibrosis in mice subjected to transverse aortic constriction (TAC) after circITGa9 injection. We identified circITGa9 binding proteins through circRNA precipitation followed by liquid chromatography tandem-mass spectrometry. Furthermore, circRNA pull-down/precipitation assays demonstrated that increased circITGa9 expression facilitated binding with tropomyosin 3 (TPM3). Specific binding sites between circITGa9 and TPM3 were identified through computational algorithms and further validated by site-directed mutagenesis. We further showed that circITGa9 induced actin polymerization, characteristic of tissue fibrosis. Finally, we developed approaches that improved cardiac function and decreased fibrosis by delivering small interfering RNA targeting circITGa9 or blocking oligo inhibiting the interaction of circITGa9 and TPM3 into TAC mice, which is amenable for further preclinical and translational development. We conclude that elevated circITGa9 levels drive cardiac remodeling and fibrosis. By pinpointing circITGa9 as a therapeutic target, we open doors to innovative interventions for mitigating cardiac remodeling and fibrosis.
Collapse
Affiliation(s)
- Feiya Li
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - William W. Du
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Institute of Microbiology,
Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jindong Xu
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Anesthesiology, Guangdong Cardiovascular Institute,
Guangdong Provincial People’s Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Nan Wu
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Department of Medical Lab Technology,
The University of Haripur, Haripur, Pakistan
| | - Yang Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Fariborz Asghari Alashti
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
| | - Sheng Wang
- Department of Anesthesiology, Beijing Anzhen Hospital,
Capital Medical University, Beijing, China
| | - Burton B. Yang
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology,
University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences,
University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Almalki WH. NEAT1 in inflammatory infectious diseases: An integrated perspective on molecular modulation. Pathol Res Pract 2024; 254:154956. [PMID: 38218038 DOI: 10.1016/j.prp.2023.154956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 01/15/2024]
Abstract
The long non-coding RNA (lncRNA), NEAT1, has emerged as a central figure in the intricate network of molecular regulators in inflammatory infectious diseases (IIDs). The review initiates a comprehensive exploration of NEAT1's multifaceted roles and molecular interactions in the context of these complex diseases. The study begins by acknowledging the global health burden of IIDs, underscoring the urgency for innovative insights into their pathogenesis and therapeutic avenues. NEAT1 is introduced as a pivotal lncRNA with growing relevance in immune responses and inflammatory processes. The core of this review unravels the NEAT1 landscape, elucidating its involvement in the modulation of immune signalling pathways, regulation of inflammatory cytokines, and interactions with various immune cells during infection. It explores NEAT1's role in orchestrating immune responses and balancing host defence mechanisms with the risk of immunopathology. Furthermore, the review underscores the clinical significance of NEAT1 in infectious diseases, discussing its associations with disease severity, prognosis, and potential as a diagnostic and therapeutic target. It provides insights into ongoing research endeavours aimed at harnessing NEAT1 for innovative disease management strategies, including developing RNA-based therapeutics. Concluding on a forward-looking note, the review highlights the broader implications of NEAT1 in the context of emerging infectious diseases and the possibility for precision medicine approaches that leverage NEAT1's regulatory capacities. In summary, this review illuminates the pivotal role of NEAT1 in IIDs by navigating its complex landscape, offering profound insights into its implications for disease pathogenesis and the development of targeted therapies.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
35
|
Pan Y, Xin W, Wei W, Tatenhorst L, Graf I, Popa-Wagner A, Gerner ST, Huber SE, Kilic E, Hermann DM, Bähr M, Huttner HB, Doeppner TR. Knockdown of NEAT1 prevents post-stroke lipid droplet agglomeration in microglia by regulating autophagy. Cell Mol Life Sci 2024; 81:30. [PMID: 38212456 PMCID: PMC10784396 DOI: 10.1007/s00018-023-05045-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Lipid droplets (LD), lipid-storing organelles containing neutral lipids like glycerolipids and cholesterol, are increasingly accepted as hallmarks of inflammation. The nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA with over 200 nucleotides, exerts an indispensable impact on regulating both LD agglomeration and autophagy in multiple neurological disorders. However, knowledge as to how NEAT1 modulates the formation of LD and associated signaling pathways is limited. METHODS In this study, primary microglia were isolated from newborn mice and exposed to oxygen-glucose-deprivation/reoxygenation (OGD/R). To further explore NEAT1-dependent mechanisms, an antisense oligonucleotide (ASO) was adopted to silence NEAT1 under in vitro conditions. Studying NEAT1-dependent interactions with regard to autophagy and LD agglomeration under hypoxic conditions, the inhibitor and activator of autophagy 3-methyladenine (3-MA) and rapamycin (RAPA) were used, respectively. In a preclinical stroke model, mice received intraventricular injections of ASO NEAT1 or control vectors in order to yield NEAT1 knockdown. Analysis of readout parameters included qRT-PCR, immunofluorescence, western blot assays, and behavioral tests. RESULTS Microglia exposed to OGD/R displayed a temporal pattern of NEAT1 expression, peaking at four hours of hypoxia followed by six hours of reoxygenation. After effectively silencing NEAT1, LD formation and autophagy-related proteins were significantly repressed in hypoxic microglia. Stimulating autophagy in ASO NEAT1 microglia under OGD/R conditions by means of RAPA reversed the downregulation of LD agglomeration and perilipin 2 (PLIN2) expression. On the contrary, application of 3-MA promoted repression of both LD agglomeration and expression of the LD-associated protein PLIN2. Under in vivo conditions, NEAT1 was significantly increased in mice at 24 h post-stroke. Knockdown of NEAT1 significantly alleviated LD agglomeration and inhibited autophagy, resulting in improved cerebral perfusion, reduced brain injury and increased neurological recovery. CONCLUSION NEAT1 is a key player of LD agglomeration and autophagy stimulation, and NEAT1 knockdown provides a promising therapeutic value against stroke.
Collapse
Affiliation(s)
- Yongli Pan
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wenqiang Xin
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Sabine E Huber
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, Giessen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
- Department of Neurology, University of Giessen Medical School, Giessen, Germany.
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, Bulgaria.
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Giessen, Germany.
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, Turkey.
| |
Collapse
|
36
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
37
|
Koijam AS, Singh KD, Nameirakpam BS, Haobam R, Rajashekar Y. Drug addiction and treatment: An epigenetic perspective. Biomed Pharmacother 2024; 170:115951. [PMID: 38043446 DOI: 10.1016/j.biopha.2023.115951] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023] Open
Abstract
Drug addiction is a complex disease affected by numerous genetic and environmental factors. Brain regions in reward pathway, neuronal adaptations, genetic and epigenetic interactions causing transcriptional enhancement or repression of multiple genes induce different addiction phenotypes for varying duration. Addictive drug use causes epigenetic alterations and similarly epigenetic changes induced by environment can promote addiction. Epigenetic mechanisms include DNA methylation and post-translational modifications like methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, dopaminylation and crotonylation of histones, and ADP-ribosylation. Non-coding RNAs also induce epigenetic changes. This review discusses these above areas and stresses the need for exploring epidrugs as a treatment alternative and adjunct, considering the limited success of current addiction treatment strategies. Epigenome editing complexes have lately been effective in eukaryotic systems. Targeted DNA cleavage techniques such as CRISPR-Cas9 system, CRISPR-dCas9 complexes, transcription activator-like effector nucleases (TALENs) and zinc-finger nucleases (ZFNs) have been exploited as targeted DNA recognition or anchoring platforms, fused with epigenetic writer or eraser proteins and delivered by transfection or transduction methods. Efficacy of epidrugs is seen in various neuropsychiatric conditions and initial results in addiction treatment involving model organisms are remarkable. Epidrugs present a promising alternative treatment for addiction.
Collapse
Affiliation(s)
- Arunkumar Singh Koijam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Kabrambam Dasanta Singh
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Bunindro Singh Nameirakpam
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India
| | - Reena Haobam
- Department of Biotechnology, Manipur University, Canchipur, Imphal 795003, Manipur, India
| | - Yallappa Rajashekar
- Insect Bioresources Laboratory, Animal Bioresources Programme, Institute of Bioresources & Sustainable Development, Department of Biotechnology, Govt. of India, Takyelpat, Imphal 795001, Manipur, India.
| |
Collapse
|
38
|
Guo X, Wang Y, An Y, Liu Z, Liu J, Chen J, Zhan MM, Liang M, Hou Z, Wan C, Yin F, Wang R, Li Z. Development of Lysine Crotonyl-Mimic Probe to Covalently Identify H3K27Cr Interacting Proteins. Chemistry 2023; 29:e202301624. [PMID: 37587551 DOI: 10.1002/chem.202301624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Histone lysine crotonylation (Kcr) is one newly discovered acylation modification and regulates numerous pathophysiological processes. The binding affinity between Kcr and its interacting proteins is generally weak, which makes it difficult to effectively identify Kcr-interacting partners. Changing the amide of crotonyl to an ester increased reactivity with proximal cysteines and retained specificity for Kcr antibody. The probe "H3g27Cr" was designed by incorporating the ester functionality into a H3K27 peptide. Using this probe, multiple Kcr-interacting partners including STAT3 were successfully identified, and this has not been reported previously. Further experiments suggested that STAT3 possibly could form complexes with Histone deacetylase HDACs to downregulate the acetylation and crotonylation of Histone H3K27. Our unique design provided intriguing tools to further explore Kcr-interacting proteins and elucidate their working mechanisms.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Yuhao An
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zhihong Liu
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Jianbo Liu
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Jiaxin Chen
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Mei-Miao Zhan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Mingcha Liang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
| | - Feng Yin
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Rui Wang
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, P.R. China
- Pingshan translational medicine center, Shenzhen Bay Laboratory, Shenzhen, 518118, P.R. China
| |
Collapse
|
39
|
Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Genes Dis 2023; 10:2479-2490. [PMID: 37554202 PMCID: PMC10404885 DOI: 10.1016/j.gendis.2022.10.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases. Thus, an increasing number of studies focusing on acylation modifications are being undertaken. Butyrylation (Kbu) is a new acylation process found in animals and plants. Kbu has been recently linked to the onset and progression of several diseases, such as cancer, cardiovascular diseases, diabetes, and vascular dementia. Moreover, the mode of action of certain drugs used in the treatment of lymphoma and colon cancer is based on the regulation of butyrylation levels, suggesting that butyrylation may play a therapeutic role in these diseases. In addition, butyrylation is also commonly involved in rice gene expression and thus plays an important role in the growth, development, and metabolism of rice. The tools and analytical methods that could be utilized for the prediction and detection of lysine butyrylation have also been investigated. This study reviews the potential role of histone Kbu, as well as the mechanisms underlying this process. It also summarizes various enzymes and analytical methods associated with Kbu, with the goal of providing new insights into the role of Kbu in gene regulation and diseases.
Collapse
Affiliation(s)
- Qianqian Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hong Li
- Clinical Laboratory, Central Laboratory. The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xiaoxin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
40
|
Liao M, Sun X, Zheng W, Wu M, Wang Y, Yao J, Ma Y, Gao S, Pei D. LINC00922 decoys SIRT3 to facilitate the metastasis of colorectal cancer through up-regulation the H3K27 crotonylation of ETS1 promoter. Mol Cancer 2023; 22:163. [PMID: 37789393 PMCID: PMC10548613 DOI: 10.1186/s12943-023-01859-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/10/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Lysine crotonylation (Kcr) is up-regulation in colorectal cancer (CRC) tissues, while its specific contribution remains uncertain. This study aimed to elucidate the role and mechanism of crotonylation on Lys27 of histone H3 (H3K27cr) in facilitating CRC metastasis. METHODS Immunohistochemistry was employed to investigate the correlation between H3K27cr and CRC metastasis. Both in vitro and in vivo assays employing loss function or gain function approaches were conducted to elucidate the role of LINC00922 in promoting CRC metastasis. ScRNA-seq analysis and immunoprecipitation analyses were employed to explore the underlying mechanism by which LINC00922 facilitates CRC metastasis through H3K27cr. RESULTS Clinically, H3K27cr was upregulated in metastatic CRC tissues and positively correlated with advanced clinical stages. Functionally, knockdown of LINC00922 inhibited migration of CRC cells both in vitro and in vivo. Furthermore, the supplementation of NaCr restored the migration and invasion levels of LINC00922 stable knockdown cells by restoring the H3K27cr level. Mechanistically, LINC00922 promoted invasion and migration through H3K27cr mediated cell adhesion molecules (CAMs) in epithelial cells. Notably, LINC00922 interacted with the protein sirtuin 3 (SIRT3) and obstructed its binding to the promoter region of ETS1, leading to an elevation in the level of H3K27cr in this promoter region and the subsequent activation of ETS1 transcription. CONCLUSIONS Our findings uncovered a novel regulatory function of H3K27cr, regulated by LINC00922, in facilitating CRC metastasis. This discovery contributed to a deeper comprehension of the involvement of histone crotonylation in the metastatic process of CRC.
Collapse
Affiliation(s)
- Meijian Liao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Xiaolin Sun
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Wendan Zheng
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Mengdi Wu
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Yifan Wang
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Jia Yao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Yu Ma
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China
| | - Shoucui Gao
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China.
| | - Dongsheng Pei
- Department of Pathology, Xuzhou Medical University, Xuzhou, 221004, P.R. China.
| |
Collapse
|
41
|
Yang P, Qin Y, Zeng L, He Y, Xie Y, Cheng X, Huang W, Cao L. Crotonylation and disease: Current progress and future perspectives. Biomed Pharmacother 2023; 165:115108. [PMID: 37392654 DOI: 10.1016/j.biopha.2023.115108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Histone lysine crotonylation was first identified as a new type of post-translational modification in 2011. In recent years, prominent progress has been made in the study of histone and nonhistone crotonylation in reproduction, development, and disease. Although the regulatory enzyme systems and targets of crotonylation partially overlap with those of acetylation, the peculiar CC bond structure of crotonylation suggests that crotonylation may have specific biological functions. In this review, we summarize the latest research progress regarding crotonylation, especially its regulatory factors and relationship with diseases, which suggest further research directions for crotonylation and provide new ideas for developing disease intervention and treatment regimens.
Collapse
Affiliation(s)
- Ping Yang
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Lisha Zeng
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China
| | - Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Yumei Xie
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China; Sichuan Clinical Research Center for Nephropathy, Luzhou 646000 Sichuan, China.
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000 Sichuan, China.
| |
Collapse
|
42
|
Farzaneh M, Abouali Gale Dari M, Anbiyaiee A, Najafi S, Dayer D, Mousavi Salehi A, Keivan M, Ghafourian M, Uddin S, Azizidoost S. Emerging roles of the long non-coding RNA NEAT1 in gynecologic cancers. J Cell Commun Signal 2023; 17:531-547. [PMID: 37310654 PMCID: PMC10409959 DOI: 10.1007/s12079-023-00746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/10/2023] [Indexed: 06/14/2023] Open
Abstract
Gynecologic cancers are a worldwide problem among women. Recently, molecular targeted therapy opened up an avenue for cancer diagnosis and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules (> 200 nt) that are not translated into protein, and interact with DNA, RNA, and proteins. LncRNAs were found to play pivotal roles in cancer tumorigenesis and progression. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a lncRNA that mediates cell proliferation, migration, and EMT in gynecologic cancers by targeting several miRNAs/mRNA axes. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of breast, ovarian, cervical, and endometrial cancers. In this narrative review, we summarized various NEAT1-related signaling pathways that are critical in gynecologic cancers. Long non-coding RNA (lncRNA) by targeting various signaling pathways involved in its target genes can regulate the occurrence of gynecologic cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Dian Dayer
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolah Mousavi Salehi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mona Keivan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehri Ghafourian
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, 3050, Doha, Qatar
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 22602 India
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
43
|
Huang LA, Lin C, Yang L. Plumbing mysterious RNAs in "dark genome" for the conquest of human diseases. Mol Ther 2023; 31:1577-1595. [PMID: 37165619 PMCID: PMC10278048 DOI: 10.1016/j.ymthe.2023.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Next-generation sequencing has revealed that less than 2% of transcribed genes are translated into proteins, with a large portion transcribed into noncoding RNAs (ncRNAs). Among these, long noncoding RNAs (lncRNAs) represent the largest group and are pervasively transcribed throughout the genome. Dysfunctions in lncRNAs have been found in various diseases, highlighting their potential as therapeutic, diagnostic, and prognostic targets. However, challenges, such as unknown molecular mechanisms and nonspecific immune responses, and issues of drug specificity and delivery present obstacles in translating lncRNAs into clinical applications. In this review, we summarize recent publications that have explored lncRNA functions in human diseases. We also discuss challenges and future directions for developing lncRNA treatments, aiming to bridge the gap between functional studies and clinical potential and inspire further exploration in the field.
Collapse
Affiliation(s)
- Lisa A Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Irwin AB, Martina V, Jago SCS, Bahabry R, Schreiber AM, Lubin FD. The lncRNA Neat1 is associated with astrocyte reactivity and memory deficits in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539260. [PMID: 37205548 PMCID: PMC10187170 DOI: 10.1101/2023.05.03.539260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) have been associated with Alzheimer's disease (AD). However, the functional role of lncRNAs in AD remains unclear. Here, we report a crucial role for the lncRNA Neat1 in astrocyte dysfunction and memory deficits associated with AD. Transcriptomics analysis show abnormally high expression levels of NEAT1 in the brains of AD patients relative to aged-matched healthy controls, with the most significantly elevated levels in glial cells. In a human transgenic APP-J20 (J20) mouse model of AD, RNA-fluorescent in situ hybridization characterization of Neat1 expression in hippocampal astrocyte versus non-astrocyte cell populations revealed a significant increase in Neat1 expression in astrocytes of male, but not female, mice. This corresponded with increased seizure susceptibility in J20 male mice. Interestingly, Neat1 deficiency in the dCA1 in J20 male mice did not alter seizure threshold. Mechanistically, Neat1 deficiency in the dorsal area CA1 of the hippocampus (dCA1) J20 male mice significantly improved hippocampus-dependent memory. Neat1 deficiency also remarkably reduced astrocyte reactivity markers suggesting that Neat1 overexpression is associated with astrocyte dysfunction induced by hAPP/Aβ in the J20 mice. Together, these findings indicate that abnormal Neat1 overexpression may contribute to memory deficits in the J20 AD model not through altered neuronal activity, but through astrocyte dysfunction.
Collapse
Affiliation(s)
- Ashleigh B Irwin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Verdion Martina
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Silvienne C Sint Jago
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Rudhab Bahabry
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Anna Maria Schreiber
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Farah D. Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
45
|
Li K, Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 2023; 86:101878. [PMID: 36738893 DOI: 10.1016/j.arr.2023.101878] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases are the most common causes of disability worldwide. Given their high prevalence, devastating symptoms, and lack of definitive diagnostic tests, there is an urgent need to identify potential biomarkers and new therapeutic targets. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in neurodegenerative diseases. Among them, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be upregulated in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). However, whether this is part of a protective or harmful mechanism is still unclear. This review summarizes our current knowledge of the role of NEAT1 in neurodegenerative diseases and its association with the characteristic aggregation of misfolded proteins: amyloid-β and tau in AD, α-synuclein in PD, mutant huntingtin in HD, and TAR DNA-binding protein-43 fused in sarcoma/translocated in liposarcoma in ALS. The aim of this review is to stimulate further research on more precise and effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
46
|
Luo D, Liu H, Liu H, Wu W, Zhu H, Ge W, Ma C. Long RNA Profiles of Human Brain Extracellular Vesicles Provide New Insights into the Pathogenesis of Alzheimer's Disease. Aging Dis 2023; 14:229-244. [PMID: 36818567 PMCID: PMC9937700 DOI: 10.14336/ad.2022.0607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Extracellular vesicles (EVs), carriers of nucleic acids, lipids, and proteins, are known to play significant roles in neurodegenerative pathogenesis. Studies have shown that EVs from AD human brain tissue contain toxic proteins that may lead to neuron cell damage and loss. However, the potential contribution of EV long RNAs (exLR) to AD pathobiology is less well known, and their biochemical functions and molecular properties remain obscure. Here, EVs were isolated from the frontal cortex of normal control (NC; N = 10) and AD (N = 8) brain tissue donors. We performed exLR profiling on the isolated EVs followed by pathway analysis and weighted gene co-expression network analysis (WGCNA). A total of 1012 mRNAs, 320 long non-coding RNAs (lncRNAs), and 119 circular RNAs (circRNAs) were found to be differentially expressed (DE) in AD-EVs compared with NC-EVs. Functional analysis of the DEmRNAs revealed that metal ion transport, calcium signaling, and various neuronal processes were enriched. To investigate the possible functions of the identified DElncRNAs and DEcircRNAs, competing endogenous RNA (ceRNA) networks were constructed and subjected to WGCNA, in which two gene modules were identified to be significantly correlated with AD. Moreover, we discovered that NC-EVs were more effective than AD-EVs in promoting cytokine expression, phagocytosis, and induction of calcium signaling in microglia. Our study provides an in-depth characterization of brain tissue exLR and identifies several RNAs that correlate with the pathogenesis of AD.
Collapse
Affiliation(s)
- Dan Luo
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Haotian Liu
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hanyou Liu
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Wu
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Hanyang Zhu
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. Wei Ge () and Dr. Chao Ma (), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Ma
- Institute of Basic Medical Sciences, Department of Human Anatomy, Histology and Embryology, Neuroscience Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Correspondence should be addressed to: Dr. Wei Ge () and Dr. Chao Ma (), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Kumar D, Sahoo SS, Chauss D, Kazemian M, Afzali B. Non-coding RNAs in immunoregulation and autoimmunity: Technological advances and critical limitations. J Autoimmun 2023; 134:102982. [PMID: 36592512 PMCID: PMC9908861 DOI: 10.1016/j.jaut.2022.102982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/02/2023]
Abstract
Immune cell function is critically dependent on precise control over transcriptional output from the genome. In this respect, integration of environmental signals that regulate gene expression, specifically by transcription factors, enhancer DNA elements, genome topography and non-coding RNAs (ncRNAs), are key components. The first three have been extensively investigated. Even though non-coding RNAs represent the vast majority of cellular RNA species, this class of RNA remains historically understudied. This is partly because of a lag in technological and bioinformatic innovations specifically capable of identifying and accurately measuring their expression. Nevertheless, recent progress in this domain has enabled a profusion of publications identifying novel sub-types of ncRNAs and studies directly addressing the function of ncRNAs in human health and disease. Many ncRNAs, including circular and enhancer RNAs, have now been demonstrated to play key functions in the regulation of immune cells and to show associations with immune-mediated diseases. Some ncRNAs may function as biomarkers of disease, aiding in diagnostics and in estimating response to treatment, while others may play a direct role in the pathogenesis of disease. Importantly, some are relatively stable and are amenable to therapeutic targeting, for example through gene therapy. Here, we provide an overview of ncRNAs and review technological advances that enable their study and hold substantial promise for the future. We provide context-specific examples by examining the associations of ncRNAs with four prototypical human autoimmune diseases, specifically rheumatoid arthritis, psoriasis, inflammatory bowel disease and multiple sclerosis. We anticipate that the utility and mechanistic roles of these ncRNAs in autoimmunity will be further elucidated in the near future.
Collapse
Affiliation(s)
- Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Subhransu Sekhar Sahoo
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
48
|
lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res 2022; 8:135-145. [PMID: 36605618 PMCID: PMC9792360 DOI: 10.1016/j.ncrna.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.
Collapse
|
49
|
Hao Y, Xie B, Fu X, Xu R, Yang Y. New Insights into lncRNAs in Aβ Cascade Hypothesis of Alzheimer's Disease. Biomolecules 2022; 12:biom12121802. [PMID: 36551230 PMCID: PMC9775548 DOI: 10.3390/biom12121802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia, but its pathogenesis is not fully understood, and effective drugs to treat or reverse the progression of the disease are lacking. Long noncoding RNAs (lncRNAs) are abnormally expressed and deregulated in AD and are closely related to the occurrence and development of AD. In addition, the high tissue specificity and spatiotemporal specificity make lncRNAs particularly attractive as diagnostic biomarkers and specific therapeutic targets. Therefore, an in-depth understanding of the regulatory mechanisms of lncRNAs in AD is essential for developing new treatment strategies. In this review, we discuss the unique regulatory functions of lncRNAs in AD, ranging from Aβ production to clearance, with a focus on their interaction with critical molecules. Additionally, we highlight the advantages and challenges of using lncRNAs as biomarkers for diagnosis or therapeutic targets in AD and present future perspectives in clinical practice.
Collapse
Affiliation(s)
- Yitong Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bo Xie
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoshu Fu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Rong Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun 130021, China
- Correspondence:
| |
Collapse
|
50
|
LINC00472 inhibits cell migration by enhancing intercellular adhesion and regulates H3K27ac level via interacting with P300 in renal clear cell carcinoma. Cell Death Dis 2022; 8:454. [PMID: 36371410 PMCID: PMC9653443 DOI: 10.1038/s41420-022-01243-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2022]
Abstract
Renal clear cell carcinoma (RCCC) is the most common type of renal cell carcinoma, which is also difficult to diagnose and easy to metastasize. Currently, there is still a lack of effective clinical diagnostic indicators and treatment targets. This study aims to find effective diagnostic markers and therapeutic targets from the perspective of noncoding RNA. In this study, we found that the expression of Long noncoding RNA LINC00472 was significantly decreased in RCCC and showed a downward trend with the progression of cancer stage. Patients with low LINC00472 expression have poor prognosis. Inhibition of LINC00472 significantly increased cell proliferation and migration, while overexpression of LINC00472 obviously inhibited cell proliferation and enhanced intercellular adhesion. Transcriptome sequencing analysis demonstrated that LINC00472 was highly correlated with extracellular matrix and cell metastasis-related pathways, and the consistent results were obtained by The Cancer Genome Atlas (TCGA) data analysis. Additionally, we discovered that the integrin family protein ITGB8 is a potential target gene of LINC00472. Mechanistically, we found that the change of LINC00472 affected the acetylation level of H3K27 site in cells, and we speculate that this effect is likely to be generated through the interaction with acetyltransferase P300. In conclusion, LINC00472 has an important impact on the proliferation and metastasis of renal clear cells, and probably participate in the regulation of histone modification, and it may be used as a potential diagnostic marker of RCCC.
Collapse
|