1
|
Almada JC, Bortolotti A, Porrini L, Albanesi D, Miguel V, Cybulski L. Allosteric coupling activation mechanism in histidine kinases. Sci Rep 2025; 15:14682. [PMID: 40287507 PMCID: PMC12033271 DOI: 10.1038/s41598-025-88468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 04/29/2025] Open
Abstract
Histidine kinases (HKs) are crucial regulators of cellular functions, mediating the phosphorylation of specific proteins to modulate their activity and localization. Upon signal detection, HKs transfer a phosphate group from ATP to a conserved histidine residue within their Dimerization and Histidine phosphotransfer domain, subsequently passing the phosphate to a response regulator (RR) that typically interacts with DNA promoters to regulate gene expression. This study investigates the signal transduction mechanism of Bacillus subtilis HK DesK. We generated substitutions on the conserved phospho-acceptor histidine and evaluated their effects on DesK's activity in both in vivo and in vitro contexts. Notably, we found that a variant of DesK lacking the conserved histidine could still activate gene expression. Furthermore, computational simulations of DesK variants complexed with DesR revealed interactions that could be required to maintain DesR's active conformation. Our findings elucidate an alternative pathway for RR activation via an allosteric mechanism that operates independently of histidine phosphorylation. We also demonstrated that Escherichia coli HK EnvZ, when lacking the conserved histidine, can activate gene expression. This HK-Allosteric Coupling Activation Mechanism functions without reliance on phosphorylation or ATP consumption, potentially serving as a fail-safe mechanism under nutrient-limited conditions.
Collapse
Affiliation(s)
- Juan Cruz Almada
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Ana Bortolotti
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Lucía Porrini
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - Daniela Albanesi
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina
- Laboratorio de Microbiología Molecular, Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Virginia Miguel
- Instituto de Investigaciones Biológicas y Tecnológica (IIBYT), CONICET, Cátedra de Química Biológica, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Larisa Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Rosario, Argentina.
| |
Collapse
|
2
|
Liu M, Ding Y, Ye Q, Wu S, Gu Q, Chen L, Zhang Y, Wei X, Deng M, Zhang J, Wu Q, Wang J. Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples. Crit Rev Food Sci Nutr 2024; 65:2031-2045. [PMID: 38441497 DOI: 10.1080/10408398.2024.2322141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
The cold chain is an integral part of the modern food industry. Low temperatures can effectively alleviate food loss and the transmission of foodborne diseases caused by microbial reproduction. However, recent reports have highlighted shortcomings in the current cold chain technology's ability to prevent and control cold-tolerant foodborne pathogens. Furthermore, it has been observed that certain cold-chain foods have emerged as new sources of infection for foodborne disease outbreaks. Consequently, there is a pressing need to enhance control measures targeting cold-tolerant pathogens within the existing cold chain system. This paper aims to review the recent advancements in understanding the cold tolerance mechanisms of key model organisms, identify key issues in current research, and explore the potential of utilizing big data and omics technology in future studies.
Collapse
Affiliation(s)
- Ming Liu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qinghua Ye
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Shi Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qihui Gu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Ling Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Youxiong Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Xianhu Wei
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Meiqing Deng
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, National Health Commission, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Zhou J, Ma H, Zhang L. Mechanisms of Virulence Reprogramming in Bacterial Pathogens. Annu Rev Microbiol 2023; 77:561-581. [PMID: 37406345 DOI: 10.1146/annurev-micro-032521-025954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Hongmei Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
4
|
Interhelical H-Bonds Modulate the Activity of a Polytopic Transmembrane Kinase. Biomolecules 2021; 11:biom11070938. [PMID: 34201916 PMCID: PMC8301901 DOI: 10.3390/biom11070938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
DesK is a Histidine Kinase that allows Bacillus subtilis to maintain lipid homeostasis in response to changes in the environment. It is located in the membrane, and has five transmembrane helices and a cytoplasmic catalytic domain. The transmembrane region triggers the phosphorylation of the catalytic domain as soon as the membrane lipids rigidify. In this research, we study how transmembrane inter-helical interactions contribute to signal transmission; we designed a co-expression system that allows studying in vivo interactions between transmembrane helices. By Alanine-replacements, we identified a group of polar uncharged residues, whose side chains contain hydrogen-bond donors or acceptors, which are required for the interaction with other DesK transmembrane helices; a particular array of H-bond- residues plays a key role in signaling, transmitting information detected at the membrane level into the cell to finally trigger an adaptive response.
Collapse
|
5
|
Abstract
The ability to detect disease early and deliver precision therapy would be transformative for the treatment of human illnesses. To achieve these goals, biosensors that can pinpoint when and where diseases emerge are needed. Rapid advances in synthetic biology are enabling us to exploit the information-processing abilities of living cells to diagnose disease and then treat it in a controlled fashion. For example, living sensors could be designed to precisely sense disease biomarkers, such as by-products of inflammation, and to respond by delivering targeted therapeutics in situ. Here, we provide an overview of ongoing efforts in microbial biosensor design, highlight translational opportunities, and discuss challenges for enabling sense-and-respond precision medicines.
Collapse
Affiliation(s)
- Maria Eugenia Inda
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Timothy K. Lu
- MIT Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Bortolotti A, Vazquez DB, Almada JC, Inda ME, Drusin SI, Villalba JM, Moreno DM, Ruysschaert JM, Cybulski LE. A Transmembrane Histidine Kinase Functions as a pH Sensor. Biomolecules 2020; 10:biom10081183. [PMID: 32823946 PMCID: PMC7465017 DOI: 10.3390/biom10081183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/03/2020] [Indexed: 12/25/2022] Open
Abstract
The two-component system DesK-DesR regulates the synthesis of unsaturated fatty acids in the soil bacteria Bacillus subtilis. This system is activated at low temperature and maintains membrane lipid fluidity upon temperature variations. Here, we found that DesK—the transmembrane histidine kinase—also responds to pH and studied the mechanism of pH sensing. We propose that a helix linking the transmembrane region with the cytoplasmic catalytic domain is involved in pH sensing. This helix contains several glutamate, lysine, and arginine residues At neutral pH, the linker forms an alpha helix that is stabilized by hydrogen bonds in the i, i + 4 register and thus favors the kinase state. At low pH, protonation of glutamate residues breaks salt bridges, which results in helix destabilization and interruption of signaling. This mechanism inhibits unsaturated fatty acid synthesis and rigidifies the membrane when Bacillus grows in acidic conditions.
Collapse
Affiliation(s)
- Ana Bortolotti
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Daniela Belén Vazquez
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Juan Cruz Almada
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Salvador Iván Drusin
- Departamento de Químico-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Área Física, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Santa Fe, Argentina;
| | - Juan Manuel Villalba
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
| | - Diego M. Moreno
- Instituto de Química de Rosario (CONICET-UNR), Suipacha 570, S2002LRK Rosario, Santa Fe, Argentina;
- Área Química General e Inorgánica, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario S2002LRK, Santa Fe, Argentina
| | - Jean Marie Ruysschaert
- Structure et Fonction des Membranes Biologiques (SFMB) Campus de la Plaine, CP206/02, Boulevard du Triomphe, 1050 Bruxelles, Belgium
- Correspondence: (J.M.R.); (L.E.C.)
| | - Larisa Estefania Cybulski
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-Argentine National Research Council—CONICET, Suipacha 531 CP 2000, Argentina; (A.B.); (D.B.V.); (J.C.A.); (M.E.I.); (J.M.V.)
- Correspondence: (J.M.R.); (L.E.C.)
| |
Collapse
|