1
|
Chen ZL, Xie C, Zeng W, Huang RQ, Yang JE, Liu JY, Chen YJ, Zhuang SM. Synergistic induction of mitotic pyroptosis and tumor remission by inhibiting proteasome and WEE family kinases. Signal Transduct Target Ther 2024; 9:181. [PMID: 38992067 PMCID: PMC11239683 DOI: 10.1038/s41392-024-01896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Mitotic catastrophe (MC), which occurs under dysregulated mitosis, represents a fascinating tactic to specifically eradicate tumor cells. Whether pyroptosis can be a death form of MC remains unknown. Proteasome-mediated protein degradation is crucial for M-phase. Bortezomib (BTZ), which inhibits the 20S catalytic particle of proteasome, is approved to treat multiple myeloma and mantle cell lymphoma, but not solid tumors due to primary resistance. To date, whether and how proteasome inhibitor affected the fates of cells in M-phase remains unexplored. Here, we show that BTZ treatment, or silencing of PSMC5, a subunit of 19S regulatory particle of proteasome, causes G2- and M-phase arrest, multi-polar spindle formation, and consequent caspase-3/GSDME-mediated pyroptosis in M-phase (designated as mitotic pyroptosis). Further investigations reveal that inhibitor of WEE1/PKMYT1 (PD0166285), but not inhibitor of ATR, CHK1 or CHK2, abrogates the BTZ-induced G2-phase arrest, thus exacerbates the BTZ-induced mitotic arrest and pyroptosis. Combined BTZ and PD0166285 treatment (named BP-Combo) selectively kills various types of solid tumor cells, and significantly lessens the IC50 of both BTZ and PD0166285 compared to BTZ or PD0166285 monotreatment. Studies using various mouse models show that BP-Combo has much stronger inhibition on tumor growth and metastasis than BTZ or PD0166285 monotreatment, and no obvious toxicity is observed in BP-Combo-treated mice. These findings disclose the effect of proteasome inhibitors in inducing pyroptosis in M-phase, characterize pyroptosis as a new death form of mitotic catastrophe, and identify dual inhibition of proteasome and WEE family kinases as a promising anti-cancer strategy to selectively kill solid tumor cells.
Collapse
Affiliation(s)
- Zhan-Li Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Chen Xie
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Zeng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Rui-Qi Huang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Jin-E Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Jin-Yu Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Ya-Jing Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China
| | - Shi-Mei Zhuang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, State Key Laboratory of Oncology in Southern China, Sun Yat-sen University, Guangzhou, PR China.
- Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
2
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Partscht P, Simon A, Chen NP, Erhardt S, Schiebel E. The HIPK2/CDC14B-MeCP2 axis enhances the spindle assembly checkpoint block by promoting cyclin B translation. SCIENCE ADVANCES 2023; 9:eadd6982. [PMID: 36662865 PMCID: PMC9858502 DOI: 10.1126/sciadv.add6982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/16/2022] [Indexed: 05/12/2023]
Abstract
Mitotic perturbations activate the spindle assembly checkpoint (SAC) that keeps cells in prometaphase with high CDK1 activity. Prolonged mitotic arrest is eventually bypassed by gradual cyclin B decline followed by slippage of cells into G1 without chromosome segregation, a process that promotes cell transformation and drug resistance. Hitherto, the cyclin B1 decay is exclusively defined by mechanisms that involve its proteasomal degradation. Here, we report that hyperphosphorylated HIPK2 kinase accumulates in mitotic cells and phosphorylates the Rett syndrome protein MeCP2 at Ser92, a regulation that is counteracted by CDC14B phosphatase. MeCP2S92 phosphorylation leads to the enhanced translation of cyclin B1, which is important for cells with persistent SAC activation to counteract the proteolytic decline of cyclin B1 and therefore to suspend mitotic slippage. Hence, the HIPK2/CDC14B-MeCP2 axis functions as an enhancer of the SAC-induced mitotic block. Collectively, our study revises the prevailing view of how cells confer a sustainable SAC.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Alexander Simon
- Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Nan-Peng Chen
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| | - Sylvia Erhardt
- Zoological Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe 76131, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg 69120, Germany
| |
Collapse
|
4
|
Oviya RP, Thangaretnam KP, Ramachandran B, Ramanathan P, Jayavelu S, Gopal G, Rajkumar T. Mitochondrial ribosomal small subunit (MRPS) MRPS23 protein-protein interaction reveals phosphorylation by CDK11-p58 affecting cell proliferation and knockdown of MRPS23 sensitizes breast cancer cells to CDK1 inhibitors. Mol Biol Rep 2022; 49:9521-9534. [PMID: 35962848 DOI: 10.1007/s11033-022-07842-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Post-translational modification of some mitoribosomal proteins has been found to regulate their functions. MRPS23 has been reported to be overexpressed in various cancers and has been predicted to be involved in increased cell proliferation. Furthermore, MRPS23 is a driver of luminal subtype breast cancer. However, its exact role and function in cancer remains unknown. METHODS AND RESULTS: Our previous study identified protein-protein interactions involving MRPS23 and CDK11A. In this study, we confirmed the interaction of MRPS23 with the p110 and p58 isoforms of CDK11A. Phosphoprotein enrichment studies and in vitro kinase assay using CDK11A/cyclin D3 followed by MALDI-ToF/ToF analysis confirmed the phosphorylation of MRPS23 at N-terminal serine 11 residue. Breast cancer cells expressing the MRPS23 (S11G) mutant showed increased cell proliferation, increased expression of PI3-AKT pathway proteins [p-AKT (Ser47), p-AKT (Thr308), p-PDK (Ser241) and p-GSK-3β (Ser9)] and increased antiapoptotic pathway protein expression [Bcl-2, Bcl-xL, p-Bcl2 (Ser70) and MCL-1] when compared with the MRPS23 (S11A) mutant-overexpressing cells. This finding indicated the role of MRPS23 phosphorylation in the proliferation and survival of breast cancer cells. The correlation of inconsistent MRPS23 phosphoserine 11 protein expression with CDK11A in the breast cancer cells suggested phosphorylation by other kinases. In vitro kinase assay showed that CDK1 kinase also phosphorylated MRPS23 and that inhibition using CDK1 inhibitors lowered phospho-MRPS23 (Ser11) levels. Additionally, modulating the expression of MRPS23 altered the sensitivity of the cells to CDK1 inhibitors. CONCLUSION In conclusion, phosphorylation of MRPS23 by mitotic kinases might potentially be involved in the proliferation of breast cancer cells. Furthermore, MRPS23 can be targeted for sensitizing the breast cancer cells to CDK1 inhibitors.
Collapse
Affiliation(s)
| | | | - Balaji Ramachandran
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Subramani Jayavelu
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India. .,Department of Molecular Oncology, Cancer Institute (WIA), Chennai, 600036, India.
| | - Thangarajan Rajkumar
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai, Tamil Nadu, 600020, India
| |
Collapse
|
5
|
Clemm von Hohenberg K, Müller S, Schleich S, Meister M, Bohlen J, Hofmann TG, Teleman AA. Cyclin B/CDK1 and Cyclin A/CDK2 phosphorylate DENR to promote mitotic protein translation and faithful cell division. Nat Commun 2022; 13:668. [PMID: 35115540 PMCID: PMC8813921 DOI: 10.1038/s41467-022-28265-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
DENR and MCTS1 have been identified as oncogenes in several different tumor entities. The heterodimeric DENR·MCTS1 protein complex promotes translation of mRNAs containing upstream Open Reading Frames (uORFs). We show here that DENR is phosphorylated on Serine 73 by Cyclin B/CDK1 and Cyclin A/CDK2 at the onset of mitosis, and then dephosphorylated as cells exit mitosis. Phosphorylation of Ser73 promotes mitotic stability of DENR protein and prevents its cleavage at Asp26. This leads to enhanced translation of mRNAs involved in mitosis. Indeed, we find that roughly 40% of all mRNAs with elevated translation in mitosis are DENR targets. In the absence of DENR or of Ser73 phosphorylation, cells display elevated levels of aberrant mitoses and cell death. This provides a mechanism how the cell cycle regulates translation of a subset of mitotically relevant mRNAs during mitosis.
Collapse
Affiliation(s)
- Katharina Clemm von Hohenberg
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
- Department of Medicine III, Universitätsmedizin Mannheim, 68167, Mannheim, Germany
| | - Sandra Müller
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
| | - Sibylle Schleich
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
| | - Matthias Meister
- Division of Viral Transformation Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonathan Bohlen
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Heidelberg University, 69120, Heidelberg, Germany
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
- University of Paris, Imagine Institute, Paris, France
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center Mainz at the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
- Heidelberg University, 69120, Heidelberg, Germany.
- CellNetworks-Cluster of Excellence, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
6
|
Lim HS, Sohn E, Kim YJ, Kim BY, Kim JH, Jeong SJ. Ethanol Extract of Elaeagnus glabra f. oxyphylla Branches Alleviates the Inflammatory Response Through Suppression of Cyclin D3/Cyclin-Dependent Kinase 11p58 Coupled to Lipopolysaccharide-Activated BV-2 Microglia. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221075079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuroinflammation plays a pivotal role in the pathogenesis of neurodegenerative diseases and is characterized by microglial dysregulation. Here, we explored the beneficial effects of a leaf extract of Elaeagnus glabra f. oxyphylla (EGFO), a native medicinal plant to Korea, South China, Japan, and Taiwan, on neuroinflammation using lipopolysaccharide (LPS)-stimulated BV-2 microglia. Levels of the inflammatory mediators were determined by enzyme-linked immunosorbent assays and reverse transcription–polymerase chain reaction. The phospho levels of mitogen-activated protein kinases, which are key kinase molecules in the inflammatory signaling pathway in microglia, were analyzed by Western blotting. Treatment with EGFO significantly suppressed the LPS-mediated induction of nitric oxide and prostaglandin E2. Consistently, EGFO treatment in LPS-stimulated BV-2 cells markedly reduced the inflammatory cytokines tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. The best concentration of EGFO that could reduce TNF-α and IL-6 was 100 μg/mL. EGFO relatively reduced the messenger RNA expression of TNF-α and IL-6 by 0.36 and 0.32-fold ratio, respectively, compared to LPS treatment. Moreover, EGFO markedly reduced the phospho levels of p38 and the c-jun N-terminal kinase. Furthermore, antibody microarray and immunoblotting data revealed that the pharmacological mechanisms driving the antineuroinflammatory action of EGFO involve prevention of the cyclin D3/cyclin-dependent kinase 11p58 (CDK11p58) interaction. In conclusion, our results demonstrate that EGFO alleviates the inflammatory response through the suppression of cyclin D3/CDK11p58 coupling in LPS-activated BV-2 microglia. We propose the potential of EGFO as a novel drug candidate for neurodegenerative diseases by targeting neuroinflammation.
Collapse
Affiliation(s)
- Hye-Sun Lim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Eunjin Sohn
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Yu Jin Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Bu-Yeo Kim
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| | | | - Soo-Jin Jeong
- Korea Institute of Oriental Medicine, Daejeon, South Korea
| |
Collapse
|
7
|
Loyer P, Trembley JH. Roles of CDK/Cyclin complexes in transcription and pre-mRNA splicing: Cyclins L and CDK11 at the cross-roads of cell cycle and regulation of gene expression. Semin Cell Dev Biol 2020; 107:36-45. [PMID: 32446654 DOI: 10.1016/j.semcdb.2020.04.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/18/2022]
Abstract
Cyclin Dependent Kinases (CDKs) represent a large family of serine/threonine protein kinases that become active upon binding to a Cyclin regulatory partner. CDK/cyclin complexes recently identified, as well as "canonical" CDK/Cyclin complexes regulating cell cycle, are implicated in the regulation of gene expression via the phosphorylation of key components of the transcription and pre-mRNA processing machineries. In this review, we summarize the role of CDK/cyclin-dependent phosphorylation in the regulation of transcription and RNA splicing and highlight recent findings that indicate the involvement of CDK11/cyclin L complexes at the cross-roads of cell cycle, transcription and RNA splicing. Finally, we discuss the potential of CDK11 and Cyclins L as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM, INRAE, Univ Rennes, NuMeCan, Nutrition Metabolisms and Cancer, Rennes, France.
| | - Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|