1
|
Esmaeili A, Esmaeili V, Shahverdi A, Eslaminejad MB. Engineered extracellular vesicles: a breakthrough approach to overcoming sperm cryopreservation challenges. Reprod Biol Endocrinol 2025; 23:75. [PMID: 40399922 PMCID: PMC12093887 DOI: 10.1186/s12958-025-01407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025] Open
Abstract
Freezing sperm for artificial insemination (AI) has been common for decades, but this method causes damage to sperm, which affects its viability and fertility. Various strategies have been used to treat sperm cryopreservation complications, but their results are still not satisfactory. The latest approach in this field is using extracellular vesicles (EVs). The role of EVs in reproduction, such as spermatogenesis, sperm capacitation, and fertility has been proven. EVs can deliver proteins, lipids, nucleic acids, and other molecules to the sperm for repair. The EVs carry proteins, lipids, nucleic acids, and other molecules, which could be involved in sperm quality, functionality or fertility. The application of EV derived from animal and human cell sources for cryoinjury treatment indicates the improvement of sperm quality after freeze-thawing. In addition, different EV engineering methods regarding various EV cargos could be more influential for cryopreserved sperm treatment because they could provide EV customized content for delivering to cryoinjured sperm, according to their unique needs to enhance viability and fertility. In this review, first, we reminded the sperm cryopreservation complications, and next explained the conventional and modern strategies for overcoming them. Then, we have pointed out the role of EV in sperm development and the following mentioned the study results of using EV from different cell sources in sperm cryoinjuries repair. Also, we suggested several predisposing molecules (including microRNAs and proteins) for EV engineering to treat sperm cryopreservation complications by indirect engineering procedure, including genetic manipulation and incubation with therapeutic molecules, and direct engineering procedure, including electroporation, sonication, incubation, saponin permeabilization, extrusion, CaCl2-heat shock, and freeze/thawing. Finally, we discussed the limitations of EV application and ethical considerations in this context. In the meantime, despite these limitations, we pointed out the promising potential of the EV engineering strategies to reduce infertility rates by helping to overcome sperm cryopreservation challenges.
Collapse
Affiliation(s)
- Abazar Esmaeili
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Rogers HM, Gad A, Cork GK, Menjivar NG, Schoolcraft WB, Tesfaye D, Yuan Y. Age-related integrative transcriptomic profiling of human granulosa cells reveals mRNA-microRNA regulatory network associated with key ovulation dynamics†. Biol Reprod 2025; 112:916-931. [PMID: 39982426 DOI: 10.1093/biolre/ioaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 02/22/2025] Open
Abstract
Advanced maternal age (AMA) patients experience decreased success from assisted reproductive technologies (ART), attributed to the quantity and quality of oocytes, which is significantly influenced by the intrafollicular granulosa cells (GCs). In this study, we compared the mRNA and microRNA (miRNA) transcriptomes between young (< 32 years old) and AMA (> 38 years old) patients' GCs to identify potential ovarian aging-related molecular signatures. We identified 293 and 21 differentially expressed genes (DEGs) and miRNAs (DE miRNAs), respectively, between young and aged GCs. Highly expressed mitochondrial-encoded genes, MT-ND3, MT-ND6, and MT-CYB, were downregulated in aged GCs, indicating potential mitochondrial insufficiency. Additionally, pathway analysis indicates DEGs are involved in inflammation, cytokine signaling, extracellular matrix (ECM) remodeling, and angiogenesis. Key DEGs related to these processes include CXCL8, IL1B, NLRP3, SIGIRR, ANGPT2, ADAM8, and ADAMTS14. Additionally, target gene prediction and pathway analysis of DE miRNAs indicates their potential post-transcriptional regulation of genes associated with cell signaling, mitochondrial function, oxidative stress, apoptosis, and senescence pathways in addition to cytokine signaling, angiogenesis, and ECM remodeling. To investigate regulatory mechanisms further, we looked at the DEGs' convergence with the DE miRNAs predicted target genes and we identified miR-483-3p, miR-1268a, miR-4497, miR-7704, miR-135a-5p, miR-1261, and miR-4791 as potential crucial regulators of genes involved in pathways associated with inflammation, ECM, and angiogenesis. This data suggests that aged GCs have an impaired ability to elicit the same pro-inflammatory response combined with dysregulation of angiogenesis and ECM remodeling compared to young GCs, and miRNA may play a role in regulating key ovulatory processes. While this study identifies potential regulatory relationships between DE miRNAs and DEGs, experimental validation is necessary to confirm the relationships and biological relevance.
Collapse
Affiliation(s)
- Heather M Rogers
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Gentry K Cork
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| |
Collapse
|
3
|
Stolc V, Preto O, Karhanek M, Freund F, Griko Y, Loftus DJ, Ohayon MM. RNA-DNA Differences: Mechanisms, Oxidative Stress, Transcriptional Fidelity, and Health Implications. Antioxidants (Basel) 2025; 14:544. [PMID: 40427426 PMCID: PMC12108522 DOI: 10.3390/antiox14050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/29/2025] [Accepted: 04/05/2025] [Indexed: 05/29/2025] Open
Abstract
RNA-DNA differences (RDDs) challenge the traditional view of RNA as a faithful copy of DNA, arising through RNA editing, transcriptional errors, and oxidative damage. Reactive oxygen species (ROS) play a central role, inducing lesions like 8-oxo-guanine that compromise transcription and translation, leading to dysfunctional proteins. This review explores the biochemical basis of RDDs, their exacerbation under oxidative stress, and their dual roles in cellular adaptation and disease. RDDs contribute to genomic instability and are implicated in cancers, neurodegenerative disorders, and autoimmune diseases, while also driving phenotypic diversity. Drawing on terrestrial and spaceflight studies, we highlight the intersection of oxidative stress, RDD formation, and cellular dysfunction, proposing innovative mitigation approaches. Advancements in RDD detection and quantification, along with ROS management therapies, offer new avenues to restore cellular homeostasis and promote resilience. By positioning RDDs as a hallmark of genomic entropy, this review underscores the limits of biological adaptation. Furthermore, the prevalence of guanine-rich codons in antioxidant genes increases their susceptibility to ROS-induced oxidative lesions, linking redox stress, genomic instability, and constrained adaptation. These insights have profound implications for understanding aging, disease progression, and adaptive mechanisms in both terrestrial and space environments.
Collapse
Affiliation(s)
- Viktor Stolc
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Ondrej Preto
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Miloslav Karhanek
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | | | - Yuri Griko
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | | |
Collapse
|
4
|
Chudy P, Kochan J, Wawro M, Nguyen P, Gorczyca M, Varanko A, Retka A, Ghadei SS, Napieralska E, Grochot-Przęczek A, Szade K, Berendes LS, Park J, Sokołowski G, Yu Q, Józkowicz A, Nowak WN, Krzeptowski W. Heme oxygenase-1 protects cells from replication stress. Redox Biol 2024; 75:103247. [PMID: 39047636 PMCID: PMC11321372 DOI: 10.1016/j.redox.2024.103247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Heme oxygenase-1 (HO-1, HMOX1) degrades heme protecting cells from heme-induced oxidative damage. Beyond its well-established cellular functions, heme has emerged as a stabilizer of G-quadruplexes. These secondary DNA structures interfere with DNA replication. We recently revealed that nuclear HO-1 colocalizes with DNA G-quadruplexes and promotes their removal. Here, we investigate whether HO-1 safeguards cells against replication stress. Experiments were conducted in control and HMOX1-deficient HEK293T cell lines. Immunostaining unveiled that DNA G-quadruplexes accumulated in the absence of HO-1, the effect that was further enhanced in response to δ-aminolevulinic acid (ALA), a substrate in heme synthesis. This was associated with replication stress, as evidenced by an elevated proportion of stalled forks analyzed by fiber assay. We observed the same effects in hematopoietic stem cells isolated from Hmox1 knockout mice and in a lymphoblastoid cell line from an HMOX1-deficient patient. Interestingly, in the absence of HO-1, the speed of fork progression was higher, and the response to DNA conformational hindrance less stringent, indicating dysfunction of the PARP1-p53-p21 axis. PARP1 activity was not decreased in the absence of HO-1. Instead, we observed that HO-1 deficiency impairs the nuclear import and accumulation of p53, an effect dependent on the removal of excess heme. We also demonstrated that administering ALA is a more specific method for increasing intracellular free heme compared to treatment with hemin, which in turn induces strong lipid peroxidation. Our results indicate that protection against replication stress is a universal feature of HO-1, presumably contributing to its widely recognized cytoprotective activity.
Collapse
Affiliation(s)
- Patryk Chudy
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Jakub Kochan
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mateusz Wawro
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Phu Nguyen
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gorczyca
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aliaksandra Varanko
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Retka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Swati Sweta Ghadei
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Emilija Napieralska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Grochot-Przęczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Lea-Sophie Berendes
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Julien Park
- Department of General Pediatrics, University Hospital Münster, Münster, Germany
| | - Grzegorz Sokołowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Qiuliyang Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Alicja Józkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Witold N Nowak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; August Chełkowski Institute of Physics, Faculty of Science and Technology, University of Silesia, Chorzów, Poland.
| | - Wojciech Krzeptowski
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Krepuska M, Mayer B, Vitale-Cross L, Myneni VD, Boyajian MK, Németh K, Szalayova I, Cho T, McClain-Caldwell I, Gingerich AD, Han H, Westerman M, Rada B, Mezey É. Bone marrow stromal cell-derived hepcidin has antimicrobial and immunomodulatory activities. Sci Rep 2024; 14:3986. [PMID: 38368463 PMCID: PMC10874407 DOI: 10.1038/s41598-024-54227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) have immunomodulatory activities in numerous species and have been used in clinical trials. BMSCs also make antibacterial agents. Since hepcidin is known to have antimicrobial effects in fish, we wondered if it might also be used as an antimicrobial agent by mammalian BMSCs. In the present study, we show hepcidin expression in both mouse (mBMSC) and human BMSCs (hBMSC). We observed a hBMSC hepcidin-dependent degradation of ferroportin in HEK-293 reporter cells in vitro. In human and mouse bone marrows (BM) we detected hepcidin-positive BMSCs in close proximity to hematopoietic progenitors. The conditioned culture medium of hBMSCs significantly reduced bacterial proliferation that was partially blocked by a hepcidin-neutralizing antibody. Similarly, medium in which hepcidin-deficient (Hamp-/-) mouse BMSCs had been grown was significantly less effective in reducing bacterial counts than the medium of wild-type cells. In a zymosan-induced peritonitis mouse model we found that mBMSC-derived hepcidin reduced the number of invading polymorphonuclear (PMN) cells in the peritoneal cavity. Our results show that BMSC-derived hepcidin has antimicrobial properties in vitro and also reduces inflammation in vivo. We conclude that hepcidin should be added to the expanding arsenal of agents available to BMSCs to fight infections and inflammation.
Collapse
Affiliation(s)
- Miklós Krepuska
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
- Department of Neuroradiology, University Hospital Zürich, Zürich, Switzerland
| | - Balázs Mayer
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
- Stem Cell Laboratory, Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | | | - Vamsee D Myneni
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
| | | | - Krisztián Németh
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
- Stem Cell Laboratory, Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | | | - Ted Cho
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
| | | | - Aaron D Gingerich
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | | | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Éva Mezey
- National Institutes of Health, NIDCR, ASCS, Bethesda, MD, USA
| |
Collapse
|
6
|
Wang TF, Liou YS, Yang SH, Lin GL, Chiang YW, Lien TS, Li CC, Wang JH, Chang HH, Sun DS. Platelet-derived circulating soluble P-selectin is sufficient to induce hematopoietic stem cell mobilization. Stem Cell Res Ther 2023; 14:300. [PMID: 37864264 PMCID: PMC10589967 DOI: 10.1186/s13287-023-03527-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Granulocyte colony-stimulating factor (G-CSF)-mediated mobilization of hematopoietic stem cells (HSCs) is a well-established method to prepare HSCs for transplantation nowadays. A sufficient number of HSCs is critical for successful HSC transplantation. However, approximately 2-6% of healthy stem cell donors are G-CSF-poor mobilizers for unknown reasons; thus increasing the uncertainties of HSC transplantation. The mechanism underlining G-CSF-mediated HSC mobilization remains elusive, so detailed mechanisms and an enhanced HSC mobilization strategy are urgently needed. Evidence suggests that P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are one of the cell-cell adhesion ligand-receptor pairs for HSCs to keep contacting bone marrow (BM) stromal cells before being mobilized into circulation. This study hypothesized that blockage of PSGL-1 and P-selectin may disrupt HSC-stromal cell interaction and facilitate HSC mobilization. METHODS The plasma levels of soluble P-selectin (sP-sel) before and after G-CSF administration in humans and male C57BL/6J mice were analyzed using enzyme-linked immunosorbent assay. Male mice with P-selectin deficiency (Selp-/-) were further employed to investigate whether P-selectin is essential for G-CSF-induced HSC mobilization and determine which cell lineage is sP-sel derived from. Finally, wild-type mice were injected with either G-CSF or recombinant sP-sel to investigate whether sP-sel alone is sufficient for inducing HSC mobilization and whether it accomplishes this by binding to HSCs and disrupting their interaction with stromal cells in the BM. RESULTS A significant increase in plasma sP-sel levels was observed in humans and mice following G-CSF administration. Treatments of G-CSF induced a decrease in the level of HSC mobilization in Selp-/- mice compared with the wild-type (Selp+/+) controls. Additionally, the transfer of platelets derived from wild-type mice can ameliorate the defected HSC mobilization in the Selp-/- recipients. G-CSF induces the release of sP-sel from platelets, which is sufficient to mobilize BM HSCs into the circulation of mice by disrupting the PSGL-1 and P-selectin interaction between HSCs and stromal cells. These results collectively suggested that P-selectin is a critical factor for G-CSF-induced HSC mobilization. CONCLUSIONS sP-sel was identified as a novel endogenous HSC-mobilizing agent. sP-sel injections achieved a relatively faster and more convenient regimen to mobilize HSCs in mice than G-CSF. These findings may serve as a reference for developing and optimizing human HSC mobilization in the future.
Collapse
Grants
- MOST103-2321-B-320-001 Ministry of Science and Technology, Taiwan
- MOST105-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST106-2633-B-320-001 Ministry of Science and Technology, Taiwan
- MOST108-2311-B-320-001 Ministry of Science and Technology, Taiwan
- TCMMP104-06 Buddhist Tzu Chi Medical Foundation
- TCMMP108-04 Buddhist Tzu Chi Medical Foundation
- TCMMP111-01 Buddhist Tzu Chi Medical Foundation
- TCRD106-42 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD108-55 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD110-61 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD111-082 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCRD112-054 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
- TCAS-112-02 Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation
Collapse
Affiliation(s)
- Tso-Fu Wang
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Yu-Shan Liou
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Shang-Hsien Yang
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan, Republic of China
- Buddhist Tzu Chi Stem Cells Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Department of Pediatric Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Guan-Ling Lin
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Ya-Wen Chiang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China
| | - Chi-Cheng Li
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan, Republic of China
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, College of Medicine, Tzu Chi University, No. 701, Section 3, Zhong-Yang Road, Hualien, 97004, Taiwan, Republic of China.
| |
Collapse
|
7
|
Zhang J, Li J, An Z, Qi J. HYDROMORPHONE MITIGATES CARDIOPULMONARY BYPASS-INDUCED ACUTE LUNG INJURY BY REPRESSING PYROPTOSIS OF ALVEOLAR MACROPHAGES. Shock 2023; 60:92-99. [PMID: 37127893 DOI: 10.1097/shk.0000000000002138] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT Introduction: Acute lung injury (ALI) is a devastating pulmonary illness with diffuse inflammatory responses. Hydromorphone (Hyd) is an opioid agonist used for relieving moderate-to-severe pain. The present work investigated the effect of Hyd on cardiopulmonary bypass (CPB)-induced ALI by regulating pyroptosis of alveolar macrophages (AMs). Methods: Rats were subjected to CPB, followed by Hyd treatment. The lung injury in rat lung tissues was appraised by the ratio of lung wet/dry weight (weight), histological staining, and the total protein concentrations in bronchoalveolar lavage fluid, and lung function was assessed by oxygenation index and respiratory index, and lung macrophage pyroptosis was observed by fluorescence staining. Alveolar macrophages were separated and pyroptosis was determined by western blot assay and enzyme-linked immunosorbent assay. The expression patterns of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 (Nrf2/HO-1), nod-like receptor protein 3 (NLRP3), N-terminal gasdermin-D, and cleaved caspase-1 were examined by real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry assays. The impact of NLRP3 or Nrf2 on pyroptosis of AMs and CPB-induced ALI was observed after treatment of nigericin (NLRP3 agonist) or ML385 (Nrf2 inhibitor). Results: Hyd attenuated CPB-induced lung injury as manifested by reductions in lung inflammation and edema, the scores of lung injury, the ratio of lung wet/dry weight, and the total protein concentrations in bronchoalveolar lavage fluid. Besides, Hyd repressed NLRP3 inflammasome-mediated pyroptosis of AMs after CPB treatment. Hyd upregulated Nrf2/HO-1 expression levels to repress NLRP3 inflammasome-mediated pyroptosis. Treatment of nigericin or ML385 counteracted the role of Hyd in ameliorating pyroptosis of AMs and CPB-induced ALI. Conclusions: Hyd alleviated NLRP3 inflammasome-mediated pyroptosis and CPB-induced ALI via upregulating the Nrf2/HO-1 pathway, which may be achieved by AMs.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | | | | | | |
Collapse
|
8
|
Liu R, Zhang X, Nie L, Sun S, Liu J, Chen H. Heme oxygenase 1 in erythropoiesis: an important regulator beyond catalyzing heme catabolism. Ann Hematol 2023; 102:1323-1332. [PMID: 37046065 DOI: 10.1007/s00277-023-05193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023]
Abstract
Heme oxygenase 1 (HO-1), encoded by the HMOX-1 gene, is the main heme oxygenase that catalyzes the degradation of heme into iron, carbon monoxide, and biliverdin. HMOX-1 gene expression is stimulated by oxidative stress and regulated at transcriptional and post-transcriptional levels. After translation, subcellular location and protein stability of HO-1 are also altered by different extracellular and intracellular stimuli. HO-1 plays a key role in regulating iron homeostasis and cell protection and has become a new target for disease treatment. Erythropoiesis is a tightly controlled, iron-dependent process that begins with hematopoietic stem cells and maturates to red blood cells. HO-1 is expressed in hematopoietic stem/progenitor cells, hematopoietic niche cells, erythroblasts, and especially erythroblastic island and phagocytic macrophages. HO-1 functions importantly in the entire erythroid development process by influencing hematopoietic stem cell proliferation, erythroid lineage engagement, terminal erythroid differentiation, and even senescent RBC erythrophagocytosis. HO-1 is also related to stress erythropoiesis and certain red blood cell diseases. Elucidation of HO-1 regulation and function in erythropoiesis will be of great significance for the treatment of related diseases.
Collapse
Affiliation(s)
- Rui Liu
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Xuzhi Zhang
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, Hunan Province, 410013, People's Republic of China
| | - Ling Nie
- Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, People's Republic of China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China
| | - Huiyong Chen
- Molecular Biology Research Center, School of Life Sciences; Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, Hunan Province, 410078, People's Republic of China.
| |
Collapse
|
9
|
Ma C, Wu X, Zhang X, Liu X, Deng G. Heme oxygenase-1 modulates ferroptosis by fine-tuning levels of intracellular iron and reactive oxygen species of macrophages in response to Bacillus Calmette-Guerin infection. Front Cell Infect Microbiol 2022; 12:1004148. [PMID: 36211962 PMCID: PMC9539760 DOI: 10.3389/fcimb.2022.1004148] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
Macrophages are the host cells and the frontline defense against Mycobacterium tuberculosis (Mtb) infection, and the form of death of infected macrophages plays a pivotal role in the outcome of Mtb infections. Ferroptosis, a programmed necrotic cell death induced by overwhelming lipid peroxidation, was confirmed as one of the mechanisms of Mtb spread following infection and the pathogenesis of tuberculosis (TB). However, the mechanism underlying the macrophage ferroptosis induced by Mtb infection has not yet been fully understood. In the present study, transcriptome analysis revealed the upregulation of heme oxygenase-1 (HMOX1) and pro-ferroptosis cytokines, but downregulation of glutathione peroxidase 4 (GPX4) and other key anti-lipid peroxidation factors in the peripheral blood of both patients with extra-pulmonary tuberculosis (EPTB) and pulmonary tuberculosis (PTB). This finding was further corroborated in mice and RAW264.7 murine macrophage-like cells infected with Bacillus Calmette-Guerin (BCG). A mechanistic study further demonstrated that heme oxygenase-1 protein (HO-1) regulated the production of reactive oxygen species (ROS) and iron metabolism, and ferroptosis in BCG-infected murine macrophages. The knockdown of Hmox1 by siRNA resulted in a significant increase of intracellular ROS, Fe2+, and iron autophagy-mediated factor Ncoa4, along with the reduction of antioxidant factors Gpx4 and Fsp1 in macrophages infected with BCG. The siRNA-mediated knockdown of Hmox1 also reduced cell survival rate and increased the release of intracellular bacteria in BCG-infected macrophages. By contrast, scavenging ROS by N-acetyl cysteine led to the reduction of intracellular ROS, Fe2+, and Hmox1 concentrations, and subsequently inhibited ferroptosis and the release of intracellular BCG in RAW264.7 cells infected with BCG. These findings suggest that HO-1 is an essential regulator of Mtb-induced ferroptosis, which regulates ROS production and iron accretion to alter macrophage death against Mtb infections.
Collapse
Affiliation(s)
- Chenjie Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xiaoling Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
| | - Xu Zhang
- Department of Beijing National Biochip Research Center sub-center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, IA, United States
| | - Guangcun Deng
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Ningxia University, Yinchuan, China
- School of Life Science, Ningxia University, Yinchuan, China
- Analysis and Testing Center, Ningxia University, Yinchuan, China
| |
Collapse
|