1
|
Zha X, Liu XY, Wang L, Li SS, Sun YZ, Lin JK, Yan JJ, Gao MT, Zhang YL, Yang RR, Xu C, Xu XH. Estrogen signaling in the ventromedial hypothalamus is required for the development of aggression circuitry in male mice. Curr Biol 2025:S0960-9822(25)00573-1. [PMID: 40403719 DOI: 10.1016/j.cub.2025.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 03/05/2025] [Accepted: 04/30/2025] [Indexed: 05/24/2025]
Abstract
Aggression in male mice depends on developmental estrogen exposure, yet the neural mechanisms underlying this phenomenon remain poorly understood. Although estrogen receptor α (Esr1) has served as a genetic marker to identify aggression-regulating neurons in the ventrolateral division of ventromedial hypothalamus (VMHvl), its functional role in organizing male-aggression circuits remains poorly understood. Here, we developed a genetic strategy to knock out Esr1 in VMHvl neurons while simultaneous tracing and manipulating Esr1-deleted cells. Developmental Esr1 knockout selectively altered synaptic inputs from aggression-regulating regions onto VMHvl neurons, with a stronger effect observed in males, revealing the posterior intralaminar thalamic nucleus (PIL) as a critical upstream region involved in male aggression. Additionally, VMHvl Esr1+ neurons in knockout males showed reduced excitability and failed to initiate attacks upon chemogenetic activation. These findings underscore the essential role of Esr1 in establishing male-specific aggression circuits, providing new insights into male-specific neural circuit development and function.
Collapse
Affiliation(s)
- Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiao-Yao Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Peking University, Tsinghua University, National Institute of Biological Sciences Joint Graduate Program, Peking University, Beijing 100871, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Zhuo Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Jing Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Meng-Tong Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Li Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong-Rong Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
2
|
Trives E, Porte C, Nakahara TS, Keller M, Vacher H, Chamero P. Social experience is associated with a differential role of aromatase neurons in sexual behavior and territorial aggression in male mice. Horm Behav 2025; 170:105723. [PMID: 40106849 DOI: 10.1016/j.yhbeh.2025.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
Aromatase (Aro+) neurons located in the Bed Nucleus of the Stria Terminalis (BNST) are crucial for the display of both sexual behavior and territorial aggression in naive male mice. The postero-dorsal part of the Medial Amygdala (MeApd) also contains Aro + neurons that are required for territorial aggression, but these neurons seem dispensable for the display of sexual behavior in naive animals. However, little is known about how Aro + neuron circuitry is influenced by social experience. Using a combination of chemogenetics, activity mapping and retrograde viral tracing, we show that social experience modulates Aro + neurons during sexual behavior and territorial aggression. Chemogenetic inhibition of BNST Aro + neurons in socially experienced male mice revealed that these neurons are required for territorial aggression, but not for sexual behavior. Behavior testing in experienced animals showed a specific increase in activation in the vomeronasal organ (VNO) and the Medial Amygdala (MeA) after sexual behavior but not territorial aggression, assessed by Egr1 expression. We also observed an increase of Egr1 cells in the medial Preoptic Area (mPOA), a brain region implicated in the display of sexual behavior. Combined retrograde viral tracing and Egr1 immunodetection showed that a subset of the activated cells in the MeA are Aro + neurons projecting to the mPOA. These results highlight that social experience induces a differential neural activity in the circuitry controlling sexual behavior and aggression, which include MeA Aro + neurons projecting to the mPOA.
Collapse
Affiliation(s)
- Elliott Trives
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Chantal Porte
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Thiago Seike Nakahara
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Matthieu Keller
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Hélène Vacher
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Pablo Chamero
- Laboratoire de Physiologie de la Reproduction et des Comportements, INRAE, CNRS, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
3
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Mountoufaris G, Nair A, Yang B, Kim DW, Vinograd A, Kim S, Linderman SW, Anderson DJ. A line attractor encoding a persistent internal state requires neuropeptide signaling. Cell 2024; 187:5998-6015.e18. [PMID: 39191257 PMCID: PMC11490375 DOI: 10.1016/j.cell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
Affiliation(s)
- George Mountoufaris
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Wook Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Amit Vinograd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute, Pasadena, CA 91001, USA.
| |
Collapse
|
5
|
Láng T, Dimén D, Oláh S, Puska G, Dobolyi A. Medial preoptic circuits governing instinctive social behaviors. iScience 2024; 27:110296. [PMID: 39055958 PMCID: PMC11269931 DOI: 10.1016/j.isci.2024.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
The medial preoptic area (MPOA) has long been implicated in maternal and male sexual behavior. Modern neuroscience methods have begun to reveal the cellular networks responsible, while also implicating the MPOA in other social behaviors, affiliative social touch, and aggression. The social interactions rely on input from conspecifics whose most important modalities in rodents are olfaction and somatosensation. These inputs bypass the cerebral cortex to reach the MPOA to influence the social function. Hormonal inputs also directly act on MPOA neurons. In turn, the MPOA controls social responses via various projections for reward and motor output. The MPOA thus emerges as one of the major brain centers for instinctive social behavior. While key elements of MPOA circuits have been identified, a synthesis of these new data is now provided for further studies to reveal the mechanisms by which the area controls social interactions.
Collapse
Affiliation(s)
- Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Diána Dimén
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Addiction and Neuroplasticity Laboratory, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Szilvia Oláh
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
6
|
Zhao H, Jiang X, Ma M, Xing L, Ji X, Pan Y. A neural pathway for social modulation of spontaneous locomotor activity (SoMo-SLA) in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2314393121. [PMID: 38394240 PMCID: PMC10907233 DOI: 10.1073/pnas.2314393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Social enrichment or social isolation affects a range of innate behaviors, such as sex, aggression, and sleep, but whether there is a shared mechanism is not clear. Here, we report a neural mechanism underlying social modulation of spontaneous locomotor activity (SoMo-SLA), an internal-driven behavior indicative of internal states. We find that social enrichment specifically reduces spontaneous locomotor activity in male flies. We identify neuropeptides Diuretic hormone 44 (DH44) and Tachykinin (TK) to be up- and down-regulated by social enrichment and necessary for SoMo-SLA. We further demonstrate a sexually dimorphic neural circuit, in which the male-specific P1 neurons encoding internal states form positive feedback with interneurons coexpressing doublesex (dsx) and Tk to promote locomotion, while P1 neurons also form negative feedback with interneurons coexpressing dsx and DH44 to inhibit locomotion. These two opposing neuromodulatory recurrent circuits represent a potentially common mechanism that underlies the social regulation of multiple innate behaviors.
Collapse
Affiliation(s)
- Huan Zhao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xinyu Jiang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Limin Xing
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
7
|
Horii-Hayashi N, Masuda K, Kato T, Kobayashi K, Inutsuka A, Nambu MF, Tanaka KZ, Inoue K, Nishi M. Entrance-sealing behavior in the home cage: a defensive response to potential threats linked to the serotonergic system and manifestation of repetitive/stereotypic behavior in mice. Front Behav Neurosci 2024; 17:1289520. [PMID: 38249128 PMCID: PMC10799337 DOI: 10.3389/fnbeh.2023.1289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
The security of animal habitats, such as burrows and nests, is vital for their survival and essential activities, including eating, mating, and raising offspring. Animals instinctively exhibit defensive behaviors to protect themselves from imminent and potential threats. In 1963, researchers reported wild rats sealing the entrances to their burrows from the inside using materials such as mud, sand, and vegetation. This behavior, known as "entrance sealing (ES)," involves repetitive movements of their nose/mouth and forepaws and is likely a proactive measure against potential intruders, which enhances burrow security. These observations provide important insights into the animals' ability to anticipate potential threats that have not yet occurred and take proactive actions. However, this behavior lacks comprehensive investigation, and the neural mechanisms underpinning it remain unclear. Hypothalamic perifornical neurons expressing urocortin-3 respond to novel objects/potential threats and modulate defensive responses to the objects in mice, including risk assessment and burying. In this study, we further revealed that chemogenetic activation of these neurons elicited ES-like behavior in the home-cage. Furthermore, behavioral changes caused by activating these neurons, including manifestations of ES-like behavior, marble-burying, and risk assessment/burying of a novel object, were effectively suppressed by selective serotonin-reuptake inhibitors. The c-Fos analysis indicated that ES-like behavior was potentially mediated through GABAergic neurons in the lateral septum. These findings underscore the involvement of hypothalamic neurons in the anticipation of potential threats and proactive defense against them. The links of this security system with the manifestation of repetitive/stereotypic behaviors and the serotonergic system provide valuable insights into the mechanisms underlying the symptoms of obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Noriko Horii-Hayashi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kazuya Masuda
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Taika Kato
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, Japan
| | - Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, Shimono, Japan
| | - Miyu F. Nambu
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Kazumasa Z. Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Kunigami-gun, Japan
| | - Koichi Inoue
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| | - Mayumi Nishi
- Anatomy and Cell Biology, Department of Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
8
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
9
|
Yu ZX, Zha X, Xu XH. Estrogen-responsive neural circuits governing male and female mating behavior in mice. Curr Opin Neurobiol 2023; 81:102749. [PMID: 37421660 DOI: 10.1016/j.conb.2023.102749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
Decades of knockout analyses have highlighted the crucial involvement of estrogen receptors and downstream genes in controlling mating behaviors. More recently, advancements in neural circuit research have unveiled a distributed subcortical network comprising estrogen-receptor or estrogen-synthesis-enzyme-expressing cells that transforms sensory inputs into sex-specific mating actions. This review provides an overview of the latest discoveries on estrogen-responsive neurons in various brain regions and the associated neural circuits that govern different aspects of male and female mating actions in mice. By contextualizing these findings within previous knockout studies of estrogen receptors, we emphasize the emerging field of "circuit genetics", where identifying mating behavior-related neural circuits may allow for a more precise evaluation of gene functions within these circuits. Such investigations will enable a deeper understanding of how hormone fluctuation, acting through estrogen receptors and downstream genes, influences the connectivity and activity of neural circuits, ultimately impacting the manifestation of innate mating actions.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zha
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 200031, China.
| |
Collapse
|
10
|
Wei D, Osakada T, Guo Z, Yamaguchi T, Varshneya A, Yan R, Jiang Y, Lin D. A hypothalamic pathway that suppresses aggression toward superior opponents. Nat Neurosci 2023; 26:774-787. [PMID: 37037956 PMCID: PMC11101994 DOI: 10.1038/s41593-023-01297-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 03/09/2023] [Indexed: 04/12/2023]
Abstract
Aggression is costly and requires tight regulation. Here we identify the projection from estrogen receptor alpha-expressing cells in the caudal part of the medial preoptic area (cMPOAEsr1) to the ventrolateral part of the ventromedial hypothalamus (VMHvl) as an essential pathway for modulating aggression in male mice. cMPOAEsr1 cells increase activity mainly during male-male interaction, which differs from the female-biased response pattern of rostral MPOAEsr1 (rMPOAEsr1) cells. Notably, cMPOAEsr1 cell responses to male opponents correlated with the opponents' fighting capability, which mice could estimate based on physical traits or learn through physical combats. Inactivating the cMPOAEsr1-VMHvl pathway increased aggression, whereas activating the pathway suppressed natural intermale aggression. Thus, cMPOAEsr1 is a key population for encoding opponents' fighting capability-information that could be used to prevent animals from engaging in disadvantageous conflicts with superior opponents by suppressing the activity of VMHvl cells essential for attack behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Takuya Osakada
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Zhichao Guo
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Avni Varshneya
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Rongzhen Yan
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Yiwen Jiang
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA.
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
11
|
Potegal M, Nordman JC. Non-angry aggressive arousal and angriffsberietschaft: A narrative review of the phenomenology and physiology of proactive/offensive aggression motivation and escalation in people and other animals. Neurosci Biobehav Rev 2023; 147:105110. [PMID: 36822384 DOI: 10.1016/j.neubiorev.2023.105110] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Human aggression typologies largely correspond with those for other animals. While there may be no non-human equivalent of angry reactive aggression, we propose that human proactive aggression is similar to offense in other animals' dominance contests for territory or social status. Like predation/hunting, but unlike defense, offense and proactive aggression are positively reinforcing, involving dopamine release in accumbens. The drive these motivational states provide must suffice to overcome fear associated with initiating risky fights. We term the neural activity motivating proactive aggression "non-angry aggressive arousal", but use "angriffsberietschaft" for offense motivation in other animals to acknowledge possible differences. Temporal variation in angriffsberietschaft partitions fights into bouts; engendering reduced anti-predator vigilance, redirected aggression and motivational over-ride. Increased aggressive arousal drives threat-to-attack transitions, as in verbal-to-physical escalation and beyond that, into hyper-aggression. Proactive aggression and offense involve related neural activity states. Cingulate, insular and prefrontal cortices energize/modulate aggression through a subcortical core containing subnuclei for each aggression type. These proposals will deepen understanding of aggression across taxa, guiding prevention/intervention for human violence.
Collapse
Affiliation(s)
| | - Jacob C Nordman
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA.
| |
Collapse
|
12
|
Nair A, Karigo T, Yang B, Ganguli S, Schnitzer MJ, Linderman SW, Anderson DJ, Kennedy A. An approximate line attractor in the hypothalamus encodes an aggressive state. Cell 2023; 186:178-193.e15. [PMID: 36608653 PMCID: PMC9990527 DOI: 10.1016/j.cell.2022.11.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/05/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023]
Abstract
The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.
Collapse
Affiliation(s)
- Aditya Nair
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Tomomi Karigo
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA
| | - Surya Ganguli
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Mark J Schnitzer
- Howard Hughes Medical Institute; Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA.
| | - Ann Kennedy
- Division of Biology and Biological Engineering, Caltech, Pasadena, CA 91125, USA; Howard Hughes Medical Institute; Tianqiao and Chrissy Chen Institute for Neuroscience, Caltech, Pasadena, CA 91125, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.
| |
Collapse
|
13
|
Neural Control of Action Selection Among Innate Behaviors. Neurosci Bull 2022; 38:1541-1558. [PMID: 35633465 DOI: 10.1007/s12264-022-00886-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Nervous systems must not only generate specific adaptive behaviors, such as reproduction, aggression, feeding, and sleep, but also select a single behavior for execution at any given time, depending on both internal states and external environmental conditions. Despite their tremendous biological importance, the neural mechanisms of action selection remain poorly understood. In the past decade, studies in the model animal Drosophila melanogaster have demonstrated valuable neural mechanisms underlying action selection of innate behaviors. In this review, we summarize circuit mechanisms with a particular focus on a small number of sexually dimorphic neurons in controlling action selection among sex, fight, feeding, and sleep behaviors in both sexes of flies. We also discuss potentially conserved circuit configurations and neuromodulation of action selection in both the fly and mouse models, aiming to provide insights into action selection and the sexually dimorphic prioritization of innate behaviors.
Collapse
|