1
|
Mistry B, Alaiya A, Abu-Dawud R, Alyacoub N, Colak D, Rajab M, Alanazi M, Shinwari Z, Ahmed H, Alharbi T, Kashir J, Almohanna F, Assiri A. Investigation of testis proteome alterations associated with male infertility in Dcaf17-deficient mice. Syst Biol Reprod Med 2025; 71:206-228. [PMID: 40449516 DOI: 10.1080/19396368.2025.2504459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 06/03/2025]
Abstract
Disruption of Dcaf17 in mice resulted in male infertility with severe spermatogenesis defects. To investigate the molecular basis of infertility phenotype, we examined testicular proteomes of wild-type (WT) and Dcaf17-/- mice using a mass spectrometry-based approach. We identified 727 and 525 differentially expressed proteins (DEPs) in 3- and 8-week old testes of Dcaf17-/- mice, respectively, with an adjusted p-value cut-off of ≤ 0.05. Among these, 299 and 298 DEPs had fold change of ≥ 1.5 between WT and Dcaf17-/- testes at -3- and 8-week old, respectively. In the 3-week old Dcaf17-/- testes, 59.5% of the DEPs were up-regulated, while 40.5% were down-regulated. Similarly, in the 8-week old Dcaf17-/- testes, 83.9% and 16.1% DEPs were up-regulated and down-regulated, respectively. Functional annotation and network analyses highlighted that many DEPs were associated with key biological processes, including ubiquitination, RNA processing, translation, protein folding, protein stabilization, metabolic processes, oxidation-reduction processes and sper-matogenesis. Subsequent immunohistochemistry and immunoblotting analyses showed higher ubiquitin levels in Dcaf17-/- testes compared to WT, suggesting potential impairment in ubiquitin proteasome system (UPS) due to DCAF17 loss of function. Our data provide a basis for further work to elucidate the molecular function(s) of DCAF17 in spermatogenesis and male fertility.
Collapse
Affiliation(s)
- Bhavesh Mistry
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ayodele Alaiya
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Raed Abu-Dawud
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Dermatology, HELIOS Hospital Schwerin, University Campus of Medical School Hamburg, Schwerin, Germany
| | - Nadya Alyacoub
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Dilek Colak
- Molecular Oncology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Mohamed Rajab
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Maha Alanazi
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Zakia Shinwari
- Cell Therapy and Immunobiology Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Hala Ahmed
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Thuraya Alharbi
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Junaid Kashir
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University, Abu Dhabi, UAE
| | - Falah Almohanna
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Abdullah Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Li Y, Perera L, He RS, Baptissart M, Petrovich RM, Morgan M. TENT5C functions as a corepressor in the ligand-bound glucocorticoid receptor and estrogen receptor α complexes. FEBS J 2025. [PMID: 40421654 DOI: 10.1111/febs.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/28/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Terminal nucleotidyltransferase 5C (TENT5C) is a noncanonical poly(A) polymerase that promotes cancer suppression. TENT5C has been proposed to mediate the susceptibility of multiple myeloma to treatment with dexamethasone, a steroid hormone analog that binds to the glucocorticoid receptor (GR). However, the relationship between TENT5C and nuclear receptor (NR) signaling remains unclear. In this study, we investigate the regulatory role of TENT5C in the GR and estrogen receptor α (ERα) ligand complexes. We find that TENT5C acts as a corepressor of both GR and ERα. Molecular dynamics simulations indicate that the third TENT5C LXXLL motif directly interacts with ERα, but not GR. The physical interaction of TENT5C and ERα is supported by co-immunoprecipitation assays. Reporter assays show that mutations to the third TENT5C LXXLL motif disrupt TENT5C-mediated repression of ERα but do not affect the repression of the GR complex. In addition, the disruption of TENT5C poly(A) polymerase activity does not appear to affect TENT5C repression of ERα in the cell lines studied. Taken together, our findings highlight a role of TENT5C as an NR corepressor, differentially modulating GR- and ERα-induced transcriptional activity.
Collapse
Affiliation(s)
- Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Lalith Perera
- Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Rebecca S He
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Robert M Petrovich
- Genomic Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC, USA
| |
Collapse
|
3
|
Guseva EA, Averina OA, Isaev SV, Pletnev PI, Bragina EE, Permyakov OA, Buev VS, Priymak AV, Emelianova MA, Pshanichnaya L, Romanov EA, Novikova SE, Petriukov KS, Golovina AY, Grigorieva OO, Manskikh VN, Korshunova DS, Silaeva YY, Deykin AV, Rubtsova MP, Zgoda VG, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Positioning of sperm tail longitudinal columns depends on NSUN7, an RNA-binding protein destabilizing elongated spermatid transcripts. RNA (NEW YORK, N.Y.) 2025; 31:709-723. [PMID: 40032361 PMCID: PMC12001970 DOI: 10.1261/rna.080320.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/16/2025] [Indexed: 03/05/2025]
Abstract
Spermatozoid's flagella assemble in transcriptionally silent spermatids and thus depend on posttranscriptional regulation of gene expression. Mutations in Nsun7 gene are known to cause male infertility in human and mice. We identified m5C-specific NSUN7 RNA methyltransferase as a protein present in elongated spermatids and interacting with RNAs specific for this type of spermatozoid's precursor cells. Inactivation of the Nsun7 gene in mice leads to upregulation of its RNA interactors, thus indicating that NSUN7 downregulates a set of RNAs in the elongated spermatids. A physiologic consequence of Nsun7 gene knockout is male infertility, which is mechanistically explained by the observed mispositioning of longitudinal columns relative to the axonemal microtubular doublets leading to a motility defect.
Collapse
Affiliation(s)
- Ekaterina A Guseva
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga A Averina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey V Isaev
- Center for Brain Research, Medical University Vienna, 1090 Vienna, Austria
| | - Philipp I Pletnev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elizaveta E Bragina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Oleg A Permyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vitaly S Buev
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia V Priymak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mariia A Emelianova
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | - Evgeny A Romanov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, 117198 Moscow, Russia
| | | | - Kirill S Petriukov
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna Ya Golovina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga O Grigorieva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | | | | | | | - Maria P Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Olga A Dontsova
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr V Sergiev
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 143025 Skolkovo, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Baptissart M, Gupta A, Poirot AC, Papas BN, Morgan M. TENT5C extends Odf1 poly(A) tail to sustain sperm morphogenesis and fertility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644152. [PMID: 40196629 PMCID: PMC11974682 DOI: 10.1101/2025.03.20.644152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Changes in the poly(A) tail length of Odf1 and other transcripts critical for male fertility have been linked to translational activation during sperm formation 1-3. The mRNA poly(A) polymerase TENT5C is required for fastening the flagellum to the sperm head, but its role in shaping the poly(A) tail profile of the spermatid transcriptome remains limited 4,5. Here, we comprehensively document how changes in mRNA poly(A) tail length across the transcriptome reflect transcript metabolism in spermatids. In the absence of TENT5C polymerase activity, the poly(A) tail length of Odf1 transcripts is reduced, and the local distribution of ODF1 proteins in spermatids is disrupted. We show that mice expressing a catalytically inactive TENT5C produce headless spermatozoa with outer dense fibers detached from the axoneme, and other flagellar abnormalities associated with ODF1 deficiency 6. We propose that TENT5C poly(A) polymerase activity regulates the spatial translation of Odf1 mRNAs during spermiogenesis, a process critical for sperm morphogenesis and fertility. These findings highlight the power of poly(A) tail profiling to identify abnormal mRNA processing causative of infertility.
Collapse
Affiliation(s)
- Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Ankit Gupta
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Alexander C Poirot
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Brian N Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina 27709, USA
- Corresponding and lead author
| |
Collapse
|
5
|
Thomalla JM, Wolfner MF. No transcription, no problem: Protein phosphorylation changes and the transition from oocyte to embryo. Curr Top Dev Biol 2025; 162:165-205. [PMID: 40180509 DOI: 10.1016/bs.ctdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Although mature oocytes are arrested in a differentiated state, they are provisioned with maternally-derived macromolecules that will start embryogenesis. The transition to embryogenesis, called 'egg activation', occurs without new transcription, even though it includes major cell changes like completing stalled meiosis, translating stored mRNAs, cytoskeletal remodeling, and changes to nuclear architecture. In most animals, egg activation is triggered by a rise in free calcium in the egg's cytoplasm, but we are only now beginning to understand how this induces the egg to transition to totipotency and proliferation. Here, we discuss the model that calcium-dependent protein kinases and phosphatases modify the phosphorylation landscape of the maternal proteome to activate the egg. We review recent phosphoproteomic mass spectrometry analyses that revealed broad phospho-regulation during egg activation, both in number of phospho-events and classes of regulated proteins. Our interspecies comparisons of these proteins pinpoints orthologs and protein families that are phospho-regulated in activating eggs, many of which function in hallmark events of egg activation, and others whose regulation and activity warrant further study. Finally, we discuss key phospho-regulating enzymes that may act apically or as intermediates in the phosphorylation cascades during egg activation. Knowing the regulators, targets, and effects of phospho-regulation that cause an egg to initiate embryogenesis is crucial at both fundamental and applied levels for understanding female fertility, embryo development, and cell-state transitions.
Collapse
Affiliation(s)
- Jonathon M Thomalla
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States; Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, United States
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Xu N, Qin Y, Liu Y, Guan Y, Xin H, Ou J, Wang Y. An integrated transcriptomic analysis unveils the regulatory roles of RNA binding proteins during human spermatogenesis. Front Endocrinol (Lausanne) 2025; 16:1522394. [PMID: 40034235 PMCID: PMC11872710 DOI: 10.3389/fendo.2025.1522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Background RNA-binding proteins (RBPs) have emerged as key regulators in testis development and spermatogenesis, yet a comprehensive understanding of their expression dynamics has been lacking. Methods This study leverages published single-cell RNA sequencing (scRNA-seq) data to elucidate the complex expression patterns of RBP genes during postnatal testis development and spermatogenesis. Additionally, it uses bulk RNA-seq data to explore the regulatory impact of RBPs on alternative splicing (AS) in non-obstructive azoospermia (NOA). Results We have identified cell-specific RNA-binding protein (RBP) genes in various cell types throughout testis development. Notably, distinct RBP gene clusters exhibit significant differential expression, particularly in Sertoli cells as they mature from neonatal to adult stages. Our analysis has revealed temporally-regulated RBP clusters that correlate with the developmental progression of Sertoli cells and the advancement of spermatogenesis. Moreover, we have established links between specific RBPs and the pathogenesis of non-obstructive azoospermia (NOA) through the regulation of alternative splicing (AS) events. Additionally, RPL10, RPL39, and SETX have been identified as potential diagnostic biomarkers for NOA. Conclusion This research provided an in-depth look at RBP expression patterns during human testis development and spermatogenesis. It not only deepens our basic comprehension of male fertility and infertility but also indicates promising directions for the creation of innovative diagnostic and treatment methods for NOA.
Collapse
Affiliation(s)
- Ning Xu
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yixian Qin
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yu Liu
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yudong Guan
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Xin
- Centre for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junwen Ou
- Anti Aging Center, Clifford Hospital, Guangzhou, Guangdong, China
| | - Yiqiao Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Department of Developmental & Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Liu W, Zhu J, Ren K, Xiao D, Qiang R, Rabouhi N, Ikegawa S, Campeau PM, Guo L. Congenital Bone Disorders Associated with ERI1-Mediated RNA Metabolism Dysfunction: Spondylo-Epi-Metaphyseal Dysplasia Guo-Campeau Type and Beyond. Curr Osteoporos Rep 2025; 23:9. [PMID: 39945916 DOI: 10.1007/s11914-025-00903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
PURPOSE OF REVIEW The purpose of this review is to explore the multifaceted roles of the ERI1 exoribonuclease, particularly in RNA metabolism and bone development, and to address the genotype-phenotype complexity in patients and mice with ERI1 pathogenic variants. RECENT FINDINGS The 3'-to-5' exoribonuclease 1 encoded by the ERI1 gene performs a variety of biologically essential functions, including modulating RNA interference, heterochromatin formation, rRNA maturation, and histone mRNA degradation. Recently, the relationship between ERI1 variants and human skeletal dysplasia has garnered increasing attention. In a phenotypic dichotomy associated with bi-allelic ERI1 variants, patients with at least one missense pathogenic variant exhibited severe spondylo-epi-metaphyseal dysplasia (SEMD), while those with bi-allelic nonsense pathogenic variant only presented mild anomaly in digits. The biological mechanisms underlying the bone dysplasia caused by ERI1 pathogenic variants remain unknown. Although Eri1 knockout (KO) mice showed mild skeletal phenotypes, neither SEMD nor digital anomaly were found, further underscoring a complex genotype-phenotype relationship of ERI1 pathogenic variants. We systematically reviewed the advances in exploring the multiple functions of ERI1 with emphasis on its roles in RNA metabolism and skeletal development. Our review would contribute to the understanding of the phenotypic spectrum caused by ERI1 pathogenic variants and the limitations of existing disease models in revealing the corresponding pathomechanism.
Collapse
Affiliation(s)
- Wanqi Liu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jinhui Zhu
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Kaitao Ren
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Dan Xiao
- Center of Medical Genetics, Northwest Women's and Children's Hospital & the Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rong Qiang
- Center of Medical Genetics, Northwest Women's and Children's Hospital & the Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nazim Rabouhi
- Department of Pediatrics, CHU Sainte Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical Sciences, Tokyo, 108-8639, Japan
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Long Guo
- Department of Laboratory Animal Science, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Center of Medical Genetics, Northwest Women's and Children's Hospital & the Affiliated Northwest Women's and Children's Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Bilmez Y, Talibova G, Tire B, Ozturk S. Histone lysine methyltransferases and their specific methylation marks show significant changes in mouse testes from young to older ages. Biogerontology 2025; 26:42. [PMID: 39832035 PMCID: PMC11753314 DOI: 10.1007/s10522-025-10187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging. In accordance with these purposes, the following groups of Balb/C mice were created: young (1- and 2-week-old), prepubertal (3- and 4-week-old), pubertal (5- and 6-week-old), postpubertal (16-, 18-, and 20-week-old), and aged (48-, 50-, and 52-week-old). The β-GAL staining gradually increased from the young to the aged groups (P < 0.01). The SETD1B, G9A, SETDB1, and SETD2 protein levels increased in spermatogonia, early and pachytene spermatocytes, and Sertoli cells of the aged group (P < 0.05). In contrast, CFP1 protein level decreased in spermatogonia, pachytene spermatocytes, round spermatids, and Sertoli cells towards the older ages (P < 0.05). Moreover, H3K4me3, H3K9me2, H3K9me3, and H3K36me3 levels increased in the aged group (P < 0.05). There was also a significant reduction in apoptosis rates in seminiferous tubules of the pubertal, postpubertal, and aged groups (P < 0.01). Consequently, accumulation of histone methylation marks due to increased expression of KMTs in spermatogenic and Sertoli cells during testicular aging may alter chromatin reprogramming and gene expression, contributing to age-related fertility loss.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Betul Tire
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Türkiye.
| |
Collapse
|
9
|
Lv P, Xu W, Xin S, Deng Y, Yang B, Xu D, Bai J, Ma D, Wang T, Liu J, Liu X. HnRNPM modulates alternative splicing in germ cells by recruiting PTBP1. Reprod Biol Endocrinol 2025; 23:3. [PMID: 39780247 PMCID: PMC11708004 DOI: 10.1186/s12958-024-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Heterogeneous nuclear ribonucleoprotein M (HnRNPM) is a key splicing factor involved in various biological processes, including the epithelial‒mesenchymal transition and cancer development. Alternative splicing is widely involved in the process of spermatogenesis. However, the function of hnRNPM as a splicing factor during spermatogenesis remains unknown. METHODS The expression of hnRNPM in germ cells at different stages was detected by polymerase chain reaction, western blotting, a single-cell database, and chromosome spreading assays. Conditional hnRNPM knockout mice were generated to observe the development of testes and germ cells in male mice. Histological staining, immunofluorescence staining and transmission electron microscopy were used to observe the abnormal development of sperm from conditional hnRNPM-deficient mice. Coimmunoprecipitation and mass spectrometry analyses revealed the proteins that interact with hnRNPM. RNA sequencing was performed to analyse the different alternative splicing events in the testes of control and hnRNPM-deficient mice. RESULTS In this study, we revealed that hnRNPM is highly expressed in spermatocytes and round spermatids, with the exception of XY bodies and metaphase. Therefore, we generated a germ cell-specific hnRNPM conditional knockout mouse model to investigate the role of hnRNPM in spermatogenesis. A lack of hnRNPM led to male infertility under natural conditions. Male hnRNPM-deficient mice presented lower numbers of sperm, lower motility, significantly more malformed sperm and even tailless sperm. Moreover, we found that hnRNPM interacted with PTBP1 to collectively regulate the process of spermatogenesis. In addition, we found that hnRNPM deficiency caused 1617 different alternative splicing events, and we detected abnormal exon skipping events in Cep152, Cyld, Inpp4b and Cd59b. CONCLUSIONS Together, our results suggest that hnRNPM regulates the alternative splicing of mRNAs during spermatogenesis by recruiting PTBP1 and is required for male mouse fertility.
Collapse
Affiliation(s)
- Peng Lv
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sheng Xin
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengjianyi Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Deilin Ma
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Institute of Andrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Danga AK, Kour S, Kumari A, Rath PC. The long noncoding RNA (LINC-RBE) expression in testicular cells is associated with aging of the rat. Biogerontology 2024; 25:1053-1067. [PMID: 39017749 DOI: 10.1007/s10522-024-10119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
Long noncoding RNAs (lncRNAs) are important regulatory biomolecules responsible for many cellular processes. The aging of mammals is manifested by a slow and gradual decline of physiological functions after adulthood, progressively resulting in age-related diseases. Testis comprises different cell-types with defined functions for producing haploid gametes and androgens in males, contributing gene-pool to the next generation with genetic variations to species for evolutionary advantage. The LINC-RBE (long intergenic noncoding-rat brain expressed) RNA showed highest expression in the Leydig cells, responsible for steroidogenesis and production of testosterone; higher expression in primary spermatocytes (pachytene cells), responsible for generation of haploid gametes and high expression in Sertoli cells, the nursing cells of the testes. Testes of immature (4-weeks), adult (16- and 44-weeks), and nearly-old (70-weeks) rats showed low, high, and again low levels of expression, respectively. This along with the nuclear-cytoplasmic localization of LINC-RBE RNA showed age-related expression and function. Thus, expression of LINC-RBE is involved in the molecular physiology of testes, especially Leydig cells, primary spermatocytes, and Sertoli cells. The decline in its expression correlates with diminishing reproductive function of the testes during aging of the rat.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
11
|
Chen X, Zhang X, Jiang T, Xu W. Klinefelter syndrome: etiology and clinical considerations in male infertility†. Biol Reprod 2024; 111:516-528. [PMID: 38785325 DOI: 10.1093/biolre/ioae076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Klinefelter syndrome (KS) is the most prevalent chromosomal disorder occurring in males. It is defined by an additional X chromosome, 47,XXY, resulting from errors in chromosomal segregation during parental gametogenesis. A major phenotype is impaired reproductive function, in the form of low testosterone and infertility. This review comprehensively examines the genetic and physiological factors contributing to infertility in KS, in addition to emergent assisted reproductive technologies, and the unique ethical challenges KS patients face when seeking infertility treatment. The pathology underlying KS is increased susceptibility for meiotic errors during spermatogenesis, resulting in aneuploid or even polyploid gametes. Specific genetic elements potentiating this susceptibility include polymorphisms in checkpoint genes regulating chromosomal synapsis and segregation. Physiologically, the additional sex chromosome also alters testicular endocrinology and metabolism by dysregulating interstitial and Sertoli cell function, collectively impairing normal sperm development. Additionally, epigenetic modifications like aberrant DNA methylation are being increasingly implicated in these disruptions. We also discuss assisted reproductive approaches leveraged in infertility management for KS patients. Application of assisted reproductive approaches, along with deep comprehension of the meiotic and endocrine disturbances precipitated by supernumerary X chromosomes, shows promise in enabling biological parenthood for KS individuals. This will require continued multidisciplinary collaboration between experts with background of genetics, physiology, ethics, and clinical reproductive medicine.
Collapse
Affiliation(s)
- Xinyue Chen
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xueguang Zhang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Jiang
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Wenming Xu
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynecologic, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Chengdu 610041, China
| |
Collapse
|
12
|
Ruan T, Zhou R, Yang Y, Guo J, Jiang C, Wang X, Shen G, Dai S, Chen S, Shen Y. Deficiency of IQCH causes male infertility in humans and mice. eLife 2024; 12:RP88905. [PMID: 39028117 PMCID: PMC11259432 DOI: 10.7554/elife.88905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
IQ motif-containing proteins can be recognized by calmodulin (CaM) and are essential for many biological processes. However, the role of IQ motif-containing proteins in spermatogenesis is largely unknown. In this study, we identified a loss-of-function mutation in the novel gene IQ motif-containing H (IQCH) in a Chinese family with male infertility characterized by a cracked flagellar axoneme and abnormal mitochondrial structure. To verify the function of IQCH, Iqch knockout (KO) mice were generated via CRISPR-Cas9 technology. As expected, the Iqch KO male mice exhibited impaired fertility, which was related to deficient acrosome activity and abnormal structures of the axoneme and mitochondria, mirroring the patient phenotypes. Mechanistically, IQCH can bind to CaM and subsequently regulate the expression of RNA-binding proteins (especially HNRPAB), which are indispensable for spermatogenesis. Overall, this study revealed the function of IQCH, expanded the role of IQ motif-containing proteins in reproductive processes, and provided important guidance for genetic counseling and genetic diagnosis of male infertility.
Collapse
Affiliation(s)
- Tiechao Ruan
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Ruixi Zhou
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Yihong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan UniversityChengduChina
| | - Junchen Guo
- Sichuan University-The Chinese University of Hong Kong (SCU-CUHK) Joint Laboratory for Reproductive Medicine, Key Laboratory of Obstetric, Gynaecologic and Paediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- Reproductive Endocrinology and Regulation Laboratory, Department of Obstetric and Gynaecologic, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Chuan Jiang
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Xiang Wang
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Gan Shen
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Siyu Dai
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Suren Chen
- Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal UniversityBeijingChina
| | - Ying Shen
- Key Laboratory of Obstetrics, Gynecologic and Pediatric Diseases and Birth Defects of the Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology, Sichuan UniversityChengduChina
| |
Collapse
|
13
|
Zou D, Li K, Su L, Liu J, Lu Y, Huang R, Li M, Mang X, Geng Q, Li P, Tang J, Yu Z, Zhang Z, Chen D, Miao S, Yu J, Yan W, Song W. DDX20 is required for cell-cycle reentry of prospermatogonia and establishment of spermatogonial stem cell pool during testicular development in mice. Dev Cell 2024; 59:1707-1723.e8. [PMID: 38657611 DOI: 10.1016/j.devcel.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
RNA-binding proteins (RBPs), as key regulators of mRNA fate, are abundantly expressed in the testis. However, RBPs associated with human male infertility remain largely unknown. Through bioinformatic analyses, we identified 62 such RBPs, including an evolutionarily conserved RBP, DEAD-box helicase 20 (DDX20). Male germ-cell-specific inactivation of Ddx20 at E15.5 caused T1-propsermatogonia (T1-ProSG) to fail to reenter cell cycle during the first week of testicular development in mice. Consequently, neither the foundational spermatogonial stem cell (SSC) pool nor progenitor spermatogonia were ever formed in the knockout testes. Mechanistically, DDX20 functions to control the translation of its target mRNAs, many of which encode cell-cycle-related regulators, by interacting with key components of the translational machinery in prospermatogonia. Our data demonstrate a previously unreported function of DDX20 as a translational regulator of critical cell-cycle-related genes, which is essential for cell-cycle reentry of T1-ProSG and formation of the SSC pool.
Collapse
Affiliation(s)
- Dingfeng Zou
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Kai Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Luying Su
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jun Liu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Yan Lu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Rong Huang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Mengzhen Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Qi Geng
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Pengyu Li
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jielin Tang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zhixin Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Zexuan Zhang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Dingyao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Shiying Miao
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China
| | - Jia Yu
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China; The Institute of Blood Transfusion, Chinese Academy of Medical Sciences, and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Wei Song
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
14
|
Danga AK, Kour S, Kumari A, Rath PC. Cell-type specific and differential expression of LINC-RSAS long noncoding RNA declines in the testes during ageing of the rat. Biogerontology 2024; 25:543-566. [PMID: 38353919 DOI: 10.1007/s10522-023-10088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/15/2023] [Indexed: 03/26/2024]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as major regulators of gene expression, chromatin structure, epigenetic changes, post-transcriptional processing of RNAs, translation of mRNAs into proteins as well as contributing to the process of ageing. Ageing is a universal, slow, progressive change in almost all physiological processes of organisms after attaining reproductive maturity and often associated with age-related diseases. Mammalian testes contain various cell-types, vast reservoir of transcriptome complexity, produce haploid male gametes for reproduction and testosterone for development and maintenance of male sexual characters as well as contribute genetic variation to the species. We report age-related decline in expression and cellular localization of Long intergenic noncoding repeat-rich sense-antisense (LINC-RSAS) RNA in the testes and its major cell-types such as primary spermatocytes, Leydig cells and Sertoli cells during ageing of the rat. LINC-RSAS expression in testes increased from immature (4-weeks) to adult (16- and 44-weeks) and declined from adult (44-weeks) to nearly-old (70-weeks) rats. Genomic DNA methylation in the testes showed a similar pattern. Cell-type specific higher expression of LINC-RSAS was observed in primary spermatocytes (pachytene cells), Leydig cells and Sertoli cells of testes of adult rats. Over-expression of LINC-RSAS in cultured human cell lines revealed its possible role in cell-cycle control and apoptosis. We propose that LINC-RSAS expression is involved in molecular physiology of primary spermatocytes, Leydig cells and Sertoli cells of adult testes and its decline is associated with diminishing function of testes during ageing of the rat.
Collapse
Affiliation(s)
- Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sukhleen Kour
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, 15224, USA
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
15
|
Kitamura Y, Namekawa SH. Epigenetic priming in the male germline. Curr Opin Genet Dev 2024; 86:102190. [PMID: 38608568 PMCID: PMC11162906 DOI: 10.1016/j.gde.2024.102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
Epigenetic priming presets chromatin states that allow the rapid induction of gene expression programs in response to differentiation cues. In the germline, it provides the blueprint for sexually dimorphic unidirectional differentiation. In this review, we focus on epigenetic priming in the mammalian male germline and discuss how cellular memories are regulated and inherited to the next generation. During spermatogenesis, epigenetic priming predetermines cellular memories that ensure the lifelong maintenance of spermatogonial stem cells and their subsequent commitment to meiosis and to the production of haploid sperm. The paternal chromatin state is also essential for the recovery of totipotency after fertilization and contributes to paternal epigenetic inheritance. Thus, epigenetic priming establishes stable but reversible chromatin states during spermatogenesis and enables epigenetic inheritance and reprogramming in the next generation.
Collapse
Affiliation(s)
- Yuka Kitamura
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| | - Satoshi H Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Zhang S, Li H, Jiang W, Chen X, Zhou H, Wang C, Kong H, Shi Y, Shi X. CircCamsap1 is dispensable for male fertility in mice. PeerJ 2024; 12:e17399. [PMID: 38799061 PMCID: PMC11122046 DOI: 10.7717/peerj.17399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Background Circular RNAs (circRNAs) are a large class of RNAs present in mammals. Among these, circCamsap1 is a well-acknowledged circRNA with significant implications, particularly in the development and progression of diverse tumors. However, the potential consequences of circCamsap1 depletion in vivo on male reproduction are yet to be thoroughly investigated. Methods The presence of circCamsap1 in the mouse testes was confirmed, and gene expression analysis was performed using reverse transcription quantitative polymerase chain reaction. CircCamsap1 knockout mice were generated utilizing the CRISPR/Cas9 system. Phenotypic analysis of both the testes and epididymis was conducted using histological and immunofluorescence staining. Additionally, fertility and sperm motility were assessed. Results Here, we successfully established a circCamsap1 knockout mouse model without affecting the expression of parental gene. Surprisingly, male mice lacking circCamsap1 (circCamsap1-/-) exhibited normal fertility, with no discernible differences in testicular and epididymal histology, spermatogenesis, sperm counts or sperm motility compared to circCamsap1+/+ mice. These findings suggest that circCamsap1 may not play an essential role in physiological spermatogenesis. Nonetheless, this result also underscores the complexity of circRNA function in male reproductive biology. Therefore, further research is necessary to elucidate the precise roles of other circRNAs in regulating male fertility.
Collapse
Affiliation(s)
- Shu Zhang
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Haojie Li
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Changzhou Medical Center, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Jiang
- Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| | - Xia Chen
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Han Zhou
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Chang Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Hao Kong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yichao Shi
- Center of Reproduction, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiaodan Shi
- Women’s Hospital of Nanjing Medical University, Nanjing Women and Children’s Healthcare Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Gao X, Xu K, Du W, Wang S, Jiang M, Wang Y, Han Q, Chen M. Comparing the effects and mechanisms of exposure to polystyrene nanoplastics with different functional groups on the male reproductive system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171299. [PMID: 38423318 DOI: 10.1016/j.scitotenv.2024.171299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
After aging in the environment, some nanoplastics will carry different charges and functional groups, thereby altering their toxicological effects. To evaluate the potential impact of aging of nanoplastics on the mammalian reproductive system, we exposed C57BL/6 male mice to a dose of 5 mg/kg/d polystyrene nanoparticles (PS-NPs) with different functional groups (unmodified, carboxyl functionalized and amino functionalized) for 45 days for this study. The results suggest that PS-NPs with different functional groups triggered oxidative stress, a decreased in the testis index, disruption of the outer wall of the seminiferous tubules, reduction in the number of spermatogonia cells and sperm counts, and an increased in sperm malformations. We performed GO and KEGG enrichment analysis on the differentially expressed proteins, and found they were mainly enriched in protein transport, RNA splicing and mTOR signaling. We confirmed that the PI3K-AKT-mTOR pathway is over activated, which may lead to reduction of spermatogonia stem cells by over differentiation. Strikingly, PS-NPs with functional group modifications are more toxic than those of unmodified polystyrene, and that PS-NPs with positively charged amino modifications are the most toxic. This study provides a new understanding for correctly evaluating the toxicological effects of plastic aging, and of the mechanism responsible for the reproductive toxicity caused by nanoplastics.
Collapse
Affiliation(s)
- Xiao Gao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Ke Xu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Wanting Du
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Shuxin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mengling Jiang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Yunyi Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Qi Han
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China
| | - Mingqing Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
18
|
Kaku Y, Isono Y, Tanaka H, Kobayashi T, Kanemori Y, Kashiwabara SI. Intronless Pabpc6 encodes a testis-specific, cytoplasmic poly(A)-binding protein but is dispensable for spermatogenesis in the mouse†. Biol Reprod 2024; 110:834-847. [PMID: 38281153 DOI: 10.1093/biolre/ioae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Besides ubiquitous poly(A)-binding protein, cytoplasmic 1 (PABPC1), testis-specific PABPC2/PABPt (in humans, referred to as PABPC3), and female and male germline-specific PABPC1L/ePAB, have been reported in the mouse testis. Recent in silico analysis additionally identified testis-specific Pabpc6 in the mouse. In this study, we characterized PABPC6 and its mutant mice. PABPC6 was initially detectable in the cytoplasm of pachytene spermatocytes, increased in abundance in round spermatids, and decreased in elongating spermatids. PABPC6 was capable of binding to poly(A) tails of various mRNAs and interacting with translation-associated factors, including EIF4G, PAIP1, and PAIP2. Noteworthy was that PABPC6, unlike PABPC1, was barely associated with translationally active polysomes and enriched in chromatoid bodies of round spermatids. Despite these unique characteristics, neither synthesis of testicular proteins nor spermatogenesis was affected in the mutant mice lacking PABPC6, suggesting that PABPC6 is functionally redundant with other co-existing PABPC proteins during spermatogenesis.
Collapse
Affiliation(s)
- Yuko Kaku
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Isono
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideto Tanaka
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tomohiro Kobayashi
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Kanemori
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shin-Ichi Kashiwabara
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Gao J, Qin Y, Schimenti JC. Gene regulation during meiosis. Trends Genet 2024; 40:326-336. [PMID: 38177041 PMCID: PMC11003842 DOI: 10.1016/j.tig.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Meiosis is essential for gamete production in all sexually reproducing organisms. It entails two successive cell divisions without DNA replication, producing haploid cells from diploid ones. This process involves complex morphological and molecular differentiation that varies across species and between sexes. Specialized genomic events like meiotic recombination and chromosome segregation are tightly regulated, including preparation for post-meiotic development. Research in model organisms, notably yeast, has shed light on the genetic and molecular aspects of meiosis and its regulation. Although mammalian meiosis research faces challenges, particularly in replicating gametogenesis in vitro, advances in genetic and genomic technologies are providing mechanistic insights. Here we review the genetics and molecular biology of meiotic gene expression control, focusing on mammals.
Collapse
Affiliation(s)
- Jingyi Gao
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - Yiwen Qin
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
20
|
Gupta A, Papas BN, Baptissart M, Morgan M. Quantification of Poly(A) Tail Length and Terminal Modifications Using Direct RNA Sequencing. Methods Mol Biol 2024; 2723:253-266. [PMID: 37824075 DOI: 10.1007/978-1-0716-3481-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Poly(A) tail metabolism is critical for various biological processes, including early embryogenesis and cell differentiation. While traditional biochemical methods to measure poly(A) tail length allow for the study of selected transcripts, the advent of long-read sequencing technologies enabled the development of simple and robust protocols to measure poly(A) tail length at the transcriptome level. Here, we describe a direct RNA sequencing protocol to capture poly(A) tail terminal additions based on the splint ligation of barcoded oligos compatible with terminal guanylation and uridylation. We cover how to prepare the libraries and perform the bioinformatics analysis to simultaneously determine the length of the transcripts' poly(A) tails and detect the presence of terminal guanylation and uridylation.
Collapse
Affiliation(s)
- Ankit Gupta
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Brian N Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA.
| |
Collapse
|
21
|
Hashemi Karoii D, Azizi H. Functions and mechanism of noncoding RNA in regulation and differentiation of male mammalian reproduction. Cell Biochem Funct 2023; 41:767-778. [PMID: 37583312 DOI: 10.1002/cbf.3838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023]
Abstract
Noncoding RNAs (ncRNAs) are active regulators of a wide range of biological and physiological processes, including the majority of mammalian reproductive events. Knowledge of the biological activities of ncRNAs in the context of mammalian reproduction will allow for a more comprehensive and comparative understanding of male sterility and fertility. In this review, we describe recent advances in ncRNA-mediated control of mammalian reproduction and emphasize the importance of ncRNAs in several aspects of mammalian reproduction, such as germ cell biogenesis and reproductive organ activity. Furthermore, we focus on gene expression regulatory feedback loops including hormones and ncRNA expression to better understand germ cell commitment and reproductive organ function. Finally, this study shows the role of ncRNAs in male reproductive failure and provides suggestions for further research.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
22
|
Baptissart M, Papas BN, Chi RPA, Li Y, Lee D, Puviindran B, Morgan M. A unique poly(A) tail profile uncovers the stability and translational activation of TOP transcripts during neuronal differentiation. iScience 2023; 26:107511. [PMID: 37636056 PMCID: PMC10448114 DOI: 10.1016/j.isci.2023.107511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/15/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Cell differentiation is associated with global changes in translational activity. Here, we characterize how mRNA poly(A) tail processing supports this dynamic. We observe that decreased translation during neuronal differentiation of P19 cells correlates with the downregulation of 5'-terminal oligopyrimidine (TOP) transcripts which encode the translational machinery. Despite their downregulation, TOP transcripts remain highly stable and show increased translation as cells differentiate. Changes in TOP mRNA metabolism are reflected by their accumulation with poly(A) tails ∼60-nucleotide (nt) long. The dynamic changes in poly(A) processing can be partially recapitulated by depleting LARP1 or activating the mTOR pathway in undifferentiated cells. Although mTOR-induced accumulation of TOP mRNAs with tails ∼60-nt long does not trigger differentiation, it is associated with reduced proliferation of neuronal progenitors. We propose that while TOP mRNAs are transcriptionally silenced, their post-transcriptional regulation mediated by a specific poly(A) processing ensures an adequate supply of ribosomes to complete differentiation.
Collapse
Affiliation(s)
- Marine Baptissart
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Brian N. Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Ru-pin Alicia Chi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Dongwon Lee
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Bhairavy Puviindran
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, USA
| |
Collapse
|
23
|
Chi RPA, Xu X, Li JL, Xu X, Hu G, Brown P, Willson C, Kirsanov O, Geyer C, Huang CL, Morgan M, DeMayo F. WNK1 is required during male pachynema to sustain fertility. iScience 2023; 26:107616. [PMID: 37694147 PMCID: PMC10485039 DOI: 10.1016/j.isci.2023.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/04/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
WNK1 is an important regulator in many physiological functions, yet its role in male reproduction is unexplored. In the male germline, WNK1 is upregulated in preleptotene spermatocytes indicating possible function(s) in spermatogenic meiosis. Indeed, deletion of Wnk1 in mid-pachytene spermatocytes using the Wnt7a-Cre mouse led to male sterility which resembled non-obstructive azoospermia in humans, where germ cells failed to complete spermatogenesis and produced no sperm. Mechanistically, we found elevated MTOR expression and signaling in the Wnk1-depleted spermatocytes. As MTOR is a central mediator of translation, we speculated that translation may be accelerated in these spermatocytes. Supporting this, we found the acrosome protein, ACRBP to be prematurely expressed in the spermatocytes with Wnk1 deletion. Our study uncovered an MTOR-regulating factor in the male germline with potential implications in translation, and future studies will aim to understand how WNK1 regulates MTOR activity and impact translation on a broader spectrum.
Collapse
Affiliation(s)
- Ru-pin Alicia Chi
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Guang Hu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Paula Brown
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Cynthia Willson
- Integrated Laboratory Systems LLC, Research Triangle Park, NC 27709, USA
| | - Oleksandr Kirsanov
- Department of Anatomy & Cell Biology at the Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Christopher Geyer
- Department of Anatomy & Cell Biology at the Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Chou-Long Huang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa, IA 52242, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Francesco DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| |
Collapse
|
24
|
Kakino K, Mon H, Ebihara T, Hino M, Masuda A, Lee JM, Kusakabe T. Comprehensive Transcriptome Analysis in the Testis of the Silkworm, Bombyx mori. INSECTS 2023; 14:684. [PMID: 37623394 PMCID: PMC10455414 DOI: 10.3390/insects14080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Spermatogenesis is an important process in reproduction and is conserved across species, but in Bombyx mori, it shows peculiarities, such as the maintenance of spermatogonia by apical cells and fertilization by dimorphic spermatozoa. In this study, we attempted to characterize the genes expressed in the testis of B. mori, focusing on aspects of expression patterns and gene function by transcriptome comparisons between different tissues, internal testis regions, and Drosophila melanogaster. The transcriptome analysis of 12 tissues of B. mori, including those of testis, revealed the widespread gene expression of 20,962 genes and 1705 testis-specific genes. A comparative analysis of the stem region (SR) and differentiated regions (DR) of the testis revealed 4554 and 3980 specific-enriched genes, respectively. In addition, comparisons with D. melanogaster testis transcriptome revealed homologs of 1204 SR and 389 DR specific-enriched genes that were similarly expressed in equivalent regions of Drosophila testis. Moreover, gene ontology (GO) enrichment analysis was performed for SR-specific enriched genes and DR-specific enriched genes, and the GO terms of several biological processes were enriched, confirming previous findings. This study advances our understanding of spermatogenesis in B. mori and provides an important basis for future research, filling a knowledge gap between fly and mammalian studies.
Collapse
Affiliation(s)
- Kohei Kakino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; (K.K.); (H.M.); (T.E.)
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; (K.K.); (H.M.); (T.E.)
| | - Takeru Ebihara
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; (K.K.); (H.M.); (T.E.)
| | - Masato Hino
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Akitsu Masuda
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; (A.M.); (J.M.L.)
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; (A.M.); (J.M.L.)
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; (K.K.); (H.M.); (T.E.)
| |
Collapse
|
25
|
Islam KN, Ajao A, Venkataramani K, Rivera J, Pathania S, Henke K, Siegfried KR. The RNA-binding protein Adad1 is necessary for germ cell maintenance and meiosis in zebrafish. PLoS Genet 2023; 19:e1010589. [PMID: 37552671 PMCID: PMC10437952 DOI: 10.1371/journal.pgen.1010589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 08/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The double stranded RNA binding protein Adad1 (adenosine deaminase domain containing 1) is a member of the adenosine deaminase acting on RNAs (Adar) protein family with germ cell-specific expression. In mice, Adad1 is necessary for sperm differentiation, however its function outside of mammals has not been investigated. Here, through an N-ethyl-N-nitrosourea (ENU) based forward genetic screen, we identified an adad1 mutant zebrafish line that develops as sterile males. Further histological examination revealed complete lack of germ cells in adult mutant fish, however germ cells populated the gonad, proliferated, and entered meiosis in larval and juvenile fish. Although meiosis was initiated in adad1 mutant testes, the spermatocytes failed to progress beyond the zygotene stage. Thus, Adad1 is essential for meiosis and germline maintenance in zebrafish. We tested if spermatogonial stem cells were affected using nanos2 RNA FISH and a label retaining cell (LRC) assay, and found that the mutant testes had fewer LRCs and nanos2-expressing cells compared to wild-type siblings, suggesting that failure to maintain the spermatogonial stem cells resulted in germ cell loss by adulthood. To identify potential molecular processes regulated by Adad1, we sequenced bulk mRNA from mutants and wild-type testes and found mis-regulation of genes involved in RNA stability and modification, pointing to a potential broader role in post-transcriptional regulation. Our findings suggest that the RNA regulatory protein Adad1 is required for fertility through regulation of spermatogonial stem cell maintenance in zebrafish.
Collapse
Affiliation(s)
- Kazi Nazrul Islam
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Anuoluwapo Ajao
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Kavita Venkataramani
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Joshua Rivera
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Shailja Pathania
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
- Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| | - Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kellee Renee Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Gupta N, Yakhou L, Albert JR, Azogui A, Ferry L, Kirsh O, Miura F, Battault S, Yamaguchi K, Laisné M, Domrane C, Bonhomme F, Sarkar A, Delagrange M, Ducos B, Cristofari G, Ito T, Greenberg MVC, Defossez PA. A genome-wide screen reveals new regulators of the 2-cell-like cell state. Nat Struct Mol Biol 2023; 30:1105-1118. [PMID: 37488355 DOI: 10.1038/s41594-023-01038-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
In mammals, only the zygote and blastomeres of the early embryo are totipotent. This totipotency is mirrored in vitro by mouse '2-cell-like cells' (2CLCs), which appear at low frequency in cultures of embryonic stem cells (ESCs). Because totipotency is not completely understood, we carried out a genome-wide CRISPR knockout screen in mouse ESCs, searching for mutants that reactivate the expression of Dazl, a gene expressed in 2CLCs. Here we report the identification of four mutants that reactivate Dazl and a broader 2-cell-like signature: the E3 ubiquitin ligase adaptor SPOP, the Zinc-Finger transcription factor ZBTB14, MCM3AP, a component of the RNA processing complex TREX-2, and the lysine demethylase KDM5C. All four factors function upstream of DPPA2 and DUX, but not via p53. In addition, SPOP binds DPPA2, and KDM5C interacts with ncPRC1.6 and inhibits 2CLC gene expression in a catalytic-independent manner. These results extend our knowledge of totipotency, a key phase of organismal life.
Collapse
Affiliation(s)
- Nikhil Gupta
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France.
- Joint AZ CRUK Functional Genomics Centre, The Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK.
| | - Lounis Yakhou
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | | | - Anaelle Azogui
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Laure Ferry
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Olivier Kirsh
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | - Sarah Battault
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Kosuke Yamaguchi
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Marthe Laisné
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Cécilia Domrane
- Epigenetics and Cell Fate, Université Paris Cité, CNRS, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology, UMR3523, Institut Pasteur, Université Paris Cité, CNRS, Paris, France
| | - Arpita Sarkar
- IRCAN, Université Côte d'Azur, Inserm, CNRS, Nice, France
| | - Marine Delagrange
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Facility, Institut de Biologie de l'École Normale Supérieure (IBENS), Laboratoire de Physique de l'ENS CNRS UMR8023, PSL Research University, Paris, France
| | | | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka, Japan
| | | | | |
Collapse
|
27
|
Gupta A, Li Y, Chen SH, Papas BN, Martin NP, Morgan M. TUT4/7-mediated uridylation of a coronavirus subgenomic RNAs delays viral replication. Commun Biol 2023; 6:438. [PMID: 37085578 PMCID: PMC10119532 DOI: 10.1038/s42003-023-04814-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/05/2023] [Indexed: 04/23/2023] Open
Abstract
Coronaviruses are positive-strand RNA viruses with 3' polyadenylated genomes and subgenomic transcripts. The lengths of the viral poly(A) tails change during infection by mechanisms that remain poorly understood. Here, we use a splint-ligation method to measure the poly(A) tail length and poly(A) terminal uridylation and guanylation of the mouse hepatitis virus (MHV) RNAs. Upon infection of 17-CL1 cells with MHV, a member of the Betacoronavirus genus, we observe two populations of terminally uridylated viral transcripts, one with poly(A) tails ~44 nucleotides long and the other with poly(A) tails shorter than ~22 nucleotides. The mammalian terminal uridylyl-transferase 4 (TUT4) and terminal uridylyl-transferase 7 (TUT7), referred to as TUT4/7, add non-templated uracils to the 3'-end of endogenous transcripts with poly(A) tails shorter than ~30 nucleotides to trigger transcript decay. Here we find that depletion of the host TUT4/7 results in an increased replication capacity of the MHV virus. At late stages of infection, the population of uridylated subgenomic RNAs with tails shorter than ~22 nucleotides is reduced in the absence of TUT4/7 while the viral RNA load increases. Our findings indicate that TUT4/7 uridylation marks the MHV subgenomic RNAs for decay and delays viral replication.
Collapse
Affiliation(s)
- Ankit Gupta
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Yin Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Shih-Heng Chen
- Viral Vector Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Brian N Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Negin P Martin
- Viral Vector Core Facility, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA
| | - Marcos Morgan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, 27709, USA.
| |
Collapse
|
28
|
Human in vitro spermatogenesis as a regenerative therapy - where do we stand? Nat Rev Urol 2023:10.1038/s41585-023-00723-4. [PMID: 36750655 DOI: 10.1038/s41585-023-00723-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/09/2023]
Abstract
Spermatogenesis involves precise temporal and spatial gene expression and cell signalling to reach a coordinated balance between self-renewal and differentiation of spermatogonial stem cells through various germ cell states including mitosis, and meiosis I and II, which result in the generation of haploid cells with a unique genetic identity. Subsequently, these round spermatids undergo a series of morphological changes to shed excess cytoplast, develop a midpiece and tail, and undergo DNA repackaging to eventually form millions of spermatozoa. The goal of recreating this process in vitro has been pursued since the 1920s as a tool to treat male factor infertility in patients with azoospermia. Continued advances in reproductive bioengineering led to successful generation of mature, functional sperm in mice and, in the past 3 years, in humans. Multiple approaches to study human in vitro spermatogenesis have been proposed, but technical and ethical obstacles have limited the ability to complete spermiogenesis, and further work is needed to establish a robust culture system for clinical application.
Collapse
|
29
|
Li W, Mi S, Zhang J, Liu X, Chen S, Liu S, Feng X, Tang Y, Li Y, Liu L, Fang L, Zhang S, Yu Y. Integrating sperm cell transcriptome and seminal plasma metabolome to analyze the molecular regulatory mechanism of sperm motility in Holstein stud bulls. J Anim Sci 2023; 101:skad214. [PMID: 37366074 PMCID: PMC10355371 DOI: 10.1093/jas/skad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 06/26/2023] [Indexed: 06/28/2023] Open
Abstract
Considering that artificial insemination is the most widely used assisted reproductive technique in the dairy industry, the semen quality of bulls is very important for selecting excellent stud bulls. Sperm motility is one of the important traits of semen quality, and related genes may be regulated by environmental factors. Seminal plasma can affect sperm cell transcriptome and further affect sperm motility through exosome or other processes. However, the molecular regulation mechanism of bull sperm motility has not been studied by combining the sperm cell transcriptome with seminal plasma metabolome. The number of motile sperm per ejaculate (NMSPE) is an integrated indicator for assessing sperm motility in stud bulls. In the present study, we selected 7 bulls with higher NMSPE (5,698.55 million +/- 945.40 million) as group H and 7 bulls with lower NMSPE (2,279.76 million +/- 1,305.69 million) as group L from 53 Holstein stud bulls. The differentially expressed genes (DEGs) in sperm cells were evaluated between the two groups (H vs. L). We conducted gene co-expression network analysis (WGCNA) on H and L groups of bulls, as well as two monozygotic twin Holstein bulls with different NMSPE values, to screen candidate genes for NMSPE. The regulatory effect of seminal plasma metabolome on the candidate genes of NMSPE was also investigated. A total of 1,099 DEGs were identified in the sperm cells of H and L groups. These DEGs were primarily concentrated in energy metabolism and sperm cell transcription. The significantly enriched Kyoto encyclopedia of genes and genomes (KEGG) pathways of the 57 differential metabolites were the aminoacyl-tRNA biosynthesis pathway and vitamin B6 metabolism pathway. Our study discovered 14 genes as the potential candidate markers for sperm motility, including FBXO39. We observed a broad correlation between transcriptome of sperm cells and seminal plasma metabolome, such as three metabolites, namely, mesaconic acid, 2-coumaric acid, and 4-formylaminoantipyrine, might regulate FBXO39 expression through potential pathways. The genes related to seminal plasma metabolites expressed in sperm cells are not only located near the quantitative trait loci of reproductive traits, but also enriched in the genome-wide association study signal of sire conception rate. Collectively, this study was the first to investigate the interplays among transcriptome of sperm cells and seminal plasma metabolome from Holstein stud bulls with different sperm motility.
Collapse
Affiliation(s)
- Wenlong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Siqian Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Xia Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yanhua Li
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Qinghe’nanzhen Deshengmenwai Road, Beijing 100192, China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs & National Engineering Laboratory for Animal Breeding, Department of Animal Breeding and Genetics, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Tian S, Wang Z, Liu L, Zhou Y, Lv Y, Tang D, Wang J, Jiang J, Wu H, Tang S, Wang G, Geng H, Tao F, Liu H, He X, Zhang F, Li J, Jin L, Huang T, Liu C, Cao Y. A homozygous frameshift mutation in ADAD2 causes male infertility with spermatogenic impairments. J Genet Genomics 2023; 50:284-288. [PMID: 36608931 DOI: 10.1016/j.jgg.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Affiliation(s)
- Shixiong Tian
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Liting Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China
| | - Yiling Zhou
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Yue Lv
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250012, China
| | - Dongdong Tang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Jiaxiong Wang
- Center for Reproduction and Genetics, State Key Laboratory of Reproductive Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu 215002, China
| | - Jing Jiang
- Genome Tagging Project (GTP) Center, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China
| | - Shuyan Tang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Guanxiong Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China
| | - Hao Geng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China
| | - Feng Zhang
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Jinsong Li
- Genome Tagging Project (GTP) Center, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Jin
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China.
| | - Chunyu Liu
- Institute of Metabolism and Integrative Biology, State Key Laboratory of Genetic Engineering, Human Phenome Institute, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui 230032, China.
| |
Collapse
|
31
|
Li C, Zhang R, Zhang Z, Ren C, Wang X, He X, Mwacharo JM, Zhang X, Zhang J, Di R, Chu M. Expression characteristics of piRNAs in ovine luteal phase and follicular phase ovaries. Front Vet Sci 2022; 9:921868. [PMID: 36157184 PMCID: PMC9493120 DOI: 10.3389/fvets.2022.921868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs), as a novel class of small non-coding RNAs that have been shown to be indispensable in germline integrity and stem cell development. However, the expressed characteristics and regulatory roles of piRNAs during different reproductive phases of animals remain unknown. In this study, we investigated the piRNAs expression profiles in ovaries of sheep during the luteal phase (LP) and follicular phase (FP) using the Solexa sequencing technique. A total of 85,219 and 1,27,156 piRNAs tags were identified in ovine ovaries across the two phases. Most expressed piRNAs start with uracil. piRNAs with a length of 24 nt or 27–29 nts accounted for the largest proportion. The obvious ping-pong signature appeared in the FP ovary. The piRNA clusters in the sheep ovary were unevenly distributed on the chromosomes, with high density on Chr 3 and 1. For genome distribution, piRNAs in sheep ovary were mainly derived from intron, CDS, and repeat sequence regions. Compared to the LP ovary, a greater number of expressed piRNA clusters were detected in the FP ovary. Simultaneously, we identified 271 differentially expressed (DE) piRNAs between LP and FP ovaries, with 96 piRNAs upregulated and 175 piRNAs downregulated, respectively. Functional enrichment analysis (GO and KEGG) indicated that their target genes were enriched in reproduction-related pathways including oocyte meiosis, PI3K-Akt, Wnt, and TGF-β signaling pathways. Together, our results highlighted the sequence and expression characteristics of the piRNAs in the sheep ovary, which will help us understand the roles of piRNAs in the ovine estrus cycle.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- Institute of Animal and Veterinary Sciences, Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Ran Di
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Mingxing Chu
| |
Collapse
|
32
|
Guo H, Shen X, Hu H, Zhou P, He T, Xia L, Tan D, Zhang X, Zhang Y. Alteration of RNA modification signature in human sperm correlates with sperm motility. Mol Hum Reprod 2022; 28:gaac031. [PMID: 35959987 PMCID: PMC9422301 DOI: 10.1093/molehr/gaac031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
RNA modifications, which are introduced post-transcriptionally, have recently been assigned pivotal roles in the regulation of spermatogenesis and embryonic development. However, the RNA modification landscape in human sperm is poorly characterized, hampering our understanding about the potential role played by RNA modification in sperm. Through our recently developed high-throughput RNA modification detection platform based on liquid chromatography with tandem mass spectroscopy, we are the first to have characterized the RNA modification signature in human sperm. The RNA modification signature was generated on the basis of 49 samples from participants, including 13 healthy controls, 21 patients with asthenozoospermia (AZS) and 15 patients with teratozoospermia (TZS). In total, we identified 13 types of RNA modification marks on the total RNA in sperm, and 16 types of RNA modification marks on sperm RNA fragments of different sizes. The levels of these RNA modifications on the RNA of patients with AZS or TZS were altered, compared to controls, especially on sperm RNA fragments > 80 nt. A few types of RNA modifications, such as m1G, m5C, m2G and m1A, showed clear co-expression patterns as well as high linear correlations with clinical sperm motility. In conclusion, we characterized the RNA modification signature of human sperm and identified its correlation with sperm motility, providing promising candidates for use in clinical sperm quality assessment and new research insights for exploring the underlying pathological mechanisms in human male infertility syndromes.
Collapse
Affiliation(s)
- Huanping Guo
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xipeng Shen
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hua Hu
- Center for Reproductive & Genetic Medical, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Peng Zhou
- Center for Reproductive & Genetic Medical, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tong He
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Lin Xia
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Dongmei Tan
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yunfang Zhang
- Medical Center of Hematology, The Second Affiliated Hospital of Army Medical University, Chongqing, China
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
33
|
Liu Y, Zhang Y, Wang J, Lu F. Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAIso-seq. Nat Protoc 2022; 17:1980-2007. [PMID: 35831615 DOI: 10.1038/s41596-022-00704-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 12/14/2022]
Abstract
Poly(A) tails are added to the 3' ends of most mRNAs in a non-templated manner and play essential roles in post-transcriptional regulation, including mRNA export, stability and translation. Measuring poly(A) tails is critical for understanding their regulatory roles in almost every aspect of biological and medical studies. Previous methods for analyzing poly(A) tails require large amounts of input RNA (microgram-level total RNA), which limits their application. We recently developed a poly(A) inclusive full-length RNA isoform-sequencing method (PAIso-seq) at single-oocyte-level sensitivity (a single mammalian oocyte contains ~0.5 ng of total RNA) based on PacBio sequencing that enabled accurate measurement of the poly(A) tail length and non-A residues within the body of poly(A) tails along with the full-length cDNA, providing the opportunity to study precious in vivo samples with very limited input material. Here, we describe a detailed protocol for PAIso-seq library preparation from single mouse oocytes or bulk oocyte samples. In addition, we provide a complete bioinformatic pipeline to perform the analysis from the raw data to downstream analysis. The minimum time required is ~14.5 h for PAIso-seq double-stranded cDNA preparation, 2 d for PacBio sequencing in HiFi mode and 8 h for the initial data analysis.
Collapse
Affiliation(s)
- Yusheng Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yiwei Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
34
|
O'Donnell L, Smith LB, Rebourcet D. Sperm-specific proteins: new implications for diagnostic development and cancer immunotherapy. Curr Opin Cell Biol 2022; 77:102104. [PMID: 35671587 DOI: 10.1016/j.ceb.2022.102104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Spermatozoa are comprised of many unique proteins not expressed elsewhere. Sperm-specific proteins are first expressed at puberty, after the development of immune tolerance to self-antigens, and have been assumed to remain confined inside the seminiferous tubules, protected from immune cell recognition by various mechanisms of testicular immune privilege. However, new data has shown that sperm-specific proteins are released by the tubules into the surrounding interstitial fluid; from here they can contact immune cells, potentially promote immune tolerance, and enter the circulation. These new findings have clinical implications for diagnostics and therapeutics targeted at a specific class of proteins known as cancer-testis antigens (CTA), the opportunity to identify new communication pathways in the testis, and to discover new ways to monitor testis function.
Collapse
Affiliation(s)
- Liza O'Donnell
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, 3168, Victoria, Australia; Monash University, Clayton, 3168, Victoria, Australia.
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia; MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Griffith University, Parklands Drive, Southport, 4222, Queensland, Australia
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
35
|
Zheng B, Liu J, Shi X, Xu J, Zhang K, Zhou H, Wu T, Huang X, Shen C, Liang Y, Zhao D, Guo Y. BMI1 governs the maintenance of mouse GC-2 cells through epigenetic repression of Foxl1 transcription. Am J Transl Res 2022; 14:3407-3418. [PMID: 35702123 PMCID: PMC9185053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies have demonstrated that B lymphoma Mo-MLV insertion region 1 (BMI1) plays an important role in male reproductive function and the regulation of spermatogonia proliferation. However, whether BMI1 exerts a similarly important function in spermatocyte development remains unclear. METHODS In this study, we investigated the role of BMI1 in spermatocyte development using a mouse spermatocyte-derived cell line (GC-2) and a Bmi1-knockout (KO) mouse model. RESULTS We demonstrated that BMI1 promoted the proliferation and inhibited the apoptosis of GC-2 cells. Mechanistically, we presented in vitro and in vivo evidence showing that BMI1 binds to the promoter region of the forkhead box L1 (Foxl1) gene, sequentially driving chromatin remodeling and gene silencing. BMI1, which functions as a classical polycomb protein, was found to direct the transcriptional repression of Foxl1 through increasing the H2AK119ub level and reducing that of H3K4me3 in the promoter region of Foxl1. Our results further indicated that the knockdown of Foxl1 expression significantly enhanced cell proliferation via activating β-catenin signaling in BMI1-deficient GC-2 cells. CONCLUSIONS Collectively, our study revealed for the first time the existence of an epigenetic mechanism involving BMI1-mediated gene silencing in GC-2 cells development and provided potential targets for the treatment of male infertility.
Collapse
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Juanjuan Liu
- Reproductive Medicine Center, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Xiaodan Shi
- Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210004, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Ke Zhang
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214122, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Dan Zhao
- Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang 212008, Jiangsu, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| |
Collapse
|