1
|
Shirak A, Curzon AY, Seroussi E, Gershoni M. Negative Selection in Oreochromis niloticus × O. aureus Hybrids Indicates Incompatible Oxidative Phosphorylation (OXPHOS) Proteins. Int J Mol Sci 2025; 26:2089. [PMID: 40076713 PMCID: PMC11900210 DOI: 10.3390/ijms26052089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Crossing Oreochromis niloticus (On) females with O. aureus (Oa) males results in all-male progeny that are essential for effective tilapia aquaculture. However, a reproductive barrier between these species prevents commercial-scale yield. To achieve all-male progeny, the currently used practice is crossing admixed stocks and feeding fry with synthetic androgens. Hybrid tilapias escaping to the wild might impact natural populations. Hybrids competing with wild populations undergo selection for different stressors, e.g., oxygen levels, salinity, and low-temperature tolerance. Forming mitochondrial oxidative phosphorylation (OXPHOS) complexes, mitochondrial (mtDNA) and nuclear DNA (nDNA)-encoded proteins control energy production. Crossbred tilapia have been recorded over 60 years, providing an excellent model for assessing incompatibility between OXPHOS proteins, which are critical for the adaptation of these hybrids. Here, by comparing nonconserved amino acid substitutions, across 116 OXPHOS proteins, between On and Oa, we developed a panel of 13 species-specific probes. Screening 162 SRA experiments, we noted that 39.5% had a hybrid origin with mtDNA-nDNA allele mismatches. Observing that the frequency of interspecific mtDNA-nDNA allele combinations was significantly (p < 10-4) lower than expected for three factors, UQCRC2, ATP5C1, and COX4B, we concluded that these findings likely indicated negative selection, cytonuclear incompatibility, and a reproductive barrier.
Collapse
Affiliation(s)
- Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
| | - Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
| | - Moran Gershoni
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 75288, Israel; (A.S.); (A.Y.C.)
| |
Collapse
|
2
|
Cameron SL. Insect Mitochondrial Genomics: A Decade of Progress. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:83-101. [PMID: 39259965 DOI: 10.1146/annurev-ento-013024-015553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.
Collapse
Affiliation(s)
- Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
3
|
Bettinazzi S, Liang J, Rodriguez E, Bonneau M, Holt R, Whitehead B, Dowling DK, Lane N, Camus MF. Assessing the role of mitonuclear interactions on mitochondrial function and organismal fitness in natural Drosophila populations. Evol Lett 2024; 8:916-926. [PMID: 39677574 PMCID: PMC11637609 DOI: 10.1093/evlett/qrae043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondrial function depends on the effective interactions between proteins and RNA encoded by the mitochondrial and nuclear genomes. Evidence suggests that both genomes respond to thermal selection and promote adaptation. However, the contribution of their epistatic interactions to life history phenotypes in the wild remains elusive. We investigated the evolutionary implications of mitonuclear interactions in a real-world scenario that sees populations adapted to different environments, altering their geographical distribution while experiencing flow and admixture. We created a Drosophila melanogaster panel with replicate native populations from the ends of the Australian east-coast cline, into which we substituted the mtDNA haplotypes that were either predominant or rare at each cline-end, thus creating putatively mitonuclear matched and mismatched populations. Our results suggest that mismatching may impact phenotype, with populations harboring the rarer mtDNA haplotype suffering a trade-off between aerobic capacity and key fitness aspects such as reproduction, growth, and survival. We discuss the significance of mitonuclear interactions as modulators of life history phenotypes in the context of future adaptation and population persistence.
Collapse
Affiliation(s)
- Stefano Bettinazzi
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Jane Liang
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Enrique Rodriguez
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marion Bonneau
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ruben Holt
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Ben Whitehead
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - M Florencia Camus
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
4
|
Galià-Camps C, Schell T, Enguídanos A, Pegueroles C, Arnedo MA, Ballesteros M, Valdés Á, Greve C. Jumping through hoops: Structural rearrangements and accelerated mutation rates on Dendrodorididae (Mollusca: Nudibranchia) mitogenomes rumble their evolution. Mol Phylogenet Evol 2024; 201:108218. [PMID: 39424089 DOI: 10.1016/j.ympev.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
The systematics of the family Dendrodorididae, with only three valid genera, is a challenge for integrative taxonomists. Its members lack hard structures for morphological comparisons and their mitochondrial and nuclear markers provide contradictory phylogenetic signals, making phylogenetic reconstructions difficult. This molecular discordance has been hypothesized to be the result of nuclear pseudogenes or exogenous contamination. However, these hypotheses have not been tested. Here, we assembled the first genome drafts of seven Dendrodorididae species to investigate the evolutionary processes of this family. Two of the mitogenomes displayed an identical structural rearrangement involving the translocation of three coding genes and five tRNAs, described for the first time in nudibranchs. In addition, we found particularly high dN and dN/dS values and multiple insertions and deletions on the mitochondrial genes of smooth Dendrodoris. In contrast, nuclear single-copy ortholog genes showed no such mutational differences. Models of protein structures from mitochondrial genes are conserved, suggesting conserved functionality. Phylogenies using mitogenomic and nuclear data showed that species with rearranged mitogenomes form a clade, although Dendrodorididae relationships remained unresolved. The present study provides novel evidence for accelerated mutation rates in the mitogenomes of Dendrodorididae, which presumably have implications on respiratory adaptation, and highlights the importance of using genomic data to unveil rare evolutionary processes, crucial for correctly inferring phylogenies.
Collapse
Affiliation(s)
- Carles Galià-Camps
- Centre d'Estudis Avançats de Blanes (CEAB, CSIC), Accés Cala St. Francesc 14, 17300 Blanes, Girona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Alba Enguídanos
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Cinta Pegueroles
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Miquel A Arnedo
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Manuel Ballesteros
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Spain
| | - Ángel Valdés
- Department of Biological Sciences, California State Polytechnic University Pomona, 3801 West Temple Avenue, Pomona, CA 91768, USA
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Senckenberg Forschungsinstitut und Naturmuseum, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Princepe D, de Aguiar MAM. Nuclear compensatory evolution driven by mito-nuclear incompatibilities. Proc Natl Acad Sci U S A 2024; 121:e2411672121. [PMID: 39392668 PMCID: PMC11494290 DOI: 10.1073/pnas.2411672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Mitochondrial function relies on the coordinated expression of mitochondrial and nuclear genes, exhibiting remarkable resilience despite high mitochondrial mutation rates. The nuclear compensation mechanism suggests deleterious mitochondrial alleles drive compensatory nuclear mutations to preserve mito-nuclear compatibility. However, prevalence and factors conditioning this phenomenon remain debated due to its conflicting evidence. Here, we investigate how mito-nuclear incompatibilities impact substitutions in a model for species radiation. Mating success depends on genetic compatibility (nuclear DNA) and spatial proximity. Populations evolve from partially compatible mito-nuclear states, simulating mitochondrial DNA (mtDNA) introgression. Mutations do not confer advantages nor disadvantages, but individual fecundity declines with increasing incompatibilities, selecting for mito-nuclear coordination. We find that selection for mito-nuclear compatibility affects each genome differently based on their initial state. In compatible gene pairs, selection reduces substitutions in both genomes, while in incompatible nuclear genes, it consistently promotes compensation, facilitated by more mismatches. Interestingly, high mitochondrial mutation rates can reduce nuclear compensation by increasing mtDNA rectification, while substitutions in initially compatible nuclear gene are boosted. Finally, the presence of incompatibilities accelerates species radiation, but equilibrium richness is not directly correlated to substitution rates, revealing the complex dynamics triggered by mitochondrial introgression and mito-nuclear coevolution. Our study provides a perspective on nuclear compensation and the role of mito-nuclear incompatibilities in speciation by exploring extreme scenarios and identifying trends that empirical data alone cannot reveal. We emphasize the challenges in detecting these dynamics and propose analyzing specific genomic signatures could shed light on this evolutionary process.
Collapse
Affiliation(s)
- Debora Princepe
- Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas13083859, Brasil
| | - Marcus A. M. de Aguiar
- Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), Campinas13083859, Brasil
| |
Collapse
|
6
|
Thoral E, Dawson NJ, Bettinazzi S, Rodríguez E. An evolving roadmap: using mitochondrial physiology to help guide conservation efforts. CONSERVATION PHYSIOLOGY 2024; 12:coae063. [PMID: 39252884 PMCID: PMC11381570 DOI: 10.1093/conphys/coae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.
Collapse
Affiliation(s)
- Elisa Thoral
- Department of Biology, Section for Evolutionary Ecology, Lund University, Sölvegatan 37, Lund 223 62, Sweden
| | - Neal J Dawson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow, G61 1QH , UK
| | - Stefano Bettinazzi
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| | - Enrique Rodríguez
- Research Department of Genetics, Evolution and Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
| |
Collapse
|
7
|
Veeraragavan S, Johansen M, Johnston IG. Evolution and maintenance of mtDNA gene content across eukaryotes. Biochem J 2024; 481:1015-1042. [PMID: 39101615 PMCID: PMC11346449 DOI: 10.1042/bcj20230415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024]
Abstract
Across eukaryotes, most genes required for mitochondrial function have been transferred to, or otherwise acquired by, the nucleus. Encoding genes in the nucleus has many advantages. So why do mitochondria retain any genes at all? Why does the set of mtDNA genes vary so much across different species? And how do species maintain functionality in the mtDNA genes they do retain? In this review, we will discuss some possible answers to these questions, attempting a broad perspective across eukaryotes. We hope to cover some interesting features which may be less familiar from the perspective of particular species, including the ubiquity of recombination outside bilaterian animals, encrypted chainmail-like mtDNA, single genes split over multiple mtDNA chromosomes, triparental inheritance, gene transfer by grafting, gain of mtDNA recombination factors, social networks of mitochondria, and the role of mtDNA dysfunction in feeding the world. We will discuss a unifying picture where organismal ecology and gene-specific features together influence whether organism X retains mtDNA gene Y, and where ecology and development together determine which strategies, importantly including recombination, are used to maintain the mtDNA genes that are retained.
Collapse
Affiliation(s)
| | - Maria Johansen
- Department of Mathematics, University of Bergen, Bergen, Norway
| | - Iain G. Johnston
- Department of Mathematics, University of Bergen, Bergen, Norway
- Computational Biology Unit, University of Bergen, Bergen, Norway
| |
Collapse
|
8
|
Crino OL, Head ML, Jennions MD, Noble DWA. Mitochondrial function and sexual selection: can physiology resolve the 'lek paradox'? J Exp Biol 2024; 227:jeb245569. [PMID: 38206324 DOI: 10.1242/jeb.245569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Across many taxa, males use elaborate ornaments or complex displays to attract potential mates. Such sexually selected traits are thought to signal important aspects of male 'quality'. Female mating preferences based on sexual traits are thought to have evolved because choosy females gain direct benefits that enhance their lifetime reproductive success (e.g. greater access to food) and/or indirect benefits because high-quality males contribute genes that increase offspring fitness. However, it is difficult to explain the persistence of female preferences when males only provide genetic benefits, because female preferences should erode the heritable genetic variation in fitness that sexually selected traits signal. This 'paradox of the lek' has puzzled evolutionary biologists for decades, and inspired many hypotheses to explain how heritable variation in sexually selected traits is maintained. Here, we discuss how factors that affect mitochondrial function can maintain variation in sexually selected traits despite strong female preferences. We discuss how mitochondrial function can influence the expression of sexually selected traits, and we describe empirical studies that link the expression of sexually selected traits to mitochondrial function. We explain how mothers can affect mitochondrial function in their offspring by (a) influencing their developmental environment through maternal effects and (b) choosing a mate to increase the compatibility of mitochondrial and nuclear genes (i.e. the 'mitonuclear compatibility model of sexual selection'). Finally, we discuss how incorporating mitochondrial function into models of sexual selection might help to resolve the paradox of the lek, and we suggest avenues for future research.
Collapse
Affiliation(s)
- Ondi L Crino
- School of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Megan L Head
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Michael D Jennions
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Centre, 10 Marais Street, Stellenbosch 7600, South Africa
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
9
|
Jensen A, Swift F, de Vries D, Beck RMD, Kuderna LFK, Knauf S, Chuma IS, Keyyu JD, Kitchener AC, Farh K, Rogers J, Marques-Bonet T, Detwiler KM, Roos C, Guschanski K. Complex Evolutionary History With Extensive Ancestral Gene Flow in an African Primate Radiation. Mol Biol Evol 2023; 40:msad247. [PMID: 37987553 PMCID: PMC10691879 DOI: 10.1093/molbev/msad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants. Although the genomic landscapes of introgression were largely lineage specific, we found that genes with immune functions were overrepresented in introgressing regions, in line with adaptive introgression, whereas genes involved in pigmentation and morphology may contribute to reproductive isolation. In line with reports from other systems that hybridization might facilitate diversification, we find that some of the most species-rich guenon clades are of admixed origin. This study provides important insights into the prevalence, role, and outcomes of ancestral hybridization in a large mammalian radiation.
Collapse
Affiliation(s)
- Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala SE-75236, Sweden
| | - Frances Swift
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems 17493, Germany
| | | | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona 08003, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona 08010, Spain
| | - Kate M Detwiler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala SE-75236, Sweden
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Healy TM, Burton RS. Genetic incompatibilities in reciprocal hybrids between populations of Tigriopus californicus with low to moderate mitochondrial sequence divergence. Evolution 2023; 77:2100-2108. [PMID: 37407024 DOI: 10.1093/evolut/qpad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
All mitochondrial-encoded proteins and RNAs function through interactions with nuclear-encoded proteins, which are critical for mitochondrial performance and eukaryotic fitness. Coevolution maintains inter-genomic (i.e., mitonuclear) compatibility within a taxon, but hybridization can disrupt coevolved interactions, resulting in hybrid breakdown. Thus, mitonuclear incompatibilities may be important mechanisms underlying reproductive isolation and, potentially, speciation. Here we utilize Pool-seq to assess the effects of mitochondrial genotype on nuclear allele frequencies in fast- and slow-developing reciprocal inter-population F2 hybrids between relatively low-divergence populations of the intertidal copepod Tigriopus californicus. We show that mitonuclear interactions lead to elevated frequencies of coevolved (i.e., maternal) nuclear alleles on two chromosomes in crosses between populations with 1.5% or 9.6% fixed differences in mitochondrial DNA nucleotide sequence. However, we also find evidence of excess mismatched (i.e., noncoevolved) alleles on three or four chromosomes per cross, respectively, and of allele frequency differences consistent with effects involving only nuclear loci (i.e., unaffected by mitochondrial genotype). Thus, our results for low-divergence crosses suggest an underlying role for mitonuclear interactions in variation in hybrid developmental rate, but despite substantial effects of mitonuclear coevolution on individual chromosomes, no clear bias favoring coevolved interactions overall.
Collapse
Affiliation(s)
- Timothy M Healy
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA, United States
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California-San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Estes S, Dietz ZP, Katju V, Bergthorsson U. Evolutionary codependency: insights into the mitonuclear interaction landscape from experimental and wild Caenorhabditis nematodes. Curr Opin Genet Dev 2023; 81:102081. [PMID: 37421904 PMCID: PMC11684519 DOI: 10.1016/j.gde.2023.102081] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/10/2023]
Abstract
Aided by new technologies, the upsurgence of research into mitochondrial genome biology during the past 15 years suggests that we have misunderstood, and perhaps dramatically underestimated, the ongoing biological and evolutionary significance of our long-time symbiotic partner. While we have begun to scratch the surface of several topics, many questions regarding the nature of mutation and selection in the mitochondrial genome, and the nature of its relationship to the nuclear genome, remain unanswered. Although best known for their contributions to studies of developmental and aging biology, Caenorhabditis nematodes are increasingly recognized as excellent model systems to advance understanding in these areas. We review recent discoveries with relevance to mitonuclear coevolution and conflict and offer several fertile areas for future work.
Collapse
Affiliation(s)
- Suzanne Estes
- Portland State University, Department of Biology, Portland, OR, USA.
| | - Zachary P Dietz
- Portland State University, Department of Biology, Portland, OR, USA
| | - Vaishali Katju
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| | - Ulfar Bergthorsson
- Uppsala University, Department of Ecology and Genetics, 752 36 Uppsala, Sweden
| |
Collapse
|
12
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Bendall EE, Mattingly KM, Moehring AJ, Linnen CR. A Test of Haldane's Rule in Neodiprion Sawflies and Implications for the Evolution of Postzygotic Isolation in Haplodiploids. Am Nat 2023; 202:40-54. [PMID: 37384768 DOI: 10.1086/724820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
AbstractHaldane's rule-a pattern in which hybrid sterility or inviability is observed in the heterogametic sex of an interspecific cross-is one of the most widely obeyed rules in nature. Because inheritance patterns are similar for sex chromosomes and haplodiploid genomes, Haldane's rule may apply to haplodiploid taxa, predicting that haploid male hybrids will evolve sterility or inviability before diploid female hybrids. However, there are several genetic and evolutionary mechanisms that may reduce the tendency of haplodiploids to obey Haldane's rule. Currently, there are insufficient data from haplodiploids to determine how frequently they adhere to Haldane's rule. To help fill this gap, we crossed a pair of haplodiploid hymenopteran species (Neodiprion lecontei and Neodiprion pinetum) and evaluated the viability and fertility of female and male hybrids. Despite considerable divergence, we found no evidence of reduced fertility in hybrids of either sex, consistent with the hypothesis that hybrid sterility evolves slowly in haplodiploids. For viability, we found a pattern opposite to that of Haldane's rule: hybrid females, but not males, had reduced viability. This reduction was most pronounced in one direction of the cross, possibly due to a cytoplasmic-nuclear incompatibility. We also found evidence of extrinsic postzygotic isolation in hybrids of both sexes, raising the possibility that this form or reproductive isolation tends to emerge early in speciation in host-specialized insects. Our work emphasizes the need for more studies on reproductive isolation in haplodiploids, which are abundant in nature but underrepresented in the speciation literature.
Collapse
|
14
|
Tukhbatullin A, Ermakov O, Kapustina S, Starikov V, Tambovtseva V, Titov S, Brandler O. Surrounded by Kindred: Spermophilus major Hybridization with Other Spermophilus Species in Space and Time. BIOLOGY 2023; 12:880. [PMID: 37372163 DOI: 10.3390/biology12060880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Among the numerous described cases of hybridization in mammals, the most intriguing are (a) cases of introgressive hybridization deeply affecting the evolutionary history of species, and (b) models involving not a pair of species but a multi-species complex. Therefore, the hybridization history of the russet ground squirrel Spermophilus major, whose range has repeatedly changed due to climatic fluctuations and now borders the ranges of four related species, is of great interest. The main aims of this study were to determine the direction and intensity of gene introgression, the spatial depth of the infiltration of extraneous genes into the S. major range, and to refine the hypothesis of the hybridogenic replacement of mitochondrial genomes in the studied group. Using phylogenetic analysis of the variability of mitochondrial (CR, cytb) and nuclear (SmcY, BGN, PRKCI, c-myc, i6p53) markers, we determined the contribution of neighboring species to the S. major genome. We showed that 36% of S. major individuals had extraneous alleles. All peripheral species that were in contact with S. major contributed towards its genetic variability. We also proposed a hypothesis for the sequence and localization of serial hybridization events. Our assessment of the S. major genome implications of introgression highlights the importance of implementing conservation measures to protect this species.
Collapse
Affiliation(s)
- Andrey Tukhbatullin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Oleg Ermakov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Svetlana Kapustina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Vladimir Starikov
- Department of Biology and Biotechnology, Institute of Natural and Technical Sciences, Surgut State University, Lenin Avenue 1, Surgut 628412, Russia
| | - Valentina Tambovtseva
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| | - Sergey Titov
- Faculty of Physics, Mathematics and Natural Sciences, Belinsky Institute of Teacher Education, Penza State University, Lermontov Str. 37, Penza 440026, Russia
| | - Oleg Brandler
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova Str. 26, Moscow 119334, Russia
| |
Collapse
|
15
|
Nguyen THM, Tinz-Burdick A, Lenhardt M, Geertz M, Ramirez F, Schwartz M, Toledano M, Bonney B, Gaebler B, Liu W, Wolters JF, Chiu K, Fiumera AC, Fiumera HL. Mapping mitonuclear epistasis using a novel recombinant yeast population. PLoS Genet 2023; 19:e1010401. [PMID: 36989278 PMCID: PMC10085025 DOI: 10.1371/journal.pgen.1010401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic variation in mitochondrial and nuclear genomes can perturb mitonuclear interactions and lead to phenotypic differences between individuals and populations. Despite their importance to most complex traits, it has been difficult to identify the interacting mitonuclear loci. Here, we present a novel advanced intercrossed population of Saccharomyces cerevisiae yeasts, called the Mitonuclear Recombinant Collection (MNRC), designed explicitly for detecting mitonuclear loci contributing to complex traits. For validation, we focused on mapping genes that contribute to the spontaneous loss of mitochondrial DNA (mtDNA) that leads to the petite phenotype in yeast. We found that rates of petite formation in natural populations are variable and influenced by genetic variation in nuclear DNA, mtDNA and mitonuclear interactions. We mapped nuclear and mitonuclear alleles contributing to mtDNA stability using the MNRC by integrating a term for mitonuclear epistasis into a genome-wide association model. We found that the associated mitonuclear loci play roles in mitotic growth most likely responding to retrograde signals from mitochondria, while the associated nuclear loci with main effects are involved in genome replication. We observed a positive correlation between growth rates and petite frequencies, suggesting a fitness tradeoff between mitotic growth and mtDNA stability. We also found that mtDNA stability was correlated with a mobile mitochondrial GC-cluster that is present in certain populations of yeast and that selection for nuclear alleles that stabilize mtDNA may be rapidly occurring. The MNRC provides a powerful tool for identifying mitonuclear interacting loci that will help us to better understand genotype-phenotype relationships and coevolutionary trajectories.
Collapse
Affiliation(s)
- Tuc H M Nguyen
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
- Department of Biological Sciences, New York University, New York, New York, United States of America
| | - Austen Tinz-Burdick
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Meghan Lenhardt
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Margaret Geertz
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Franchesca Ramirez
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Mark Schwartz
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Michael Toledano
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Brooke Bonney
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Benjamin Gaebler
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Weiwei Liu
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - John F Wolters
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Kenneth Chiu
- Department of Computer Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Anthony C Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| | - Heather L Fiumera
- Department of Biological Sciences, Binghamton University, Binghamton, New York, United States of America
| |
Collapse
|
16
|
Dedić N, Vetešník L, Šimková A. Monogeneans in intergeneric hybrids of leuciscid fish: Is parasite infection driven by hybrid heterosis, genetic incompatibilities, or host-parasite coevolutionary interactions? Front Zool 2023; 20:5. [PMID: 36703186 PMCID: PMC9881282 DOI: 10.1186/s12983-022-00481-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Several hypotheses have been proposed to explain parasite infection in parental species and their hybrids. Hybrid heterosis is generally applied to explain the advantage for F1 generations of hybrids exhibiting a lower level of parasite infection when compared to parental species. Post-F1 generations often suffer from genetic incompatibilities potentially reflected in the higher level of parasite infection when compared to parental species. However, the presence of specific parasites in an associated host is also limited by close coevolutionary genetic host-parasite associations. This study focused on monogenean parasites closely associated with two leuciscid fish species-common bream and roach-with the aim of comparing the level of monogenean infection between parental species and hybrids representing two F1 generations with different mtDNA and two backcross generations with different cyto-nuclear compositions. RESULTS Monogenean infection in F1 generations of hybrids was lower when compared to parental species, in line with the hybrid heterosis hypothesis. Monogenean infection in backcross generations exhibited similarities with the parental species whose genes contributed more to the backcross genotype. The distribution of monogeneans associated with one or the other parental species showed the same asymmetry with a higher proportion of roach-associated monogeneans in both F1 generations and backcross generation with roach in the paternal position. A higher proportion of common bream-associated monogeneans was found in backcross generation with common bream in the paternal position. CONCLUSIONS Our study indicated that cyto-nuclear incompatibilities in hybrids do not induce higher monogenean infection in backcross generations when compared to parental species. However, as backcross hybrids with a higher proportion of the genes of one parental taxon also exhibited high level of this parental taxon-associated parasites, host-parasite coevolutionary interactions seem to play an obvious role in determining the level of infection of host-specific monogeneans in hybrids.
Collapse
Affiliation(s)
- Neira Dedić
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lukáš Vetešník
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic ,grid.418095.10000 0001 1015 3316Institute of Vertebrate Biology, Czech Academy of Sciences, Květná 8, 603 65 Brno, Czech Republic
| | - Andrea Šimková
- grid.10267.320000 0001 2194 0956Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
17
|
Sloan DB, Warren JM, Williams AM, Kuster SA, Forsythe ES. Incompatibility and Interchangeability in Molecular Evolution. Genome Biol Evol 2023; 15:evac184. [PMID: 36583227 PMCID: PMC9839398 DOI: 10.1093/gbe/evac184] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
There is remarkable variation in the rate at which genetic incompatibilities in molecular interactions accumulate. In some cases, minor changes-even single-nucleotide substitutions-create major incompatibilities when hybridization forces new variants to function in a novel genetic background from an isolated population. In other cases, genes or even entire functional pathways can be horizontally transferred between anciently divergent evolutionary lineages that span the tree of life with little evidence of incompatibilities. In this review, we explore whether there are general principles that can explain why certain genes are prone to incompatibilities while others maintain interchangeability. We summarize evidence pointing to four genetic features that may contribute to greater resistance to functional replacement: (1) function in multisubunit enzyme complexes and protein-protein interactions, (2) sensitivity to changes in gene dosage, (3) rapid rate of sequence evolution, and (4) overall importance to cell viability, which creates sensitivity to small perturbations in molecular function. We discuss the relative levels of support for these different hypotheses and lay out future directions that may help explain the striking contrasts in patterns of incompatibility and interchangeability throughout the history of molecular evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Jessica M Warren
- Center for Mechanisms of Evolution, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona
| | - Alissa M Williams
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Shady A Kuster
- Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Evan S Forsythe
- Department of Biology, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Anderson SAS, López-Fernández H, Weir JT. Ecology and the origin of non-ephemeral species. Am Nat 2022; 201:619-638. [PMID: 37130236 DOI: 10.1086/723763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.
Collapse
|
19
|
Kyrgiafini MA, Giannoulis T, Moutou KA, Mamuris Z. Investigating the Impact of a Curse: Diseases, Population Isolation, Evolution and the Mother's Curse. Genes (Basel) 2022; 13:2151. [PMID: 36421825 PMCID: PMC9690142 DOI: 10.3390/genes13112151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 09/08/2024] Open
Abstract
The mitochondrion was characterized for years as the energy factory of the cell, but now its role in many more cellular processes is recognized. The mitochondrion and mitochondrial DNA (mtDNA) also possess a set of distinct properties, including maternal inheritance, that creates the Mother's Curse phenomenon. As mtDNA is inherited from females to all offspring, mutations that are harmful to males tend to accumulate more easily. The Mother's Curse is associated with various diseases, and has a significant effect on males, in many cases even affecting their reproductive ability. Sometimes, it even leads to reproductive isolation, as in crosses between different populations, the mitochondrial genome cannot cooperate effectively with the nuclear one resulting in a mito-nuclear incompatibility and reduce the fitness of the hybrids. This phenomenon is observed both in the laboratory and in natural populations, and have the potential to influence their evolution and speciation. Therefore, it turns out that the study of mitochondria is an exciting field that finds many applications, including pest control, and it can shed light on the molecular mechanism of several diseases, improving successful diagnosis and therapeutics. Finally, mito-nuclear co-adaptation, paternal leakage, and kin selection are some mechanisms that can mitigate the impact of the Mother's Curse.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Katerina A. Moutou
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
20
|
Hénault M, Marsit S, Charron G, Landry CR. Hybridization drives mitochondrial DNA degeneration and metabolic shift in a species with biparental mitochondrial inheritance. Genome Res 2022; 32:2043-2056. [PMID: 36351770 PMCID: PMC9808621 DOI: 10.1101/gr.276885.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
Mitochondrial DNA (mtDNA) is a cytoplasmic genome that is essential for respiratory metabolism. Although uniparental mtDNA inheritance is most common in animals and plants, distinct mtDNA haplotypes can coexist in a state of heteroplasmy, either because of paternal leakage or de novo mutations. mtDNA integrity and the resolution of heteroplasmy have important implications, notably for mitochondrial genetic disorders, speciation, and genome evolution in hybrids. However, the impact of genetic variation on the transition to homoplasmy from initially heteroplasmic backgrounds remains largely unknown. Here, we use Saccharomyces yeasts, fungi with constitutive biparental mtDNA inheritance, to investigate the resolution of mtDNA heteroplasmy in a variety of hybrid genotypes. We previously designed 11 crosses along a gradient of parental evolutionary divergence using undomesticated isolates of Saccharomyces paradoxus and Saccharomyces cerevisiae Each cross was independently replicated 48 to 96 times, and the resulting 864 hybrids were evolved under relaxed selection for mitochondrial function. Genome sequencing of 446 MA lines revealed extensive mtDNA recombination, but the recombination rate was not predicted by parental divergence level. We found a strong positive relationship between parental divergence and the rate of large-scale mtDNA deletions, which led to the loss of respiratory metabolism. We also uncovered associations between mtDNA recombination, mtDNA deletion, and genome instability that were genotype specific. Our results show that hybridization in yeast induces mtDNA degeneration through large-scale deletion and loss of function, with deep consequences for mtDNA evolution, metabolism, and the emergence of reproductive isolation.
Collapse
Affiliation(s)
- Mathieu Hénault
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada
| | - Souhir Marsit
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada;,Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Guillaume Charron
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada;,Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Christian R. Landry
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, G1V 0A6, Canada;,Département de Biochimie, Microbiologie et Bioinformatique, Université Laval, Québec, Québec, G1V 0A6, Canada;,Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), Université Laval, Québec, Québec, G1V 0A6, Canada;,Université Laval Big Data Research Center (BDRC_UL), Québec, Québec, G1V 0A6, Canada;,Département de Biologie, Université Laval, Québec, Québec, G1V 0A6, Canada
| |
Collapse
|