1
|
Zhou J, Sun X, Wang K, Shen M, Yu J, Yao Q, Hong H, Tang C, Wang Q. What Information do Systemic Pathological Changes Bring to the Diagnosis and Treatment of Alzheimer's Disease? Neurosci Bull 2025:10.1007/s12264-025-01399-z. [PMID: 40257662 DOI: 10.1007/s12264-025-01399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/21/2025] [Indexed: 04/22/2025] Open
Abstract
Alzheimer's disease (AD) is regarded as a neurodegenerative disease, and it has been proposed that AD may be a systemic disease. Studies have reported associations between non-neurological diseases and AD. The correlations between AD pathology and systemic (non-neurological) pathological changes are intricate, and the mechanisms underlying these correlations and their causality are unclear. In this article, we review the association between AD and disorders of other systems. In addition, we summarize the possible mechanisms associated with AD and disorders of other systems, mainly from the perspective of AD pathology. Regarding the relationship between AD and systemic pathological changes, we aim to provide a new outlook on the early warning signs and treatment of AD, such as establishing a diagnostic and screening system based on more accessible peripheral samples.
Collapse
Affiliation(s)
- Jinyue Zhou
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Xiaoli Sun
- Department of Chemistry, Lishui University, Lishui, 32300, China
| | - Keren Wang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China
| | - Min Shen
- Reference Laboratory, Medical System Biotechnology Co., Ltd, Ningbo, 315104, China
| | - Jingbo Yu
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Qi Yao
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China
| | - Hang Hong
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Chunlan Tang
- Health Science Center, School of Public Health, Ningbo University, Ningbo, 315211, China.
| | - Qinwen Wang
- Health Science Center, The First Affiliated Hospital, Ningbo University, Ningbo, 315010, China.
| |
Collapse
|
2
|
Lee J, Kim D, Cha SJ, Lee JW, Lee EY, Kim HJ, Kim K. Tau reduction impairs nephrocyte function in Drosophila. BMB Rep 2025; 58:169-174. [PMID: 39757203 PMCID: PMC12041923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 01/07/2025] Open
Abstract
Tau, a microtubule-associated protein, is known for its significant involvement in neurodegenerative diseases. While various molecular and immunohistochemical techniques have confirmed the presence of Tau in podocytes, its precise function within these cells remains elusive. In this study, we investigate the role of Tau in kidney podocytes using Drosophila pericardial nephrocytes as a model. We found that knockdown of Drosophila Tau in nephrocytes resulted in apoptotic cell death and the disruption of nephrocyte structure. Furthermore, we observed that decreased Tau levels induced genomic damage and abnormal distribution of γ-H2Av, altering nuclei architecture in nephrocytes, and affecting the nuclear membrane structure by interfering with lamin with aging. Additionally, Tau knockdown led to a reduction in lipid droplets in Drosophila fat body tissues, suggesting a potential role of Tau in inter-organ communication. These findings underscore the importance of Tau in the nephrocytes of Drosophila, and advocate further research to broaden our understanding of podocyte biology in kidney diseases. [BMB Reports 2025; 58(4): 169-174].
Collapse
Affiliation(s)
- Jiyoung Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| | - Dayoung Kim
- Department of Medical Biotechnology, Soonchunhyang University, Asan 31538, Korea
| | - Sun Joo Cha
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Jang-Won Lee
- Department of Integrated Bio-Industry, Sejong University, Seoul 05006, Korea
| | - Eun-Young Lee
- Division of Nephrology, Department of Internal Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan 31151, Korea
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu 41068, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
3
|
Wang N, Ma Y, Liang X, Fa W, Tian X, Liu C, Zhu M, Tian N, Liu K, Tang S, Song L, Cong L, Dai L, Xu H, Wang Y, Hou T, Du Y, Qiu C. Association of dementia with impaired kidney function and plasma biomarkers: A population-based study. Eur J Neurol 2024; 31:e16488. [PMID: 39331367 PMCID: PMC11555029 DOI: 10.1111/ene.16488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND PURPOSE Emerging evidence has linked impaired kidney function with dementia in older adults, but the neuropathological pathways underlying their association remain poorly understood. We sought to examine the relationships of kidney function with dementia and plasma biomarkers in a Chinese rural population. METHODS This population-based study used data from the baseline examination of the Multimodal Interventions to Delay Dementia and Disability in rural China (MIND-China) cohort (March-September 2018; n = 5715). Kidney function was assessed using estimated glomerular filtration rate (eGFR) based on serum creatinine level. Dementia, Alzheimer's disease (AD) and vascular dementia (VaD) were diagnosed according to the international criteria. Plasma biomarkers were measured using the SIMOA platform in a subsample (n = 1446). Data were analyzed using logistic, general linear, and mediation models. RESULTS Of the 5715 participants, 306 were diagnosed with dementia, including 195 with AD and 100 with VaD. Impaired kidney function (eGFR <60 vs. ≥90 mL/min/1.73 m2) was associated with multivariable-adjusted odds ratios of 2.24 (95% confidence interval [CI] 1.44-3.46) for all-cause dementia, 1.85 (1.07-3.18) for AD, and 2.49 (1.16-5.22) for VaD. In the biomarker subsample, impaired kidney function was significantly associated with higher plasma amyloid-β (Aβ)40 (β-coefficient = 54.36, 95% CI 43.34-65.39), Aβ42 (β-coefficient = 3.14, 95% CI 2.42-3.86), neurofilament light chain (β-coefficient = 10.62, 95% CI 5.62-15.62), and total tau (β-coefficient = 0.68, 95% CI 0.44-0.91), and a lower Aβ42/Aβ40 ratio (β-coefficient = -4.11, 95% CI -8.08 to -0.14). The mediation analysis showed that plasma total tau significantly mediated 21.76% of the association between impaired kidney function and AD (p < 0.05). CONCLUSION Impaired kidney function is associated with dementia and plasma biomarkers among rural-dwelling older Chinese adults, and the association with AD is partly mediated by plasma biomarkers for neurodegeneration.
Collapse
Affiliation(s)
- Nan Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
| | - Yixun Ma
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Xiaoyan Liang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
| | - Wenxin Fa
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Xunyao Tian
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
| | - Cuicui Liu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Min Zhu
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Na Tian
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Keke Liu
- Shandong Academy of Clinical MedicineShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Shi Tang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Lu Dai
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversityStockholmSweden
| | - Hong Xu
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversityStockholmSweden
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongPeople's Republic of China
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongPeople's Republic of China
- Shandong Provincial Clinical Research Center for Neurological DiseasesJinanShandongPeople's Republic of China
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongPeople's Republic of China
| | - Chengxuan Qiu
- Department of NeurologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongPeople's Republic of China
- Aging Research Center, Department of Neurobiology, Care Sciences and SocietyKarolinska Institutet‐Stockholm UniversityStockholmSweden
- Institute of Brain Science and Brain‐Inspired ResearchShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongPeople's Republic of China
| |
Collapse
|
4
|
Hajjar I, Neal R, Yang Z, Lah JJ. Alzheimer's disease cerebrospinal fluid biomarkers and kidney function in normal and cognitively impaired older adults. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12581. [PMID: 38617186 PMCID: PMC11010257 DOI: 10.1002/dad2.12581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
INTRODUCTION Recent Alzheimer's disease (AD) clinical trials have used cerebrospinal fluid (CSF) biomarker levels for screening and enrollment. Preliminary evidence suggests that AD risk is related to impaired renal function. The impact of kidney function on commonly used AD biomarkers remains unknown. METHODS Participants in studies conducted at the Goizueta Alzheimer's Disease Research Center (N = 973) had measurements of serum creatinine and CSF AD biomarkers. General linear models and individual data were used to assess the relationships between biomarkers and eGFR. RESULTS Lower estimated glomerular filtration rate (eGFR) was associated with lower amyloid beta (Aβ)42/tau ratio (p < 0.0001) and Aβ42 (p = 0.002) and higher tau (p < 0.0001) and p-tau (p = 0.0002). The impact of eGFR on AD biomarker levels was more robust in individuals with cognitive impairment (all p-values were < 0.005). DISCUSSION The association between eGFR and CSF AD biomarkers has a significant impact that varies by cognitive status. Future studies exploring this impact on the pathogenesis of AD and related biomarkers are needed. Highlights There is a significant association between Alzheimer's disease (AD) cerebrospinal fluid (CSF) biomarkers and both estimated glomerular filtration rate (eGFR) and mild cognitive impairment (MCI).Kidney function influences CSF biomarker levels in individuals with normal cognitive function and those with MCI.The impact of kidney function on AD biomarker levels is more pronounced in individuals with cognitive impairment.The variation in CSF tau levels is independent of cardiovascular factors and is likely directly related to kidney function.Tau may have a possible role in both kidney and cognitive function.
Collapse
Affiliation(s)
- Ihab Hajjar
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
- Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Reem Neal
- Department of NeurologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Zhiyi Yang
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| | - James J. Lah
- Department of NeurologyEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
5
|
Lei HY, Pi GL, He T, Xiong R, Lv JR, Liu JL, Wu DQ, Li MZ, Shi K, Li SH, Yu NN, Gao Y, Yu HL, Wei LY, Wang X, Zhou QZ, Zou PL, Zhou JY, Liu YZ, Shen NT, Yang J, Ke D, Wang Q, Liu GP, Yang XF, Wang JZ, Yang Y. Targeting vulnerable microcircuits in the ventral hippocampus of male transgenic mice to rescue Alzheimer-like social memory loss. Mil Med Res 2024; 11:16. [PMID: 38462603 PMCID: PMC10926584 DOI: 10.1186/s40779-024-00512-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.
Collapse
Affiliation(s)
- Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Lin Pi
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing-Ru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Le Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Qin Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng-Zhu Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Shi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Na-Na Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Ling Yu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qiu-Zhi Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei-Lin Zou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Zhou Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Nai-Ting Shen
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gong-Ping Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xi-Fei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, Jiangsu, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
6
|
Romero-Carramiñana I, Esparza-Moltó PB, Domínguez-Zorita S, Nuevo-Tapioles C, Cuezva JM. IF1 promotes oligomeric assemblies of sluggish ATP synthase and outlines the heterogeneity of the mitochondrial membrane potential. Commun Biol 2023; 6:836. [PMID: 37573449 PMCID: PMC10423274 DOI: 10.1038/s42003-023-05214-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
The coexistence of two pools of ATP synthase in mitochondria has been largely neglected despite in vitro indications for the existence of reversible active/inactive state transitions in the F1-domain of the enzyme. Herein, using cells and mitochondria from mouse tissues, we demonstrate the existence in vivo of two pools of ATP synthase: one active, the other IF1-bound inactive. IF1 is required for oligomerization and inactivation of ATP synthase and for proper cristae formation. Immunoelectron microscopy shows the co-distribution of IF1 and ATP synthase, placing the inactive "sluggish" ATP synthase preferentially at cristae tips. The intramitochondrial distribution of IF1 correlates with cristae microdomains of high membrane potential, partially explaining its heterogeneous distribution. These findings support that IF1 is the in vivo regulator of the active/inactive state transitions of the ATP synthase and suggest that local regulation of IF1-ATP synthase interactions is essential to activate the sluggish ATP synthase.
Collapse
Affiliation(s)
- Inés Romero-Carramiñana
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau B Esparza-Moltó
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sonia Domínguez-Zorita
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Nuevo-Tapioles
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain
| | - José M Cuezva
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) ISCIII, Madrid, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
7
|
Chapelet G, Béguin N, Castellano B, Grit I, de Coppet P, Oullier T, Neunlist M, Blottière H, Rolli-Derkinderen M, Le Dréan G, Derkinderen P. Tau expression and phosphorylation in enteroendocrine cells. Front Neurosci 2023; 17:1166848. [PMID: 37332860 PMCID: PMC10272410 DOI: 10.3389/fnins.2023.1166848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Background and objective There is mounting evidence to suggest that the gut-brain axis is involved in the development of Parkinson's disease (PD). In this regard, the enteroendocrine cells (EEC), which faces the gut lumen and are connected with both enteric neurons and glial cells have received growing attention. The recent observation showing that these cells express alpha-synuclein, a presynaptic neuronal protein genetically and neuropathologically linked to PD came to reinforce the assumption that EEC might be a key component of the neural circuit between the gut lumen and the brain for the bottom-up propagation of PD pathology. Besides alpha-synuclein, tau is another key protein involved in neurodegeneration and converging evidences indicate that there is an interplay between these two proteins at both molecular and pathological levels. There are no existing studies on tau in EEC and therefore we set out to examine the isoform profile and phosphorylation state of tau in these cells. Methods Surgical specimens of human colon from control subjects were analyzed by immunohistochemistry using a panel of anti-tau antibodies together with chromogranin A and Glucagon-like peptide-1 (two EEC markers) antibodies. To investigate tau expression further, two EEC lines, namely GLUTag and NCI-H716 were analyzed by Western blot with pan-tau and tau isoform specific antibodies and by RT-PCR. Lambda phosphatase treatment was used to study tau phosphorylation in both cell lines. Eventually, GLUTag were treated with propionate and butyrate, two short chain fatty acids known to sense EEC, and analyzed at different time points by Western blot with an antibody specific for tau phosphorylated at Thr205. Results We found that tau is expressed and phosphorylated in EEC in adult human colon and that both EEC lines mainly express two tau isoforms that are phosphorylated under basal condition. Both propionate and butyrate regulated tau phosphorylation state by decreasing its phosphorylation at Thr205. Conclusion and inference Our study is the first to characterize tau in human EEC and in EEC lines. As a whole, our findings provide a basis to unravel the functions of tau in EEC and to further investigate the possibility of pathological changes in tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Guillaume Chapelet
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Nora Béguin
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | | | - Isabelle Grit
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pierre de Coppet
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Thibauld Oullier
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Michel Neunlist
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Hervé Blottière
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Gwenola Le Dréan
- Nantes Université, INRAE, IMAD, CRNH-O, UMR 1280, PhAN, Nantes, France
| | - Pascal Derkinderen
- Nantes Université, INSERM, CHU Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| |
Collapse
|
8
|
Chu S, Moujaber O, Lemay S, Stochaj U. Multiple pathways promote microtubule stabilization in senescent intestinal epithelial cells. NPJ AGING 2022; 8:16. [PMID: 36526654 PMCID: PMC9758230 DOI: 10.1038/s41514-022-00097-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Intestinal epithelial cells are critical for gastrointestinal homeostasis. However, their function declines during aging. The aging-related loss of organ performance is largely driven by the increase in senescent cells. To date, the hallmarks and molecular mechanisms related to cellular senescence are not fully understood. Microtubules control epithelial functions, and we identified microtubule stabilization as a phenotypic marker of senescent intestinal epithelial cells. The senescence inducer determined the pathway to microtubule stabilization. Specifically, enhanced microtubule stability was associated with α-tubulin hyperacetylation or increased abundance of the microtubule-binding protein tau. We show further that overexpression of MAPT, which encodes tau, augmented microtubule stability in intestinal epithelial cells. Notably, pharmacological microtubule stabilization was sufficient to induce cellular senescence. Taken together, this study provides new insights into the molecular mechanisms that control epithelial cell homeostasis. Our results support the concept that microtubule stability serves as a critical cue to trigger intestinal epithelial cell senescence.
Collapse
Affiliation(s)
- Siwei Chu
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Ossama Moujaber
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 Canada
| | - Serge Lemay
- grid.63984.300000 0000 9064 4811Department of Medicine, Division of Nephrology, McGill University Health Centre, Montreal, QC Canada
| | - Ursula Stochaj
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, Quebec H3G 1Y6 Canada
| |
Collapse
|
9
|
Vallés-Saiz L, Ruiz-Gabarre D, García-Escudero V, Perry G, Avila J, Hernández F. Mouse and Human Tau Expression in Different Brain Areas. J Alzheimers Dis Rep 2022; 6:677-684. [PMID: 36506485 PMCID: PMC9696674 DOI: 10.3233/adr-220051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/08/2022] [Indexed: 12/15/2022] Open
Abstract
Background An increase in tau protein is believed to be necessary for tau aggregation. However, whether this is due to increased expression of the endogenous tau promoter or protein accumulation due to proteostasis failure remains uncertain. Objective To analyze the expression of GFP protein under endogenous tau promoter across different ages and within different brain areas. Methods We have measured direct expression of Mapt gene promotor by western blot and immunofluorescence, by means of a commercial tau knock-out mice generated by integrating GFP-encoding cDNA into exon 1 of the Mapt gene. Besides, we have analyzed the MAPT gene expression in human samples. Results Mapt expression is similar in the cortex, hippocampus, and cerebellum in mice and in human samples although some differences exist between dentate gyrus and CA1 hippocampal areas in mice. Besides, we have analyzed the murine Mapt gene expression during aging (at 2, 6, 12, and 18 moths) and no differences in endogenous tau promoter expression were observed. Conclusion Our results suggest that Mapt promoter activity is similar in the brain areas studied and, therefore, tau accumulation due to aging is likely due to proteostasis failure rather than occurring at the transcriptional level.
Collapse
Affiliation(s)
- Laura Vallés-Saiz
- Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Daniel Ruiz-Gabarre
- Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain,Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vega García-Escudero
- Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain,Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - George Perry
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesús Avila
- Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain,Correspondence to: Jesús Avila and Félix Hernández, Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Tel.: +34 91 196 45 63; Fax: +34 91 196 44 20; E-mail: (Jesús Avila); . (Félix Hernández)
| | - Félix Hernández
- Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain,Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain,Correspondence to: Jesús Avila and Félix Hernández, Centro de Biología Molecular “Severo Ochoa”, CSIC/UAM, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. Tel.: +34 91 196 45 63; Fax: +34 91 196 44 20; E-mail: (Jesús Avila); . (Félix Hernández)
| |
Collapse
|
10
|
Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:625-642. [PMID: 36090761 PMCID: PMC9424863 DOI: 10.1016/j.omtn.2022.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/31/2022] [Indexed: 11/28/2022]
Abstract
Tau is a microtubule-associated protein (MAPT, tau) implicated in the pathogenesis of tauopathies, a spectrum of neurodegenerative disorders characterized by accumulation of hyperphosphorylated, aggregated tau. Because tau pathology can be distinct across diseases, a pragmatic therapeutic approach may be to intervene at the level of the tau transcript, as it makes no assumptions to mechanisms of tau toxicity. Here we performed a large library screen of locked-nucleic-acid (LNA)-modified antisense oligonucleotides (ASOs), where careful tiling of the MAPT locus resulted in the identification of hot spots for activity in the 3′ UTR. Further modifications to the LNA design resulted in the generation of ASO-001933, which selectively and potently reduces tau in primary cultures from hTau mice, monkey, and human neurons. ASO-001933 was well tolerated and produced a robust, long-lasting reduction in tau protein in both mouse and cynomolgus monkey brain. In monkey, tau protein reduction was maintained in brain for 20 weeks post injection and corresponded with tau protein reduction in the cerebrospinal fluid (CSF). Our results demonstrate that LNA-ASOs exhibit excellent drug-like properties and sustained efficacy likely translating to infrequent, intrathecal dosing in patients. These data further support the development of LNA-ASOs against tau for the treatment of tauopathies.
Collapse
|